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Abstract 

Utilization of Next Generation Sequencing (NGS) and 

advances in genomic profiling have led to identification of 

new lesions in acute lymphoblastic leukemia (ALL) cases. 

TYK2 alterations are among those that warrant an in-depth 

characterization of the underlying mechanisms that result in 

leukemogenesis, targetability potential and drug response. 

The current literature around the functional significance and 

clinical importance of these alterations in driving 

hematological cancer (in particular, leukemia) is limited. 

This review focuses on recent findings demonstrating the 

leukemogenic potential of TYK2 alterations. Specifically, 

the molecular consequences of aberrant TYK2 levels are 

detailed and the effects of TYK2 deficiency or dysregulated 

activation are explored in carcinogenesis and 

leukemogenesis. In addition, the functional role of TYK2 in 

JAK/STAT signaling, possible cross talk to other cancer-

related pathways and overarching avenues for 
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pharmacological intervention in TYK2-altered ALL are also 

described. 

 

1. Introduction 

Acute lymphoblastic leukemia (ALL) is a hematological 

malignancy most commonly occurring in children [1, 2]. 

This disease is divided into two key groups: B-cell (B-

ALL) and T-cell (T-ALL) lineage, which respectively 

account for 75-85% and 15-25% of cases depending on the 

age group (childhood- adult ALL) [3-6]. Advances in the 

treatment of childhood ALL, by improvements in 

hematopoietic stem cell transplantation (SCT), CNS 

directed treatment and optimisation of chemotherapy 

regimens through risk stratification, have resulted in 

increases in 5-year event free survival rate from 

approximately 60% in the 1970s to 85% in the 1990s [5]. 

However, relapsed or refractory ALL still occurs in 

approximately 20% of childhood cases, and for these 

patients, outcomes are poor [5, 7, 8]. Therefore, this 

malignancy remains a leading cause of non-traumatic death 

in children. In addition, the outcome for adult patients 

remains extremely poor with an overall 5-year survival rate 

of approximately 40% and of these, nearly 7% experience a 

subsequent relapse [9-11]. To overcome the limitations of 

current chemotherapy and treatment regimens (including 

SCT), the ultimate approach is personalised medicine that 

targets specific driver lesions and pathways in individuals. 

Precision medicine may ultimately improve outcome for 

these patients and decrease the risk of treatment failure by 

increasing the anti-leukemic efficacy of treatment and 

reducing drug associated toxicities. The targeting of BCR-

ABL1+ leukaemias with ABL tyrosine kinase inhibitors 

(ABLi) are testament to this approach, and efficacy has also 

been demonstrated in patients with other ABL1 and 

PDGFRB fusions [12-17].  

ALL is a heterogenous disorder and based on the presence 

and functional consequence of the various lesions identified 

in leukemic cells, is divided into subtypes with diverse 

pathological and prognostic outcome [18, 19]. Technologies 

such as gene expression profiling, single nucleotide 

polymorphism (SNP) analysis and next generation 

sequencing (NGS) have drastically improved our 

understanding of the genomic basis of ALL. Genome-wide 

profiling studies have enabled identification of novel 

alterations, refinement of genomic classification and 

definition of genetically high risk (HR) ALL subgroups. 

Notably, HR ALL subtypes are characterized by alterations 

that activate cytokine receptor, tyrosine kinase and/or 

JAK/STAT signaling and are associated with poor outcome 

[10, 20-23]. These subtypes are of clinical importance due 

to potential targetability by small molecule inhibitors 

(SMIs) [16, 19, 22, 24-30]. TYK2 gain of function 

alterations, with the potential to activate the JAK/STAT 

pathway have only recently been described in ALL. 

However, the functional role of alterations involving TYK2 

in leukemia development and targetability are not, to date, 

well understood. 

 

2. Pathology of ALL 

ALL is generally thought to be the result of deregulated 

transcription and maturation arrest of lymphoid lineage 

cells in the BM [3]. This phenomenon is caused by the 

acquisition of initiating lesions, including gene 

translocations that confer self-renewal, differentiation arrest 

and epigenetic reprogramming of lymphoid progenitors [1]. 

