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Abstract 

Background: The hedgehog pathway (HH) is one of the 

key regulators involved in many biological events. 

Malfunction of this pathway is associated with a variety of 

diseases including several types of cancers. 

  

Methods: We collected data from public databases and 

conducted a comprehensive search linking the HH pathway 

with female cancers. In addition, we overviewed clinical 

trials of targeting HH pathway in female cancers. 

  

Results: The activation of HH pathway and its role in 

female cancers, including breast cancer, ovarian cancer, 

cervical cancer, endometrial cancer, and uterine 

leiomyosarcoma were summarized. Treatment options 

targeting SMO and GLI in HH pathway were reviewed and 

discussed. 

 

Conclusions: The hedgehog pathway was shown to be 

activated in several types of female cancers. Therefore, 

targeting HH pathway may be considered as a therapeutic 

option to be acknowledged in the treatment of female 

cancers. 

 

Keywords: Hedgehog pathway; Female cancer; Ovarian 
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1. Introduction 

The hedgehog (HH) gene was described by Christiane 

Nusslein-Volhard and Eric Wieschausin in 1980 during 

gene screening in Drosophila [1]. The HH signaling 

pathway plays an essential role in embryonic and normal 

tissue development along with patterning and tissue 

differentiation [2]. The role of dysregulated Hedgehog 

Signaling pathway in cancer was first identified in basal 
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cell nevus syndrome, a genetic disorder characterized by an 

increased risk of basal cell carcinoma and 

medulloblastoma. From these findings, it is understandable 

that mutations in PTCH1 caused aberrant activation of HH 

pathway and further predisposed patients to develop cancer 

[3]. 

 

2. Hedgehog Pathway  

In vertebrates, HH signaling pathway consists of 3 ligands 

which are Indian hedgehog (IHH), Desert hedgehog (DHH) 

and Sonic hedgehog (SHH), a receptor called Patched 1 

(PTCH1), a signal transducer called Smoothened (SMO), a 

cytoplasmic protein named SUFU and 3 transcription factor 

(GLI1, GLI2 and GLI3) [4] (Figure 1). Alteration in HH 

signaling pathway promotes GLI translocation into the 

nucleus leading to overactivation of several target genes 

which regulate cell differentiation (INSM1, SOX2, OCT4 

and NANOG) [5-7], proliferation (c-MYC and n-MYC) [8, 

9], apoptosis (BCL2, CASPASE 3, BAX, CASPASE 9 and 

BAK) [8-12], cell cycle (CCND1 and P21) [8, 11, 13-15], 

DNA damage (RAD51 and TP53) [15, 16], angiogenesis (c-

MET, VEGFR2) [11, 17] and adhesion (N-CADHERIN, E-

CADHERIN and SNAIL 1) [13, 18, 19] contributing to the 

pathogenesis of cancer. The hedgehog signaling pathway is 

tightly associated with embryogenesis as well as with the 

development of several female cancers. This review 

summarizes the findings of the role of HH signaling in 

female cancers and outlines the treatment options. 

 

 

 

Figure 1: Non-activated or Activated State of Sonic Hedgehog Signaling Pathway. Left panel: With the absence of HH 

ligand, PTCH1 inhibits SMO activity. GLI activity is phosphorylated, converting GLI full- length (GLIFL) to repressor form 

(GLIR). GLIR translocates into the nucleus, which binds to HH target gene promoters and suppresses their expression. Right 

panel: The activation of the signaling occurs when HH ligands bind to PTCH, HH relieves the inhibition of PTCH to activate 

the signal transduction. SMO transmits a signal to the cytoplasm in a phosphorylation cascade leading translocation of GLI 

activator (GLIA) to the nucleus and binding to the target gene promoters and activates the transcription of the target genes. 
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3. Hedgehog in Female Cancers 

HH signaling pathway has been reported to be involved in 

the pathogenesis of several types of female cancer, 

including breast [20], ovarian [21], endometrium [22], 

cervical [23], and uterine leiomyosarcoma [24] (Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Abnormal Hedgehog Signaling Pathway Leads to Female Cancers. 

