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Abstract
The dynamic beam equations provide an analytical model and a 
generic solution for continuous systems. The constants for amplitudes 
and frequencies are given by the boundary conditions, which are here 
considered looped, in order to represent a closed element, by topological 
closure. This type of model is applied to the representation of a semicircular 
canal. This approach addresses the deformability of this anatomical 
element, both in Lagrangian solid parts (bone, membranes, intermediate 
materials) and in fluids (Eulerian pressure waves). The model is proposed 
for both physiological representation and pathology modeling. The 
latter is represented by a passive or retroactive singularity. An original 
analytical approach is thus developed for each segment, representing 
physiological modes – nodes and bellies - and possible disturbances. The 
damping entropy is also the subject of a special segmented treatment, to 
take account of fluid-solid interactions, providing a coherent model. The 
result is a simplified but robust model that both reproduces the vibro-
acoustic modes of the semicircular canal and anticipates the effects of a 
singular pathology, such as a third window or neuritis. Mathematically, 
this model opens the way to structural analytical models of the inner ear, 
and to possible dynamic couplings between equilibration and acoustics.

Keywords: Semi-Circular Canal; Analytical Model; Beam Dynamics; 
Ring dynamics; Acoustic Model; Longitudinal Dynamics.

Introduction and Context
General introduction

Bar and beam dynamics represents an interesting transition from the 
discrete harmonic model to the continuous acoustic and structural model. As 
such, the constitutive equations and their generic solutions - conditioned by 
boundary conditions are a classic source of analytical development, which we 
propose to open up in two directions: the topological looping on the one hand, 
and the introduction of a point singularity on the other.  Mathematically, 
this allows the closing of the system, and the introduction of a punctual 
perturbation in a continuous dynamic model. 

As it turns, this analytical approach using elementary dynamic segments 
overlaps with a well-known biodynamic system that has been the subject 
of numerous numerical models, namely the semicircular canals that play a 
fundamental role in the inner ear, notably for measuring rotation rates. These 
are complex systems combining fluids (endolymph and perilymph), solids 
(bone and cartilage) and certain intermediate materials (cup). 
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Numerous numerical models of the semicircular canals have been proposed, providing a fairly convincing representation of 
endolymphic and perilymphic physiology. However, the disturbances induced by the main pathologies linked to the semicircular 
canals remain tricky to observe and model, which justifies the implementation of an analytical model, which is the subject of 
this article. Fundamentally, this type of model is relatively accurate, but its conceptual robustness offers the advantage of being 
able to introduce at will perturbations representing the influence of various pathological derangements. The proposed approach 
is therefore valid for modeling the sensitivity of pathologies on dynamic behavior.

The basic analytical models of semicircular canals generally consider rational, undeformable systems, based on the model 
of the rotating solid. We thus find the elementary inertial model constructed in rotation around a fixed inertial axis (Huyghens), 
then the motion of the fixed-point solid (Poinsot, Euler, Lagrange) and finally the gyroscopic extrapolation coupling the effects 
of precession and nutation (Poisson). In this article, on the other hand, the deformability of the system is taken into account. To 
remain in the analytical domain, theories of slender solid and fluid bodies are used. More specifically, the equations of bars and 
beams are exploited, giving the initial preference to the normal force approach, which we will qualify - in the context of beam 
theory - as a 1D approach.	

In this longitudinal 1D approach - in the sense of bars and tubes - it should be noted that the elastic Hooke-Bresse equation 
solid - and the Helmholtz equation - fluid - lead to a homogeneous d’Alembert equation based on propagation velocity  fluid and 
solid. The generic modal solutions are therefore harmonic and provide an algebraic framework for	 proposing various set-ups, 
representing both solid dynamics (longitudinal Lagrangian displacement) and fluid fluctuations (Eulerian pressure variations).