Accumulation of additional secondary mutations and 

genomic alterations, affecting multiple cellular pathways, 

then contribute to the clinical manifestation of the disease 

[1, 2]. Perturbed pathways comprise those governing 

lymphoid development, cell cycle regulation, tumour 
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suppression, transcriptional regulation, epigenetic 

modification, Janus family of tyrosine kinases (JAK)/signal 

transducer and activator of transcription (STAT) signaling, 

phosphatidylinositol 3-kinase (PI3K)/mammalian target of 

rapamycin (mTOR) and RAS signaling (Figure 1). In the 

case of TYK2-altered disease, perturbations in JAK/STAT, 

PI3K/mTOR, RAS and ERK have been reported [31-35]. 

JAK/STAT is one of the most frequently mutated signaling 

pathways in cancer; recognised as one of the twelve core 

cancer pathways [36, 37]. In ALL, JAK activating 

alterations are recurrent and account for approximately 10% 

of HR ALL, 25% of T-ALL cases and 20% of a HR 

subtype of B-ALL (also known as Ph-Like ALL) [22, 23, 

38, 39]. 

 

 

 

Figure 1: Predisposition and consequent development of ALL can be due to chronological acquisition of deleterious genomic 

alterations. The differentiation of hematopoietic cells into B- and T-lineage (represented in pink and green respectively) and their 

maturation is strictly regulated by transcription factors re-enforcing commitment to either fate. T-ALL initiation is mainly due to 

rearrangement of oncogenic transcription factors (e.g. LYL1, LMO1) into a position adjacent to T-cell receptor loci. In the B-ALL 

setting, changes in chromosome number (aneuploidy); acquisition of chromosomal rearrangements including translocations of genes 

that 1. control lymphoid development (e.g ETV6, RUNX1) 2. activate kinase signaling (e.g. ABL1) or oncogenes (e.g. MYC) 3. control 

epigenetic regulation (e.g. MLL(KMT2A)); and mutations in B-cell transcriptional regulator genes (e.g. IKZF1, PAX5, EBF1, CEBPE) 

and tumour suppressor genes (e.g, CDKN2A/2B) confer developmental arrest on lymphoid progenitors at various stages based on the 

altered genes (indicated by red flash). Subsequently, acquisition of additional co-operating events (as indicated) contribute to 

development of a genetically polyclonal disease. Selection or acquisition of further mutations can result in resistance to therapy and 

relapse. Adapted from [1, 2, 38]. 
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3. TYK2 mediates cytokine signaling and activation 

of JAK/STAT pathway 

Four human JAKs comprising JAK1, JAK2, JAK3 and 

TYK2 have been reported and are associated with activation 

of type I and II cytokines including both interleukin (IL) 

and interferon (IFN) receptors [40, 41]. TYK2 was the first 

member of the JAK family of tyrosine kinases to be 

described and linked to cytokine signaling and the 

downstream JAK/STAT pathway (Figure 2) [42, 43]. 

Cytokine signaling is associated with cross-specificity in 

activation of overlapping JAKs and STATs (44). TYK2 

mediated cytokine signaling has been demonstrated, 

including type I, II and III IFNs (e.g. IFN,  and 𝜆) and 

ILs (e.g IL-6, IL-10, IL-12, IL-22 and IL-23) [45, 46], but 

importantly the capability of TYK2 to activate all STAT 

proteins has also been defined (46). Apart from homo-

dimerization of JAK family proteins, hetero-dimerization of 

these proteins can also lead to activation of the JAK/STAT 

pathway [45, 47]. Various studies have reported TYK2 

signaling upon dimerization with JAK1 and JAK2 in 

response to cytokines (Figure 2) [43, 45, 47-50] and the 

association of TYK2 with JAK1 and/or JAK2 has also been 

reported in hematological malignancies [32, 35, 51, 52]. 

Here, constitutive TYK2 auto- and trans-phosphorylation 

due to activating TYK2 genomic alterations predominantly 

results in activation of STAT1, 3 and 5 [31-34, 53]. 