 

3.1 Breast cancer  

Breast cancer is the most frequently diagnosed cancer in 

women and the second leading cause of death in women 

diagnosed with cancer [25]. The HH signaling pathway 

plays an essential role in mammary gland development. 

Throughout a lifetime, this pathway activity varies. For 

instance, in the early phases of embryogenesis, this 

pathway is repressed to allow proper mammary gland 

parenchyma formation. During puberty there is ductal 

morphogeneisis and the HH signaling pathway is required 

for activation to promote the elongation of the terminal 

buds. Soon after puberty, in the mammary glands, the HH 

signaling pathway activity decreases [26]. In breast cancer 

HH signaling pathway activation has been associated with 

younger age presentation (<50 years), larger tumor size, 

lymph node metastasis, progesterone receptor-negative 

status, high proliferation index of Ki67, and poor overall 

survival [27-29]. Studies have shown that the expression of 

GLI1 [29-31] along with GLI1, 2 and 3 protein levels are 

upregulated in breast tumor compared to normal tissue [28]. 

Furthermore, the GLI expression level is associated with a 

higher tumor grade [29]. It is reported that targeting HH 

pathway in breast cancer showed promising results in 

several clinical trials (Table 1).  

 

 

 

 



 

J Cancer Sci Clin Ther 2020; 4 (4): 487-498  DOI: 10.26502/jcsct.5079089 

 

 

Journal of Cancer Science and Clinical Therapeutics   490 

 

 

Target 

 

Drug 

 

Cancer type 

 

Dose 

 

Route 

 

Phase 

 

Clinical trials 

gov. identifier 

Patient 

recruiting status 

SMO Vismodegib Breast cancer 400 mg Oral II NCT01757327 Withdrawn 

SMO Sonidegib Breast cancer Unknown Oral I NCT01576666 Completed 

SMO Vismodegib Breast cancer 150 mg Oral I NCT01071564 Terminated 

SMO Vismodegib Breast cancer Unknown Oral Ib NCT03878524 Recruiting 

SMO Vismodegib Breast cancer 150 mg Oral II NCT02694224 Recruiting 

SMO Vismodegib 

Breast, Ovarian, 

Cervical, 

Endometrial Cancer 

Unknown Oral II NCT02465060 Recruiting 

SMO Vismodegib Ovarian 150 mg Oral II NCT00959647 Completed 

SMO Vismodegib Ovarian 150 mg Oral II NCT00739661 Completed 

SMO Sonidegib Ovarian 
400, 600 and 

800 mg 
Oral I NCT01954355 Completed 

SMO Itraconazole Ovarian Unknown Unknown III NCT03458221 Not yet recruiting 

 

Table 1: Clinical Trials Targeting SHH Pathways in Female Cancers. 

 

3.2 Ovarian Cancer  

Ovarian cancer is the leading cause of death from 

gynecologic malignancies in the United States [32]. 

Epithelial ovarian cancer accounts for over 90% of all 

ovarian malignancies and comprises five histological 

subtypes: serous, mucinous, endometrioid, undifferentiated 

and clear cell type [33]. Aberrant activation of the HH 

signaling pathway is mediated through increased 

endogenous ligand-dependent expression of HH or ligand-

independent mutations of PTCH, SMO and SUFU [34, 35]. 

Accumulating evidence suggests that the deregulation of 

the HH signaling pathway also contributes to the 

malignancy of ovarian cancer [36-40]. The expression of 

SHH, DHH, GLI, PTCH and SMO is absent in normal 

ovary [38, 41]. Elevated expression of PTCH1 and GLI1 is 

correlated with poor prognosis in ovarian cancer [41, 42]. 

In addition, the presence of SHH, DHH, PTCH, SMO and 

GLI1 proteins are associated with abnormal cell 

proliferation [38]. Moreover, the HH pathway is involved 

in regulating cancer stem cells leading to tumor formation, 

progression and invasion in ovarian cancer [43, 44]. It is 

well demonstrated that the strategy for blocking this 

pathway has been used in several clinical trials (Table 1) 

with a promising outcome.  

 

3.3 Cervical cancer 

Cervical cancer is the third most common malignant 

neoplasm in females, representing the fourth cause of 

cancer deaths among females worldwide [45]. Persistent 

infection by high-risk HPVs (16,18,31 and 33) is a risk 

factor for the development of cervical cancer [23, 46-48]. 