In the first stage, a simple topological loop is created; this closed bar - or ring in longitudinal mode - is the first element that 
enables us to recover the closed - physiological - vibroacoustic modes, and to experiment with a passive or active singularity. A 
passive singularity is a simple discontinuity in terms of displacement (in a Lagrangian representation) or pressure (in an Eulerian 
model). The active singularity consists in inverting the solution at a point (Möbius looping), introducing local retroactivity. 
It’s interesting to note that these two types of singularity have analogies with two types of pathology, windows and neuritis 
respectively.

The elementary model - which in fact constitutes a first qualitative approach - is then	 segmented, evoking the various 
anatomical parts in a fairly realistic way. A number of simplifications are proposed, concerning on the one hand the homogenization 
of moduli and on the other hand the introduction of a viscosity per segment on the wide parts of the 66 canal.

Observation of the deterministic or chaotic nature of the generic solution then provides information on the consequences of 
the pathology, and the link with the singular boundary conditions gives clues to possible corrections. It should be noted that this 
topologically looped longitudinal 1D model provides a first approach to singular pathology and opens the way to more advanced 
structural 1.5 models.

Medical context

Under normal physiological conditions, sound is a mechanical wave that causes the tympano-ossicular complex to vibrate. 
Through the articulation between the stapes footplate and the oval window, sound is transmitted from the middle ear to the 
cochlea	 (1). The round window, on the other hand, is widely considered to be the anatomical structure that allows for pressure 
relief by releasing the mechanical energy provided by	 the ossicular chain to the labyrinthine fluid of the inner ear (2). Hearing 
encompasses the mechanisms that allow us to perceive the sound waves around us and is made possible by the conversion of 
these mechanical waves into nerve signals by the basilar membrane, which are then transmitted to the brain (3).  Any pathologies 
or abnormalities in these structures (external, middle, and inner ears) and in the central auditory neural pathways can lead to 
hearing impairment. 

Minor was the first to describe, in 1998, a case series of sound- and/or pressure-induced vertigo in patients with superior 
semicircular canal dehiscence. The dehiscence’s were identified through computed tomographic scans, which revealed the 
absence of bone overlying the superior semicircular canal on the surface of the temporal bone (4). In addition to sound/pressure-
induced vertigo, patients may experience air-conduction hearing loss observed at low frequencies with dehiscences larger than 3 
mm. The significance of this air-bone gap is correlated with the size of the dehiscence (5).

The most likely hypothesis is that the dehiscence acts as a "third window" in the inner   ear, shunting acoustic energy away 
from the cochlea at low frequencies, thereby causing hearing loss (6). Some studies have attempted to understand the underlying 
biomechanical mechanism generating this shunt and have also tried to quantify it. One study specifically investigated the sound-
induced displacement velocities of the stapes, umbo, and round window in a temporal bone bank using laser-Doppler vibrometry 
(6). These measurements were performed on healthy bones considered normal, on the same bones after creating a dehiscence 
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in the superior semicircular canal, and also with the dehiscence patched. They found that the presence of a dehiscence in the 
superior semicircular canal led to a significant reduction in sound-induced round window velocity at low frequencies

This allows us to better understand why there can be a air-bone gap result at low frequencies in the presence of a dehiscence, 
and also why patients might experience vertigo with loud sounds due to the shunting of acoustic energy toward the posterior 
labyrinth. 

Sound energy enters the inner ear via the oval window, causing fluid movement at the location of the bony defect. This 
generates propagating waves that subsequently lead to mechano-electrical transduction in the vestibular sensory organs through 
vibration and nonlinear fluid pumping (1). This same team also recorded changes in neural activity in the vestibular pathways in 
an animal model, evoked by auditory-frequency stimulation (1). 

Despite these findings, to our knowledge, no study currently exists to explain the purely biomechanical mechanism of the 
fluids, and this is what we aimed to address here. 

Beam closed ring model 
Standard beam solutions

The aim of this section is to study the different resonance modes of a topologically closed beam. To this end, the equations of 
the dynamics of a rectilinear beam are retained and boundary closure conditions are applied. The beam’s radius of curvature is 
then neglected, which seems to be valid for a beam thickness that is negligible compared with the radius of curvature.