Therefore, dependent on the specific cell types, cytokines 

present and also the disease, multiple JAK and STAT 

family proteins can be activated in response to TYK2 

perturbation. 

 

4. TYK2 mediates crosstalk with other oncogenic 

signaling pathways 

JAK signaling and STAT family protein activation can 

interact with, and induce activation of, several other 

signaling pathways such as PI3K/mTOR and RAS [46, 54]. 

RAS (family of small GTPases) and PI3K/mTOR signaling 

pathways are responsible for signal transmission from 

cytokine, B-cell receptors and tyrosine kinases [55]. These 

signaling pathways are crucial for lineage commitment and 

development of B-cells in the bone marrow [55, 56]. 

Crosstalk with other oncogenic pathways, has been 

demonstrated in the setting of B- and T-cell ALL. For 

example, the aberrant expression of the ETV6-JAK2 fusion 

gene results in constitutive activation of RAS, PI3K and 

also NF-κB signaling pathways in the B-ALL setting [57]. 

In T-ALL patients, 2 of 6 TYK2 activating point mutations 

were reported to induce activation of extracellular signal-

regulated kinase (ERK) signaling, in addition to JAK/STAT 

activation [33]. In other hematological malignancies, 

activating mutations in TYK2, resulted in aberrant signaling 

through additional pathways such as PI3K/mTOR, RAS 

and also PIM (proto-oncogene serine/threonine-protein 

kinases) [34, 35]. Taken together, these results demonstrate 

the capacity of the TYK2 protein to induce activation of 

additional oncogenic signaling pathways, depending on the 

specific cell type, mode of activation and disease context. 

 

5. The interplay in regulation and stabilisation of 

TYK2 and STAT proteins 

The activity of JAK family proteins including TYK2 is 

negatively regulated by multiple intrinsic and extrinsic 

factors. The first intrinsic inhibitory feature includes the 

regulatory ability of the pseudokinase domain (JH2), to 

control the kinase domain activity [58-60]. In addition, 

extrinsic negative regulation of the JAK/STAT pathway 

relies mainly on the SH2 domain-containing suppressors of 

cytokine signaling (SOCSs) proteins and proteases (e.g. 

protein tyrosine phosphatases PTPN1, PTPN6 and 

PTPN11) [45, 58]. The SOCS family proteins promote 
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ubiquitination and degradation of JAK family proteins 

while proteases dephosphorylate activated JAKs and 

cytokine receptors; both actions lead to attenuation of 

JAK/STAT signaling [58]. Apart from the global role of 

these negative regulators, previous studies have 

demonstrated that deactivation of TYK2 signaling and 

acceleration of TYK2 protein degradation is largely due to 

direct protein-protein interaction of SOCS1/3, PTPN6 and 

PTPN1 with activated TYK2 [50, 61-64]. JAK and STAT 

family proteins are clients of heat shock proteins (HSP), in 

particular HSP90 [65]. The HSP90 chaperone protein plays 

an important role in maturation, stabilisation, folding and 

function of JAK and STAT proteins [65-67]. Interestingly, 

HSP90 is identified as the chaperone for various oncogenes 

[68, 69]. It promotes the functional stability of malignant 

cells that would otherwise be disrupted due to acquired 

alterations and increases their adaptability to environmental 

factors such as treatment [68, 69]. This function of HSP90 

is also vital in JAK/STAT dependent hematological 

malignancies and CRLF2-rearranged and JAK2- and JAK1-

mutated B-ALL [65, 70-72]. In these cases, inhibition of 

HSP90 by small molecule inhibitors (SMIs) or RNA 

interference resulted in attenuation of STATs 

phosphorylation and degradation of JAK proteins [70-72]. 

Proteomic analysis further confirmed the direct interaction 

of HSP90 with TYK2 protein, enhancing its stability [46, 

73]. In addition, HSP90 inhibition resulted in TYK2 

degradation and signal reduction in T-ALL cells harbouring 

wildtype and mutant TYK2 [74]. 