High expression of the HH signaling pathway regulates 
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proliferation, migration and invasion of cervical cancer cell 

lines [23]. Reports in the literature have demonstrated that 

inhibition of the HH signaling pathway with Cyclopamine 

and Gant 58 decreased invasion and enhanced apoptosis, 

demonstrating this treatment can be effective in treating 

cervical cancer [49]. 

 

3.4 Endometrial cancer 

Endometrial cancer is the most common malignancy of the 

female reproductive tract, with a substantial increase in 

incidence and mortality rate in developed countries. This 

type of cancer predominantly affects postmenopausal 

women. However, 15-25% of cases are diagnosed before 

menopause. Many risk factors have been identified to 

predispose women with endometrial cancer, including 

polycystic ovarian syndrome, obesity and endometrial 

hyperplasia [50]. Moreover, several pathways have been 

identified to be altered in endometrial carcinoma including 

HH signaling pathway. Interestingly, PTCH1 has been 

found to be expressed in patients with endometrial 

hyperplasia, and GLI 1, GLI2, cytoplasmic GLI3 and 

SUFU have also been identified to be overexpressed in 

patients with endometrial carcinoma [51-53]. 

 

3.5 Uterine leiomyosarcoma 

Uterine Leiomyosarcoma (LMS) is the most common type 

of uterine sarcoma. This tumor can be present at any age. 

However, it is frequently diagnosed in the perimenopausal 

years. It represents around 3-7% of all uterine cancers [54]. 

LMS is an extremely aggressive tumor that shows a 

challenge for treatment. LMS exhibits resistance to 

standard therapy [55]. The involvement of the HH signaling 

pathway in uterine leiomyosarcoma was first described in 

2016 [24]. Elevated expression of SMO and GLI 1 was 

observed in leiomyosarcoma when compared to normal 

myometrium and uterine fibroids tissue. In addition, SUFU 

and SHH proteins were correlated with poor prognosis in 

leiomyosarcoma patients [24]. Recently, we demonstrated 

that uterine leiomyosarcoma cells exhibited an upregulation 

of SMO and GLI1 members concomitantly with an increase 

in nuclear translocation of GLI-1 and 2 compared to uterine 

smooth muscle cells. Uterine cells showed a decrease in 

proliferation, migration, invasion and exhibited an increase 

in apoptosis in response to treatment with SMO and GLI 

inhibitors, respectively [56, 57]. Identifying the HH 

pathway in relation to this aggressive cancer might allow 

better treatment options for women suffering from this 

devastating condition.  

 

4. Therapeutic Options to Block the Hedgehog 

Pathway  

Several compounds have been identified to inhibit the HH 

signaling pathway and can be categorized as HH ligand 

inhibitors (HH neutralizing antibodies and small molecule 

Robotnikinin, SMO antagonists, cyclopamine and its 

derivatives (IPI-926 and Cyc-T), synthetic compounds such 

as Vismodegib (GDC0449), Sonidegib (LDE225), and GLI 

transcriptional inhibitors (Gant 58 and Gant 61) [58] 

(Figure 3). 
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Figure 3: Therapeutic Options to Block the Activation of Hedgehog Signaling Pathway. 

 

4.1 Hedgehog ligand inhibitor 

The only ligand inhibitor described in the literature is a 

small molecule called Robotnikin, which binds to an 

extracellular sonic HH protein. This molecule is able to 

bind to the ligand SHH protein, therefore blocking 

downstream of the signaling [59]. Currently, there are no 

studies reported in the literature using this drug in female 

cancers.  

 

4.2 SMO inhibitors  

SMO is the first molecule reported in the literature to target 

the HH pathway. Through suppression of SMO, activation 

of GLI transcription factors was decreased, leading to the 

downregulation of the HH target genes [60]. Cyclopamine 

is the first component described to block SMO [61, 62], its 

use in vitro and in vivo has shown anticancer activity. 