The equation verified by the longitudinal displacement in a rectilinear beam whose lateral shrinkage is neglected is given by:

where ρ and E are respectively the density and the Young’s modulus of the material. This can be rewritten as:

      						                  (1)

Closed ring solution
The form of the general solution to the wave equation is valid whether the cross section is constant or not (the material just 

has to be homogeneous; the solution can be obtained modally by separating the variables:

           					                 (2)

This general solution is of the form:

		     							                   (3)

 

Figure 1: Modeling semi-circular canals for a normal ear (figure extracted from the reference 18)
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We then apply the following boundary conditions:

	  	                 							                   (4)

corresponding respectively to continuity in displacement and normal stress. This gives us the following system of equations:

                        							                   (5)

Singularity
For the system to have a non-zero solution, its determinant must be zero. The various modes are therefore: 

	  		          								                    (6)

This corresponds to a system of standing waves. 
We then put together a number of solutions for different discontinuities in closure with the aim of modelling a pathology (see 

Table 1). The term free refers to the fact that any value of the given magnitude would satisfy the boundary conditions. You will 
find a representation of each case carried out with Julia on the Fig 2. The amplitudes of the longitudinal displacements are plotted 
as transverse displacements for better visualisation:

•	 The first case in the table corresponds to the one we treated earlier. The fact that A and B are free simply implies that the 
standing wave for a given frequency has all possible phase shifts.

•	 The second case is that of a Möbius inversion of the normal force. In this case, any frequency gives a valid standing wave 
solution with a fixed phase. This is very interesting in that it can model absolute noise in the solution.

•	 The third case is that of a Möbius inversion on the normal force to which we add a constant parameter ν. The only admissible 
solution is the continuous solution which has an antinode at the closure (zero force).

•	 The fourth case is that of a parametric inversion ε with the addition of a parameter ν on the normal effort. The only solution 
is similar to the previous case.

•	 The fifth case is that of a displacement discontinuity parametrised by δ and an effort discontinuity parametrised by ε. This 
case is only valid for certain values of the pair δ, ε. This case admits discontinuous solutions for frequencies depending on 
the pair of parameters.

•	 The sixth case is that of a simple discontinuity in displacement parametrised by δ. The admissible solution is the continuous 
solution with a node at the closure (zero displacement).

•	 The seventh case is that of a Möbius inversion on displacement. The frequency behaviour of the case of Möbius inversion 
under normal load is repeated.

•	 The last case is that of a double Möbius inversion in displacement and effort. The solution does present a discontinuity for 
certain frequencies and its phase is not fixed.

Table 1: Catalogue of solutions for Ring Beams
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This preliminary study reveals the interesting case of a Möbius inversion on a junction that leads to frequency noise. This 
could be used to model a pathology such as tinnitus.

Canal Segmented Model
Model of a Healthy Ear

The anterior semicircular canal is modelled as a succession of 3 beams that are closed topologically. The first one corresponds 
to the utricle and ampulla system. The second one corresponds to the anterior SCC and the third one models the common crus 
between the anterior and posterior SCCs.

              	      	                                         (7)

We also have the following relation between the natural pulses of different parts of the canal:

which will be the case for our model.

The contribution of the posterior SCC is modelled by a normal force discontinuity at beam 3 (common crus):

                              	                                          (8)
In the same way as in the previous section, we will apply the boundary conditions for the model of the healthy inner ear, and 

analyse the analytical solutions -- indeed, in this more complicated model, the majority of solutions are purely numerical.

                                                                 (9)

Figure 2: Visualisation of the amplitudes of longitudinal displacement for various cases



Gourinat Y, et al., J Radiol Clin Imaging 2024
DOI:10.26502/jrci.2809102

Citation:	Yves Gourinat, Arnaud Rolland, Thomas Hanchin, Marie-Stéphane Guillaumont Quentin Legois. Topological Approach of 1D Solid 
Solutions for Singularity in Semicircular Canals. Journal of Radiology and Clinical Imaging. 7 (2024): 99-111.

Volume 7 • Issue 4 104 

Pathological configuration
Pathology can be modelled by a discontinuity within the anterior SCC. A discontinuity in displacement and normal effort is 

applied

                                                            (10)

The dehiscence is generally located between a third and two thirds of the anterior SCC, starting from the ampulla.

