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Abstract 

Metabolic syndrome and Non-alcoholic fatty liver 

disease are common findings in obesity. In both 

conditions, despite many proposed mechanisms to 

their development, changes in adipose tissue vis-à-vis 

visceral adipose tissue as a highly metabolically 

active tissue seem to be a common pathway to their 

development in both the lean and obese populations. 

In this review, we detail how the changes that occur 

in adipose tissue are linked to the development of 

both metabolic syndrome and non-alcoholic fatty 

liver disease. 
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1. Introduction 

Obesity is emerging as one of the main causes 

limiting life expectancy in developed countries [1]. It 

is linked to an increased risk of metabolic syndrome, 

while non-alcoholic fatty liver disease (NAFLD) is 

its most common complication [2]. Interestingly, a 

proportion of 30% of obese individuals do not 

develop NAFLD and metabolic aberrations; 

meanwhile a proportion of 20-30% of lean 

individuals develop NAFLD and associated 
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conditions [3], suggesting that the development of 

these complications might be related to adipose tissue 

distribution and functions. In fact, it has been shown 

that visceral adipose tissue in particular plays a 

critical role in the genesis of metabolic diseases and 

NAFLD independent of generalized obesity [4, 5]. 

This review will therefore consider the linkage that 

exists among adipose tissue in particular, visceral 

adipose tissue, the development of metabolic 

syndrome and that of NAFLD. 

 

2. Adipose Tissue 

Adipose tissue is a connective tissue as well as an 

endocrine organ, which is involved in energy 

homeostasis, glucose and lipid metabolism. Adipose 

tissue has the capability of expanding (either in the 

form of hypertrophy which is the increase in 

adipocytes volume or hyperplasia which is the 

increase in adipocytes number). Adipose tissue has 

different behaviour under different physiological 

conditions. For example, in excess nutrition (energy) 

conditions it stores the excess energy in the form of 

triglycerides, while during starvation or fasting 

conditions it supplies energy to other tissues through 

the process of lipolysis [6]. Adipose tissue is divided 

into white adipose tissue (WAT) and brown adipose 

tissue (BAT). 

 

2.1 White adipose tissue (WAT) 

WAT is the more abundant of the two and is 

distributed into subcutaneous adipose tissue (SAT) 

and visceral adipose tissue (VAT). WAT is 

characterised with large single lipid droplets 

(unilocular) and contains few mitochondria inside 

(Figure 1A) [7]. WAT secretes a number of different 

hormones that play various roles in energy 

metabolism and endocrine function. Among many 

other hormones secreted by this tissue are: 

adiponectin, leptin and resistin [8, 9]. Interestingly, 

Lee et al demonstrated that SAT was strongly 

associated with leptin while VAT was strongly 

associated with adiponectin [10]. These outcomes 

probably explain the biological functional differences 

between the two WAT subtypes. In fact, VAT is 

more highly metabolically active than SAT and has 

been associated with metabolic disorders [4, 5]. VAT 

depots include mesenteric, omental, perirenal and 

peritoneal regions [11, 12]. Contrary to the 

association of VAT with metabolic disorders, SAT 

on the other hand has been attributed to offer 

“protection” from metabolic disorders. Kim et al 

showed that an increase in the SAT area was 

significantly associated with regression of NAFLD 

[13] while Kwon et al. showed that SAT area was not 

associated with the incidence of metabolic syndrome 

[14]. 

 

2.2 Brown adipose tissue (BAT) 

BAT is characterized by less lipid droplets, highly 

irrigated with blood vessels, innervated with 

noradrenergic fibres, high content of uncoupling 

protein 1 (UCP1) and mitochondrial contents [15] 

(Figure 1B). UCP1 is also expressed by WAT at the 

mitochondrial level but only to a lesser degree [16], 

which is thought to induce “white to beige fat’ 

transition, being referred to as “browning of white 

fat” or “synthesis of beige fat [17, 18].” The 

functions of both classical brown and beige adipose 

tissues are for thermogenesis and energy balance, 

with contribution to glucose homeostasis, mitigating 

insulin resistance and clearing triglycerides [19, 20]. 
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         (A)    (B) 

Figure 1: (A) Light microscope image of white adipose tissue and (B) brown adipose tissue. Adapted from Ràfols 

[21]. 