 

HSP90 functions through association with several proteins 

and co-chaperones and is subject to multiple regulatory 

mechanisms [66, 67]. One of these negative regulatory 

mechanisms involves acetylation of lysine residues on 

HSP90 that subsequently inhibits the binding of client and 

co-chaperone proteins leading to aggregation of JAK 

proteins [67, 75]. Therefore, histone deacetylases (HDACs) 

including HDAC1, 6 and 10 play an important role in 

facilitating HSP90 activity [67, 75]. Immunoprecipitation 

and western blot analysis, have demonstrated HDAC6 to be 

the main enzyme that stabilizes the HSP90 complex in 

multiple leukemia cell lines [76]. Inhibition of HDAC6 in 

these cells resulted in degradation of driver oncogenes such 

as BCR-ABL1, mutated FLT3 and subsequent reduction of 

their downstream signaling [76-78]. 

 

Moreover, STAT proteins interact with epigenetic co-

factors such as histone acetyltransferases (HATs) and 

HDACs to modulate transcription of target genes [44]. 

Historically, HDACs activity was believed to regulate 

transcriptional repression only, however, recent studies 

revealed that both HDACs and HATs can act as activators 

and/or repressors of STAT-mediated transcription [44, 79-

81]. HDAC mediated deacetylation of target gene 

transcriptional activation sites upon, STAT1, 2 and 5 

binding to DNA, is essential to recruit the transcription 

machinery (e.g. RNA polymerase II) and initiate 

transcription [79, 82-86]. Hence, silencing of HDAC 

activity through SMIs or small interfering RNAs results in 

decreased STATs phosphorylation levels and expression of 

target genes [79, 82-86]. However, this is not without 

conjecture as activation of STAT3 mediated transcription, 

for instance, is reported to be associated with either 

acetylation in response to IFN stimulation in the normal 

setting [87, 88] or deacetylation in B-cell lymphomas [89]. 

It is important to note that the effect of 

acetylation/deacetylation on transcription can be cell type 

or condition specific. The exact mechanism by which 

chromatin modifiers interact with STATs in normal versus 

malignant cells remains unclear. However, the data 
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highlighting a positive regulatory effect of HDAC is in 

agreement with the growing evidence of HDAC inhibitors 

(HDACi) efficacy in hematological malignancies and other 

cancers [80, 90]. 

The JAK/STAT signaling network is complex (Figure 2). 

The TYK2 protein can induce signaling redundancy, 

alternate signaling through other pathways and interact with 

positive or negative regulatory components. This interplay 

enables multiple therapeutic targets and emphasises the 

importance of careful analysis to find the appropriate 

inhibitors for each patient and disease context, discussed in 

further detail below. 

 

 

 

Figure 2: Schematic representation of TYK2-mediated JAK/STAT signaling network created by Biorender.com. Binding of 

cytokine to the cytokine receptor complex results in receptor dimerization, which consequently phosphorylates JAK proteins as 

the cytokine receptor itself lacks intrinsic biological activity. Activated JAKs induce the phosphorylation of STATs which, 

following dimerization, translocate into the nucleus and stimulate gene expression. STAT family proteins consist of seven 

members: STAT1-4, 5a, 5b and 6. STATs bind to the enhancer region of genes and by recruiting epigenetic modifiers (HDAC 

and HAT) to modulate the transcription of genes. JAKs activate other downstream signaling cascades including PI3K/mTOR, 

RAS and NF-κB. Furthermore, HSP90 and its co-chaperones such as HDAC proteins play an important role in facilitating 

signaling and JAK protein stabilisation. Red proteins (e.g SOCS1/3) are pathway regulators. Potential inhibitors of the proteins 

and pathways are indicated with red T-shaped lines. Abbreviations: AC, acetyl group; BET, Bromodomain and Extra-Terminal 

motif; HATs, histone acetyltransferases; HDAC, histone deacetylates; Ub, Ubiquitin; P, phosphorylation. 
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6. Can aberrant TYK2 levels cause leukemia? 