We will apply the following boundary conditions:

Anatomical Data
The data we are using comes from references [1] to [4]. These are approximate values for an anterior SCC. We take the 

density of water, as we are studying biological tissues. The radius of curvature is approximately R = 4.0 mm while the slender 
duct cross-sectional radius is approximately r = 0.19 mm. We will therefore assume that R ≫ r.

In the physiological case, the pressure variation amplitude of the SCC are on the order of 1nPa - 1μPa and contribute very 
little to the dynamics of the inner ear, and can thus be mostly discarded. The SCC also does not contribute to the ear’s sound 
perception, as sound is only perceived in the cochlea.

In the case of the dehiscence, the dynamics of the SCC become much more prevalent, with pressure variations in the order 
of 10μPa ∼ 100μPa REF. In this case, because of the third window, vibrations in the SCC have a much greater impact on the 
dynamics of the inner ear and notably the cochlea, meaning vibrations caused by sound outside sound will cause vibration in the 
SCC (which could lead to conditions like vertigo, loss of balance, ...).

In addition, with the opening of the third window, addition vibrations will come from the interior of the body, which will 
cause vibrations in the SCC, thus affecting the cochlea and creating a phenomenon of autophony. The dynamics of the SCC thus 
become fundamental in the dynamics of the whole inner ear, as the amplified vibrations could create tinnitus. On the other hand, 
vibration damping in the dynamics of the SCC could create a loss of hearing in certain frequency bands.
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Related pathologies are described in the following table:

Application And Discussion
Model implementation in physiological configuration.

Applying the boundary conditions, we have the following system:

      (11)

The nullity of the determinant in this system allows us to find simple solutions. Here are a few of them:

We can further find through relation 7,
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which will provide another relation between the ratio of the lengths Li and a ratio of integers with varying parities depending 
on the case being treated. This will limit the amount of cases which would actually be viable in practice given the set lengths 
Li, and even more so were we to only consider low frequency cases – the higher frequency pulses being damped by the various 
low-pass filters created by the body’s tissues.

Shown above in figure 4 are screen captures of the cases (1) and (3) animated in Julia, for arbitrary A1 and B1. We can notice 
discontinuities in the slopes of the normal displacement, which are a result of the varying cross sections of the different beams, 
regardless of the values of δ and ε.

We ought to be careful using these visualisations as the displacement represented here radially is actually a longitudinal 
displacement. This representation was chosen for the sake of legibility.

Model implementation in pathological configuration
As in the physiological case, there are simple modal solutions which are only possible under certain conditions (see table 

below).

Figure 3:  Visualisation of the amplitudes of longitudinal displacement for example Physiological 
Model cases
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Cases (1) and (2) are represented in the visualisation above. As expected, the analytical solutions provide a way to model the 
discontinuities both in displacement and pressure (through displacement derivative). We can now use these solutions to model 
different pathologies which correspond themselves to different discontinuities.

To fully understand the effect of these pathologies we can now exploit the frequency spectra of the model.

Frequency Response Function
The following results show the impact of the different conditions, described above, on the SCC's dynamics modelled as a 

discontinuity on either or both pressure or displacement.

Figure 4: Visualisation of the amplitudes of longitudinal displacement for example Pathological Model cases
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We traced frequency response function modelling the resonant frequencies of semicircular canals. We then obtain graphs of 
the log of the determinant of the system as a frequency response function in Hz, as a way to detect the zeros of the determinant 
corresponding to spikes towards infinity -- the spikes not seeming to shoot to infinity being a simple artifact of the generously 
discrete nature of the frequency. We have chosen to include in its graphs 2 cursors: one on the discontinuity in viscosity and one 
on the spatial discontinuity. For a healthy ear, we thus get the graph above. A first deduction would be that semicircular canals 
react to audible frequencies.

We notice that if we vary only slightly the η (pressure discontinuity) nothing happens at the graph level but if this change is 
more important, we have a loss of the lower frequencies.