 

3. Metabolic Syndrome 

This is a constellation of metabolic abnormalities that 

includes: central obesity, insulin resistance, 

hypertension, and dyslipidaemia [22-24]. This 

syndrome is strongly associated with the increased 

risk for cardiovascular disease and type 2 diabetes 

mellitus [23] and its prevalence is high in the obese 

population [25]. Notably, the prevalence varies with 

respect to gender, ethnicity/race, age and the criteria 

used for its diagnosis. Table 1 shows the summary of 

different criterion used to diagnose metabolic 

syndrome. 
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Clinical And 

Blood 

Biochemistry 

parameters 

WHO 1998 [26]
 

EGIR 1999 

[27]
 

NCEP ATP III 

2001 [28]
 

AACE 2003 [29]
 

IDF 2005 [30]
 

AHA/NHLBI 

2005 [31]
 

CONSENSUS 

(AHA/NHLBI 

+ IDF) 2009 [32] 

Insulin resistance Impaired glucose 

tolerance, impaired 

fasting glucose, 

T2DM, or lowered 

insulin sensitivity plus 

any two of the 

following:  

Plasma insulin 

concentration 

>75th percentile 

of non-diabetic 

patients, plus 

any two of the 

following: 

Any three of the 

following: 

Impaired glucose 

tolerance or 

impaired fasting 

glucose, plus any 

of the following: 

N/A 

Any three of the 

following: 

Any three of the 

following: 

Obesity  Abdominal obesity 

(waist-to-hip ratio 

>0.90 in men or >0.85 

in women, or BMI >30 

kg/m2) 

WC ≥ 94 cm in 

men; ≥ 80 cm in 

women 

WC >102 cm in 

men; >88 cm in 

women 

BMI ≥ 25 kg/m2 BMI >30 kg/m2 or 

WC with ethnicity-

specific values, Υ

plus any two of 

the following: 

WC ≥ 102 cm in 

men; ≥ 88 cm in 

women 

Raised WC 

(population- and 

country-specific 

definitions) 

Plasma glucose 

concentration 
Φ
 

Impaired glucose 

tolerance, impaired 

fasting glucose, or 

T2DM 

FPG ≥110 

mg/dL 

FPG ≥110 mg/dL Impaired fasting 

glucose, or 

Impaired glucose 

tolerance 

FPG ≥100 mg/dL FPG ≥100 mg/dL FPG ≥100 mg/dL 

or on diabetes 

treatment 

Plasma glucose 

concentration Φ 

Impaired glucose 

tolerance, impaired 

fasting glucose, or 

T2DM 

FPG ≥110 

mg/dL 

FPG ≥110 mg/dL Impaired fasting 

glucose, or 

Impaired glucose 

tolerance 

FPG ≥100 mg/dL FPG ≥100 mg/dL FPG ≥100 mg/dL 

or on diabetes 

treatment 

Triglycerides (TG) 

Ψ 

TG ≥150 mg/dL TG ≥150 mg/dL 

or on treatment 

TG ≥150 mg/dL TG ≥150 mg/dL TG ≥150 mg/dL or 

on treatment 

TG ≥150 mg/dL or 

on treatment 

TG ≥150 mg/dL or 

on treatment 
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HDL-cholesterol 

(HDL-C) β 

HDL-C <40 mg/dL in 

men and <50 mg/dL in 

women 

HDL-C <39 

mg/dL in men 

or women, or on 

treatment 

HDL-C <40 mg/dL 

in men and <50 

mg/dL in women 

HDL-C <40 mg/dL 

in men and <50 

mg/dL in women 

HDL-C <40 mg/dL 

in men and <50 

mg/dL in women, 

or on treatment 

HDL-C <40 mg/dL 

in men and <50 

mg/dL in women, 

or on treatment 

HDL-C <40 mg/dL 

in men and <50 

mg/dL in women, 

or on treatment 

Additional Urinary albumin 

excretion ≥20 μg/min, 

or ACR ≥30 mg/g 

N/A 

AACE, American Association of Clinical Endocrinologists; ACR, albumin-creatinine ratio; AHA, American Heart Association; BMI, body mass index; BP, blood pressure; 

EGIR, European Group for Study of Insulin Resistance; FPG, fasting plasma glucose; HDL-C, high-density lipoprotein cholesterol; IDF, International Diabetes Federation; 

NCEP ATP III, National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III); 

NHLBI, National Heart, Lung, and Blood Institute; T2DM, type 2 diabetes mellitus; TG, triglycerides; WC, waist circumference; WHO, World Health Organization. Υ Waist 

circumference: for Europids, sub-Saharan Africans, Eastern Mediterranean and Middle East populations >94 cm in men and >80 cm in women; for South Asians, Chinese, 

Japanese, Central and South American >90 cm in men and >80 cm in women. Φ Glucose concentration conversion factor: 1milligrams per decilitre = 0.0555 millimoles per litre. 