However, Cyclopamine has poor bioavailability making the 

clinical utility limited [63, 64]. Vismodegib (Erivedge 

Capsule, Genentech, Inc, USA) (GDC0449) was approved 

by the FDA in 2012 for the treatment of patients who are 

not candidates for surgery or radiation therapy, locally 

advanced, metastatic or recurrent basal cell carcinoma [65]. 

This drug is usually given until the disease progresses or 

until unacceptable toxicity occurs [66]. 

 

Vismodegib is a small molecule showing promising 

outcomes through inactivating SMO, resulting in decreased 

downstream target gene expression [67]. In a preclinical 

trial, Vismodegib, exhibited excellent potency, solubility, 

and metabolic stability. In addition, Phase I and II clinical 

trials in patients with various carcinomas have shown to 

have a positive response to this compound [66]. Currently, 

there are several clinical trials using this molecule to treat 

several types of female cancer (Table 1). Unfortunately, 

there are two known SMO mutations (D473 and E518) that 

can lead to resistance of vismodegib, thus decreased the 

ability of vismodegib to bind to SMO leading to decrease 

efficacy [68, 69]. 

 

Sonidegib (LDE225) was first identified in 2010 during 

screening biphenyl carboxamides that displayed potent 

antitumor activity against a medulloblastoma model [70]. In 

July 2015, this drug was marketed as Odomzo by Novartis. 

Its approval by the FDA has been used for the treatment of 

recurrent basal cell carcinoma in patients who are not 

eligible for surgery or radiotherapy. Sonidegib interacts 

with SMO, acting as an antagonist, preventing downstream 

activation of the HH pathway signaling pathway [71-73]. It 
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has favorable blood-brain barrier penetration and high 

tissue penetration, making it a viable treatment for 

medulloblastoma [70]. Unfortunately, SMO mutations in 

Q476 and D473, prevent Sonidegib binding. Other 

mutations, including S533 and W535, confer resistance to 

Sonidegib [73, 74]. Currently, there are 2 ongoing clinical 

trials using this drug to treat breast and ovarian cancer 

(Table 1). 

 

Saridegib is a potent SMO inhibitor, also known as IPI-926, 

a cyclopamine derivative. Studies have been shown to 

benefit from saridegib treatment in medulloblastoma, 

chondrosarcoma, and ovarian cancer [75-78]. The reduction 

of tumor mass in the preclinical model is explained by the 

decrease in the expression of GLI1 and PTCH1 [79].  

 

4.3 GLI inhibitors  

Gants, are the first GLI inhibitors, reported in the literature 

by the National Cancer Institute during GLI assay screening 

in HEK923 cells [80]. GLI antagonists can directly bind to 

GLI proteins and prevent their translocation into the 

nucleus. Gant 58 and Gant 61 are the most studied agents 

that have been used pre-clinically. They inhibit both GLI1 

and GLI2 causing a significant decrease in tumor growth 

(80, 81). Studies have been shown that Gant 61 treatment 

induces cell cycle arrest by decreasing levels of the HH 

target such as CCND1 and increasing the expression of p21 

[82, 83]. 

 

Arsenic trioxide (ATO) is an FDA-approved medication for 

pro-myelocytic leukemia. ATO has been found to inhibit 

HH signaling pathway by binding to GLI1 and GLI2 

protein and prevents their binding to DNA as a 

transcription factor [84, 85]. ATO has been shown to 

increase apoptosis, reduce tumor cell growth and decrease 

expression of HH target genes both in vitro and in vivo [86-

89]. 

5. Clinical Trials  

The SHH signaling pathway has been related to several 

types of cancer. Clinical applications of molecules that 

block the SHH pathway have shown to have a significant 

benefit in preclinical and clinical studies to treat several 

types of female cancer (Table 1).  

 

6. Conclusion 

Although there is a remarkable growth of knowledge 

regarding the involvement of HH pathway in female cancer 

development, the precise mechanism underlying activation 

of HH contributing to a variety of female cancer 

phenotypes is mostly unknown. For instance, what are the 

key HH target genes related to activated canonical and non-

canonical HH pathways in a variety of female cancers? 

What is the difference of HH regulated genes between 

different types of female cancer? Are there specific GLI 

response genes for each type of female cancer? A better 

understanding of these changes will lead to the 

development of new therapies for women with cancers. 
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