We have linked this graph to dehiscence. Indeed, in the physiological case, the sound waves have no impact on the ciliated 
cells of the semicircular channels because their amplitudes are insufficient (some μ to mPa) which is modelled here by the small 
variation of the η. Whereas in the pathological case, the sound waves are amplified (0.01Pa - 0.1Pa) by the hole present above the 
channels. The variation of the η is therefore more important. The sound waves impact the hair cells of the channels.

Figure 5: Model Graph of Semi-circular canals for a healthy ear

Figure 6:  Modeling graph of semi-circular canals for a sick ear

Figure 7: Modeling graph of semi-circular canals for a sick ear
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For this first sub graph, we varied the η (discontinuity on pressure) and the μ (discontinuity of displacement). This has been 
associated with labyrinthitis since we have assimilated edema to a more or less important obstruction and have coupled this 
obstruction to the increase in pressure that causes this pathology. And if this phenomenon increases, this third graph is obtained. 
In this case, no matter the external vibrations, nothing reacts. The last graph represents the case where there is a loss of pressure 
within the system.

This graph was plotted for a η negative which means there would be a loss of pressure. We have connected this with a 
perilymphatic fistula since it is due to a loss of fluid from the inner ear to the middle ear and therefore a loss of pressure in the 
inner ear.

Conclusion and Perspectives
Robustness and predictivity

The 1D physiological model - elementary or segmented - accounts for longitudinal deformable modes in the canal - in 
fluid/solid environment interaction since the material is median. An essential result of this generic solution is the dimensional 
convergence of relative segment lengths to integer ratios, in the form of simple fractions that are actually observed anatomically. 
This is a convincing result of the natural optimization of these canals, which has been observed here particularly in the anterior 
canal.

The 1D pathological model, in which a passive singularity (Eulerian pressure discontinuity) or an active singularity (local 
Möbius inversion) generates different disturbances. In one case out of two, more than half of the constants given by the boundary 
conditions become indeterminate, i.e. we may have a free or random solution. Mathematically, this type of disturbance can 
induce modal noise in the channel's behaviour. We have here an opening towards vestibular tinnitus and also towards the possible 
subsequent controllability of these terms by additional boundary conditions.

 Finally, the proposed approach allows discrete modelling of local or global disturbances, relatively robust in terms of global 
dynamics. This concerns both the pathology represented by a singularity (passive or active) and the damping entropy, developed 
per segment. On these two points, the proposed model represents a robust approach to both representation and prediction.

Future applications and extensions
Vestibular modeling on acoustic frequencies opens up a path towards weak coupling between auditory and balance 

acquisitions. While vestibular numerical models are well known, as are cochlear models, coupling matrices between the two are 
little explored. Models of this type may offer a way forward.

This is a relatively unexplored area, and the proposed model is a breakthrough in the field. In particular, we observe that 
material elements - fluids and solids - have similar characteristics in the cochlea and vestibule, and that vestibular pathologies 

Figure 8: Modeling graph of semi-circular canals for a sick ear
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can interact - positively or negatively - with those of the cochlea, and vice versa. The model discussed here effectively takes into 
account the acoustic capabilities of the semicircular canal.

In addition, the 1D model can also, by extension, lead to a transverse structural model (1.5 D bending) potentially carrying 
four types of singularities. This opening towards fourth-order structural equations could enrich the approach and include hybrid 
pathologies in particular.

In concrete terms, the modelled bar is based on the equation EU^''-ρU ̈=0, of order two, whose generic solution - in terms 
of shape function – is harmonic, namely f(X)=A cosΩX+B sinΩX [(A,B)∈R^2,Ω∈R^(+*) ]. Transverse bending displacement 
is represented by the equation EIV''''+ρSV ̈=0, of fourth order, whose generic solution is both circular and hyperbolic: 
f(X)=A cosΩX+B sinΩX+C chΩX+D shΩX[(A,B,C,D)∈R^4,Ω∈R^(+*) ] is type of solution enables representations possibly 
extended to other structural modes and other types of singularities.
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