Ψ Triglyceride concentration conversion factor: 1milligrams per decilitre = 0.0113 millimoles per litre. β HDL-cholesterol concentration conversion factor: 1milligrams per 

decilitre = 0.02586 millimoles per litre. Adapted from McCracken et al. [23]. 

Table 1: Various diagnostic criterion for metabolic syndrome [26-32].
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4. Link Between Visceral Adipose Tissue and 

Metabolic Syndrome  

Several theories linking adipose tissue to the 

development of metabolic syndrome have been 

proposed but the widely accepted ones are: insulin 

resistance with fatty acid flux [23], neurohormonal 

activation, low-grade chronic inflammation and 

oxidative stress [33-35]. 

 

4.1 Insulin resistance hypothesis 

Insulin inhibits lipolysis and hepatic 

gluconeogenesis, at the same time it increases 

glucose uptake in the muscle and liver. In an event of 

insulin resistance in the adipose tissue, the insulin-

mediated inhibition of lipolysis is impaired resulting 

in an increase in the circulating free fat acids (FFAs). 

This increase in circulating FFAs further inhibits the 

antilipolytic effect of insulin [36]. This increase in 

circulating FFAs results in two simultaneous but 

independent processes: (1) they inhibit protein kinase 

activation in the muscle leading to reduced glucose 

uptake, and (2) they increase protein kinase 

activation in the liver leading to the promotion of 

gluconeogenesis and lipogenesis. The net effect of 

this chain reaction results in excess levels of insulin 

circulating in the blood relative to the level of 

glucose [24]. Overtime, the compensation fails and 

insulin secretion diminishes. Additionally, the FFAs 

are toxic to the beta cells in the pancreatic islet of 

Langerhans as they decrease the secretion of insulin 

[37]. Insulin resistance further adds to the genesis of 

hypertension due to vasoconstriction caused by FFAs 

and the loss of vasodilator effects of insulin [38]. 

Moreover, insulin resistance has been found to 

increase serum viscosity that induces thrombophilia, 

and release of proinflammatory cytokines from the 

adipose tissue, which contributes to, increased risk of 

cardiovascular diseases [39]. 

 

Visceral adipose tissue does contribute to insulin 

resistance. Visceral lipolysis contributes to an 

elevated supply of FFAs to the liver via the celiac, 

superior mesenteric, inferior mesenteric arteries and 

the portal vein. This increase in FFAs ensues in an 

amplfied triglycerides formation and the manufacture 

of apolipoprotein B containing triglyceride-rich very 

low-density lipoprotein cholesterol (LDL-C) in the 

liver [40]. The elevated levels of apolipoprotein B are 

an indirect effect of insulin resistance following an 

obliterated lipid metabolism in the liver. This 

elevation in the levels of apolipoprotein B 

corresponds to elevated levels of LDL-C and a 

reduction in high-density lipoprotein cholesterol 

(HDL) [24]. 

 

4.2 Neurohormonal activation hypothesis 

As discussed earlier, adipose tissue is not only a 

connective tissue but an endocrine organ as well. It 

secretes hormones in particular leptin and 

adiponectin. Adiponectin regulates glucose levels and 

breaks down fatty acids. This protein has been 

associated with metabolic syndrome and 

cardiovascular disease [41]. Similarly, leptin 

regulates energy balance by inhibiting hunger that in 

turn reduces fat storage in adipocytes by acting on 

cell receptors in the arcuate nucleus of the 

hypothalamus. The onset of obesity increases leptin 

levels, and this increase is directly related to 

increased cardiovascular risks [24]. In antagonism to 

the effects of leptin, adiponectin on the other hand 

provides counter effects of leptin as an anti-

inflammatory and anti-atherogenic adipokine. Thus, 

adiponectin has been considered a protective factor 
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against the development of diabetes mellitus, 

hypertension and acute myocardial infarction [42, 

43]. Obesity correlates with reduced adiponectin and 

higher leptin levels that eventually increase the 

cardiovascular risks. 