The involvement of JAK1-3 in inducing cancer have been 

intensively studied while TYK2 has primarily been studied 

in the setting of auto-immune and inflammatory diseases 

[91, 92]. Impaired type I IFN and IL signaling due to TYK2 

deficiency have been reported in several mouse models [93] 

but there is limited data in human cases [94, 95]. 

Subsequent genome wide association analyses linked TYK2 

deficiency with auto-immune and inflammatory diseases 

[50]. Furthermore, ex vivo analysis on bone marrow cells 

from wild type and TYK2 deficient mice, demonstrated a 

reduced inhibition of B-cell lymphopoiesis upon IFN 

stimulation in TYK2 deficient cells [96]. IFN signaling can 

also inhibit B-cell differentiation and induce apoptosis in a 

normal setting [97]. In addition, reduced STAT3 signaling 

and response to IFN-mediated apoptosis have been 

reported in TYK2 deficient pro-B cells [98]. Collectively, 

these findings highlighted a possible role for TYK2 in the 

regulation of B-cell apoptosis that may be related to B-cell 

leukemia. Another study suggested an increased 

susceptibility of TYK2 deficient mice to the development of 

B-cell lymphoid leukemia/lymphoma and T-ALL induced 

by Abelson murine leukemia virus and ETV6-JAK2 fusion 

gene, respectively [99]. The increased incidence of disease 

in TYK2 deficient mice compared to wild type controls 

however, may be explained by the tumour surveillance 

properties of TYK2, as TYK2-deficient animals also 

demonstrated reduced cytotoxic activity of T- and natural 

killer cells [50, 99]. Interestingly, the immunosurveillance 

properties of TYK2 are demonstrated to be independent of 

its canonical kinase activity. TYK2 deficient mice 

expressing kinase inactive TYK2 protein (harbouring TYK2 

p.K923E mutation) exhibited normal development of 

natural killer cells in bone marrow [100]. The cytotoxic 

activity of these natural killer cells against a variety of 

tumour cells was also restored upon expression of kinase 

inactive TYK2 protein [107]. These results highlight the 

potential benefit of TYK2 inhibitors (TYK2i) to treat cancers 

exhibiting higher TYK2 levels and would not lead to 

impairment of tumour surveillance. 

 

TYK2 overexpression and activation has been demonstrated 

to be associated with oncogenesis in various cancer cell 

lines and patient samples (breast, prostate and ovarian 

cancer) [97, 101-104]. For instance, a study by Ide et al. 

(2008) demonstrated increased invasiveness of prostate 

tumour cells as a result of increased TYK2 expression [102]. 

Another study demonstrated invasion of malignant cells 

into the liver upon TYK2 protein expression using in vivo 

transgenic mouse models of B-cell lymphoma co-

expressing the c-MYC oncogene [102]. The significance of 

increased TYK2 expression in hematological malignancies 

was only recently highlighted in T-ALL (approximately 

80% and 60% of lines and cases screened in the cohort, 

respectively) and anaplastic large cell lymphoma (ALCL) 

[33, 105]. TYK2 gene knock down by small interfering 

RNA, resulted in impaired growth and increased cell 

apoptosis in more than 60% of patient derived T-ALL cells 

and cell lines [105]. This observation was not reported in 

other JAK family genes and appeared specific to TYK2 

[105]. In addition, TYK2 deletion in mouse models of NPM-

ALK-induced ALCL and human primary ALCL cells 

demonstrated prolonged survival in mouse models and 

reduced growth/increased apoptosis in primary cells [33]. 