 

Neurohumoral activation increases the activity of the 

sympathetic nervous system, renin-angiotensin 

system, vasopressin and atrial natriuretic peptide 

[44]. Of interest is the renin-angiotensin system that 

has also been shown to contribute to the development 

of metabolic syndrome. Adipose tissue produce 

angiotensin II following the activation of 

angiotensin-converting enzyme [24]. Obesity and 

insulin resistance have been associated with 

increased production of angiotensin II [45]. 

Activation of angiotensin II leads to the generation of 

reactive oxygen species through the activation of 

nicotinamide adenine dinucleotide phosphate oxidase 

[46]. The generation of reactive oxygen species result 

in multiple effects including among many others the 

expression of lectin-like oxidized low-density 

lipoprotein receptor-1 on the endothelium and 

vascular smooth muscle cells [47]. These elements: 

renin-angiotensin system, reactive oxygen species 

and low-density receptor-1 have an intertwined 

positive response loop that initiates a vicious cycle of 

inflammation, endothelial damage and fibroblast 

proliferation which contributes to the onset of 

metabolic syndrome cluster of abnormalities; 

hypertension, dyslipidaemia, diabetes, cardiac 

hypertrophy and cardiovascular disease [48]. 

 

4.3 Low-grade chronic inflammation and 

oxidative stress hypothesis  

As the adipose tissue undergo hyperplasia and 

hypertrophy (related to inflammation) in response to 

excess nutrition, the tissue cells tend to outgrow their 

blood supply resulting in hypoxia [49]. In turn, cell 

necrosis with macrophage infiltration and the 

production of adipocytokines ensue [23]. Among the 

adipocytokines produced are: Interleukin-6 (IL-6), 

tumour necrosis factor alpha (TNF-α) and 

prothrombotic mediator plasminogen activator 

inhibitor-1 (PAI-1) [50].  

  

4.3.1 Interleukin-6: Interleukin-6 as a 

proinflammatory cytokine plays an important role in 

the pathogenesis of insulin resistance and type 2 

diabetes mellitus [51]. Its production has been shown 

to increase with the increase in body fat and insulin 

resistance [24]. The effect of IL-6 in the liver for 

instance, increases the production of C-reactive 

protein (CRP) [24]. High CRP levels have been 

associated with the development of metabolic 

syndrome, diabetes mellitus and cardiovascular 

disease [51-53].  

 

4.3.2 Tumour necrosis factor alpha: Tumour 

necrosis factor alpha (TNF-α) is secreted by the 

adipose tissue. Its production is exponential to the 

increase in adipose tissue mass [24]. TNF-α induces 

phosphorylation and inactivation of insulin receptors 

in the adipose tissue including muscle cells, increases 

FFAs production through lipolysis and inhibits 

adiponectin release [54]. Increased levels of TNF-α 

are correlated with components of metabolic 

syndrome i.e. obesity and insulin resistance [55].  

 

4.3.3 Prothrombotic mediator plasminogen 

activator inhibitor-1: Prothrombotic mediator 

plasminogen activator inhibitor-1 (PAI-1) inhibits 

tissue plasminogen activator and is a prothrombotic 

protein [23]. Although the mechanism of PAI-1 in the 
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pathogenesis of metabolic syndrome are not yet 

clearly understood, obesity induced oxidative stress 

has been suggested. Oxidative stress is a 

“phenomenon caused by an imbalance between 

production and accumulation of oxygen reactive 

species in cells and tissues and the ability of a 

biological system to detoxify these reactive products 

[56].” It has been shown that circulating PAI-1 are 

increased in obese subjects with metabolic syndrome 

[57].  

 

5. Link Between Visceral Adipose Tissue and 

NAFLD 

NAFLD is defined as liver fat content ≥ 5% of 

hepatocytes by histology or intrahepatic triglyceride 

content ≥5.5% by MRI in non-alcoholics (i.e. 30 g/d 

of alcohol in men and 20 g/d in women) [58]. 