Data from both studies also demonstrated the dependency 

of T-ALL and ALCL cell lines and patient samples on 

TYK2 activation that leads to upregulation of STAT1/3 and 

consequently members of anti-apoptotic BCL2 family [33, 

105]. 
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7. TYK2 alterations occur in ALL patients 

Reports on gain of function or activating TYK2 mutations 

and alterations in hematological malignancies have only 

recently emerged. In 2013, the first activating TYK2 

mutations (Table 1) were reported in T-ALL cell lines and 

were demonstrated to have transformative ability; enabling 

IL-3 dependent pro-B murine Ba/F3 cells harbouring these 

mutations cytokine independent growth [33]. A year later, 

the first case of a TYK2 fusion gene was reported in HR 

subtype of B-ALL (also termed Ph-like ALL; MYB-TYK2) 

[22]. Subsequently, two more 5’ partners for TYK2 

rearrangements in HR Ph-like ALL (MYB, SMARCA4 and 

ZNF340) were reported [22, 26]. TYK2 rearrangements 

have variable 5’ partners and breakpoints, yet retain an in-

frame kinase domain (also known as JH1; Figure 3), 

potentially resulting in constitutive activation of the fusion 

protein. Each fusion may, or may not, contain a disrupted 

pseudokinase domain (termed JH2), responsible for auto-

inhibition of JAK kinase domain [22, 40, 106]. In addition, 

the fusions lack the FERM (four-point one, erzrin, radixin, 

moesin) and SH-like (Src-homology) domains, which are 

involved in protein and cytokine receptor binding, 

respectively [40, 107]. Despite the diversity of the 5’ 

partner, 5’ genes commonly harbour a DNA binding 

domain and facilitate the dimerization and subsequent 

activation of TYK2 [22, 106]. 

 

 

 

Figure 3: Schematic structure of wild type Jak protein, JAK2 and TYK2 alterations in Ph-like ALL. (A) Wild type Jak, each 

Jak protein consists of four domains including FERM, SH2, pseudokinase and kinase. (B) TYK2 alterations, JAK-class fusions 

exhibit an intact kinase domain with either a disrupted or absent (as indicated by dashed cross) pseudokinase domain fused to 

variable 5’ partner genes. Abbreviation: JH, Jak homology domain. 
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An in vitro study demonstrated the ability of the MYB-

TYK2 fusion gene to induce cytokine independent growth in 

pro-B murine Ba/F3 cells [26]. Only recently, additional 

investigations by our group demonstrated the predominant 

activation of JAK/STAT signaling and constitutive 

phosphorylation of TYK2 due to the expression of MYB-

TYK2 fusion protein [108]. The leukemogenic ability of the 

MYB-TYK2 fusion gene was also confirmed where the 

resultant gene fusion induced an aggressive B-ALL in 

mouse models [108]. These findings provided evidence, for 

the first time, of the leukemogenic potential of TYK2 fusion 

genes. Furthermore, TYK2 alterations have been reported in 

other blood cancers including acute myeloid leukemia 

(AML), CD30-positive lymphoproliferative disorder (LPD) 

and ALCL [31, 32, 34, 109]. In vitro analysis of NPM1-

TYK2 and NFKB2-TYK2 fusion genes, detected only in 

LPD and ALCL patients respectively, demonstrated 

constitutive auto- and trans-phosphorylation of TYK2 and 

downstream activation of STAT family proteins [31, 32]. 

However, the oncogenesis potential of these TYK2 fusion 

genes in in vivo models is unknown. Table 1 highlights the 

key TYK2 alterations and the current in vitro functional 

consequences in ALL. 

 

Table 1: Key TYK2 mutations and rearrangements detected in ALL. Modified from Woss et.al (2019) (46) and St. Jude PeCan 

Data portal [110]. 

 

TYK2 alterations Disease Known functional status Domain References 

TYK2 p.G271S B-ALL n.d. * FERM [111] 

TYK2 p.W327R 
B-ALL 

(Ph-Like) 
n.d. * FERM [22] 

TYK2 p.V678L B-ALL n.d. * Pseudokinase (JH2) [111] 

TYK2 p.P760L B-ALL 
increased TYK2 autophosphorylation/ 

STATs activation 
Pseudokinase (JH2) [53] 

TYK2 p.G909S B-ALL n.d. Kinase (JH1) [110] 

TYK2 p.A1156V 
B-ALL 

(Ph-like) 
n.d. * Kinase (JH1) [110]. 