NAFLD is a chronic liver disease and a predominant 

marker for: type 2 diabetes mellitus, chronic kidney 

disease, cardiovascular disease, metabolic syndrome 

and liver related deaths [59, 60]. The 

pathophysiology of NAFLD and its progression is 

induced by multiple factors, in a “multiple parallel 

hit” model, encompassing an interplay at an 

individual level of multiple genetic, behavioral, 

environmental factors and adipose tissue dysfunction. 

(Comprehensively reviewed by Azzu et al. [1], Fang 

et al. [61] and Yu et al. [62]). 

 

Of interest briefly is the adipose tissue dysfunction. 

The state of “increased fat” as commonly observed in 

obesity 63], has been found to be a primary trigger of 

metabolic disorders [64]. The onset of obesity 

stimulates remodelling in the adipose tissue as a 

response to the changes in the energy status [65, 66]. 

This remodelling induces dysregulation of the 

adipose tissue derived cytokines, hormones and 

metabolites resulting in metabolic stresses and 

disorder in metabolic organs [67-69]. Actually, these 

inflammatory adipokines and cytokines that result 

due to dysregulation of the adipose issue impede with 

adipocyte differentiation and insulin signalling, lipid 

accumulation and increase adipocyte lipolysis. This 

results in a poor ability of the stressed and 

hypertrophic adipocytes to take up and release free 

fatty acids, thus, inducing redistribution of fat in 

other areas (ectopic) like visceral adipose tissue, 

skeletal muscle, liver, pancreas, and heart [70]. When 

lipid supply exceeds oxidative capacity in these 

tissues, intracellular lipid accumulation occurs, 

risking an obliteration of organ function [70]. 

Interestingly, greater rates of lipolysis, increased 

insulin resistance and increased cytokines release 

have been associated with hypertrophied 

subcutaneous adipocytes while visceral adipocyte 

hypertrophy has been associated with dyslipidaemia 

[71]. The later is understood to be one of the many 

mechanisms to the development of NAFLD through 

the excess delivery of “toxic” free fat acids directly 

into liver through the portal circulation. 

 

Given these proposed mechanisms, the evidence is 

overwhelming to link adipose tissue vis-à-vis VAT as 

the most metabolic adipose tissue subtype to both 

NAFLD and metabolic syndrome. Actually, a 

number of studies have shown the association 

between increased VAT volumes with NAFLD. For 

instance, VAT area was found to be independently 

associated with fatty liver disease [72, 73]. At the 

same time it has been shown that increase in VAT 

mass irrespective of the ethnicity and method used to 

measure VAT volume has at least 2 times greater risk 

to the development of NAFLD [72, 74]. These 

outcomes reiterate the critical mediatory role VAT 
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plays to the development and complication of 

NAFLD. 

Similarly, multiple studies have also shown that the 

increase in VAT volume (irrespective of the method 

used to measure VAT mass) is strongly associated 

with metabolic syndrome in all BMI categories [14, 

75, 76]. Moreover, many other studies have shown 

that VAT area/volume adds a risk and is an 

independent predictor to the development of 

metabolic syndrome. For instance, Bi et al. [77] and 

Nakao et al. [78] found that VAT area was an 

independent predictor of metabolic syndrome. Bi et 

al. [77] further showed the risk of metabolic 

syndrome increased 3-fold with each standard 

deviation of VAT area. Lu et al. [79] involving 3259 

subjects with normal BMI demonstrated that subjects 

with high VAT amounts presented a much higher risk 

for metabolic syndrome. Likewise, Ding et al. [80] 

showed that lean subjects with metabolic dysfunction 

had increased VAT volume compared to the controls, 

with nearly 4-folds greater risk for NAFLD, 20-30% 

lower glucose disposal rates/insulin sensitivity and 

30-40% greater insulin secretion rates.  

 

Given this overwhelming evidence linking visceral 

adipose to metabolic dysfunction and fatty liver 

disease, It can almost be safely concluded therefore 

that increased VAT mass whether arising from 

adipocyte hypertrophy or hyperplasia and obliteration 

in its intrinsic functions as a connective tissue and as 

an endocrine organ has a causal effect in the 

development of metabolic syndrome and NAFLD. 

Interventions targeted at VAT loss or inhibition of 

metabolic functions of VAT may be helpful to 

ameliorate metabolic syndrome and NAFLD in both 

the lean and obese population. 
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