MYB-TYK2 
B-ALL 

(Ph-like) 

cytokine independent growth (in vitro) 

+STATs activation/ increased TYK2 

autophosphorylation/ induced B-ALL in 

mouse models 

Intact kinase (JH1) [22, 26] 

SMARCA4-TYK2 
B-ALL 

(Ph-like) 
n.d. * Intact kinase (JH1) [10] 

ZNF340-TYK2 
B-ALL 

(Ph-like) 
n.d. * Intact kinase (JH1) [10] 
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TYK2 p.V15A T-ALL n.d. FERM [110] 

TYK2 p.A35V T-ALL n.d. FERM [110] 

TYK2 p.G36D T-ALL cytokine independent growth (in vitro) FERM [33] 

TYK2 p.S47N T-ALL cytokine independent growth (in vitro) FERM [33] 

TYK2 p.R425H T-ALL 
failed cytokine independent growth (in 

vitro) 
FERM [33] 

TYK2 p.C192Y T-ALL n.d. FERM [110] 

TYK2 p.R243W T-ALL n.d. FERM [110] 

TYK2 p.R274H T-ALL n.d. SH2 [110] 

TYK2 p.A375V T-ALL n.d. SH2 [110] 

TYK2 p.P494S T-ALL n.d. SH2 [110] 

TYK2 p.V678L T-ALL n.d. Pseudokinase (JH2) [110] 

TYK2 p.V731I T-ALL cytokine independent growth (in vitro) Pseudokinase (JH2) [33] 

TYK2 p.G761V T-ALL 
increased TYK2 autophosphorylation/ 

STATs activation 
Pseudokinase (JH2) [53] 

TYK2 p.G937A T-ALL n.d. Kinase (JH1) [110] 

TYK2 p.E957D T-ALL 
cytokine independent growth (in vitro) / 

Weak STATs activation 
Kinase (JH1) [33, 53] 

TYK2 p.M926V T-ALL no STATs activation Kinase (JH1) [53] 

TYK2 p.Y955H T-ALL n.d. Kinase (JH1) [110] 

TYK2 p.R1027H T-ALL 
cytokine independent growth (in vitro) 

/Weak STATs activation 
Kinase (JH1) [33] 

*These alterations are speculated to be gain of function and activating mutations and rearrangements, since no functional 

analyses are available. +unpublished data (Tavakoli et al, 2021, under revision). Abbreviations: n.d.=no data 

 

 

8. Targeted therapeutic possibilities for TYK2-

altered disease 

Currently, the lack of knowledge and efficient therapeutics 

targeting the TYK2 oncogenic alterations, necessitate 

broader screening of SMIs. The subsequent JAK/STAT 

signaling activation due to TYK2 alterations, provide a 

rational avenue for the use of JAKi against this HR subtype. 

Ruxolitinib was the first JAK1/2i approved for treatment of 

patients with myeloproliferative disorders such as 

myeloproliferative neoplasms (MPN), polycythemia vera 

(PV) and essential thrombocythemia (ET), the majority of 

whom harboured the activating JAK2 p.V617F mutation 

[112-115]. The significant improvement of symptoms and 

reduced splenomegaly, in addition to the good tolerability 

of ruxolitinib treatment [116, 117], accelerated the 

development and clinical use of JAKi as an anti-cancer 
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drug. The efficacy of some therapeutics against HR ALL 

harbouring JAK/STAT activating alterations has been 

demonstrated in in vitro and in vivo pre-clinical models and 

case studies [16, 19, 22, 24, 26-29]. The sensitivity of cell 

lines harbouring JAK2 fusions (i.e. PAX5-JAK2 and 

ATF7IP-JAK2) to ruxolitinib in vitro, plus its efficacy in 

reducing leukemic burden in mouse models of JAK2 

rearranged ALL, has also been reported [26]. In particular, 

a strong in vitro and in vivo anti-leukemic effect for NDI-

031301 (TYK2-specific inhibitor) has been reported against 

TYK2-dependent T-ALL cell lines and primary cells [118]. 

Similarly, our group identified the JAKi, cerdulatinib, as an 

efficacious therapeutic agent against cells harbouring the 

MYB-TYK2 fusion gene, with significantly reduced cell 

proliferation and decreased tumour burden in mice [108].  

 

The protein-protein interactions and co-operation of TYK2 

with HDACs and HSPs to activate JAK/STAT signaling 

and possible cross talk of JAK/STAT signaling to other 

pathways due to TYK2 alterations, provide an alternative 

kinase independent and even more attractive therapeutic 

targets [46, 73, 79]. Thus far, the sensitivity of the MYB-

TYK2 fusion gene has been established to the HDACi, 

vorinostat and the HSP90i, tanespimycin in vitro; anti-

leukemic effects of vorinostat were also demonstrated in 

pre-clinical in vivo models of MYB-TYK2 altered disease 

[119]. In addition to TYK2-altered cases, various SMIs 

(PI3K/mTORi, MEK1/2i, HSP90i and BETi) have 

demonstrated promising in vitro and in vivo efficacy against 

CRLF2-rearranged ALL cases exhibiting JAK/STAT 

hyperactivation [25, 30, 120-122]. The use of HDACi such 

as vorinostat alone or in combination with a chemotherapy 

backbone has been approved for treatment of T-cell 

lymphoma and demonstrated activity against other 

hematological malignancies such as AML [123, 124]. 

Interestingly, HDACi demonstrated efficacy in clinical 

trials for JAK mutated MPN and PV cases [125-127]. 

Recently, studies have also demonstrated HDACi efficacy 

in inducing apoptosis in cells and engraftment reduction of 

leukemic cells in in vitro and in vivo models of B-ALL (B-

ALL cell lines and xenograft models of KMT2A-rearranged 

ALL and CRLF2-rearranged ALL), respectively [122, 128, 

129].  

 

Taken together, these findings highlight the potential 

benefit of therapies targeted to specific genomic alterations 

that may improve the response to treatment and subsequent 

outcomes in patients. Currently, there is an unmet need to 

widely investigate the efficacy of SMIs on other HR ALL 

subtypes including TYK2 alterations. The data so far, 

supports the further exploration of the efficacy of TYK2i, 

HDACi and HSP90i in larger cohort of cases with TYK2-

altered disease. Furthermore, the efficacy of these SMIs in 

combination and/or as an addition to the chemotherapeutic 

backbone regimen requires future investigation. In the era 

of precision medicine, it is essential to understand the 

activated pathways of each underlying genomic alteration 

in individual patients. In addition, it is crucial to identify 

therapeutics that specifically target activated pathways, 

such as those in TYK-2 altered disease. This will be 

achieved through robust pre-clinical models to test novel 

therapies and facilitate more genomic alteration-specific 

clinical trials. 

 

9. Future Prospects 

Utilization of NGS technology has led to the identification 

of a growing number of TYK2 alterations in ALL cases [10, 

33, 53, 111]. Given the well-established role of TYK2 in 

JAK/STAT signaling and its potential kinase-dependent 

oncogenic consequence, it is essential to inform effective 
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targeted therapeutics for ALL cases harbouring TYK2 gain 

of function mutations and/or rearrangements. The 

prerequisite for identifying effective targeted therapies, 

however, relies on robust in vitro and in vivo modelling of 

each alteration. Aside from the recent study by our group 

investigating the oncogenic potential of the MYB-TYK2 

fusion gene in in vivo models, the significance of other 

TYK2 alterations (e.g. pseudokinase or FERM mutated 

TYK2 cases) as a driver oncogene in leukemogenesis is 

unknown. It is not clear whether all TYK2 alterations are 

capable of inducing disease and activating similar pathways 

downstream of each specific alteration. Thus, future 

research should focus on the comprehensive 

characterization of the functional and prognostic 

consequence of these alterations and TYK2 activation in 

each setting as well as to their therapeutic targetability. This 

approach will consequently elucidate a clear picture of the 

leukemogenic role, clinical importance and therapeutic 

targetability of TYK2 alterations in ALL. 
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