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Abstract

Objectives:  Since virus-related hepatocellular
carcinoma (HCC) is quite complexed, the etiology of
virus-associated HCC is remained unclear. We have
previously shown that the microRNA (miRNA)
entangling sorter (METS) analysis with quantum
miRNA/mMiRNA language is available for the
etiology investigation in silico from miRNA
biomarker panels of human cancers to predict
carcinogenesis. To further investigate the etiology of
human virus-associated diseases on the stage minus
one (zero), host-virus miRNA interactions were
investigated by computer simulation on METS
analysis with artificial intelligence (Al) machine
learning (MIRAL).
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Materials and Methods: The information of the
miRNA biomarker panels in hepatitis B virus (HBV),
hepatitis C  virus (HCV) and  human
immunodeficiency virus type 1 (HIV-1) infection,
virus-related fibrosis (cirrhosis), and virus-associated
HCCs was extracted from database. The miRNA hub
in the panels was selected by both protein/protein
interaction and carcinogenic protein function. The
statistical analysis upon tumorigenesis was calculated

by Prediction One.

Results: The etiology of infection, fibrosis or HCC
was simulated by METS analysis with host miRNAs

and viral miRNAs. Quite different strategy was
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shown as the host defense against HBV, HCV and
HIV-1 infection under controlled by host miRNAs
and viral mRNAs. HBV and HIV-1 was defensed by
cell death through shutdown and cell cycle arrest,
respectively. HCV was prevented by inhibition of
virus production. Carcinogenesis by HBV was
induced by repeated wound-healing in fibrosis
(cirrhosis) programmed by host miRNA information,
and host and viral miRNAs were implicated in

tumorigenic activity upon HCV infection.

Conclusions: We found the third host defense neo-
mechanism, named ‘the quantum miRNA immunity’

against human virus-related diseases.

Keywords: MicroRNA; Hepatitis B virus; Hepatitis
C virus; Human immunodeficiency virus type 1;
Hepatocellular ~ carcinoma;  Fibrosis;  Quantum
microRNA language; Al machine learning; VR;
Covid-19

1. Introduction

Hepatitis B virus (HBV) and C virus (HCV) are the
critical carcinogens for hepatocellular carcinoma
(HCC) [1-3]. Although 75-90% of liver cancers are
HCC [4], liver cancer is the sixth common cancer and
the fourth leading cause of cancer related death in
GLOBOCAN 2018  (uicc.org/news/new-global-
cancer-data-globocan-2018#). HBV and HCV are the
most common risk factors of all HCC incidence
(approximate 56% of HBV and 15% of HCV) [5]. As
a viral factor, the HBV life cycle contributes for
chronic inflammation as liver hepatitis by viral DNA
integration into the human genome and for induction
of host gene mutation [6]. About causes of HCC by
HBV infection, the steps for integration of HBV
DNA into the human genome is thought to be
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important for tumorigenesis [7], and after the
integration, HBV x (HBX) transactivator protein
expression from the HBV DNA in the human
genome, not viral load, seems to have carcinogenetic
effects to promote cell growth, anti-apoptotic effects
and epigenetic modification [7]. However, despite the
plethora of many experimental evidences published
in in vivo mouse models, the precious etiology of
HBx-associated carcinogenesis in human remains
uncertain. On the contrary, HCV proliferation has
also been speculated to be related with the risk of
HCC. The risk of HCV-related HCC development
was higher in patients with high titer of HCV RNA
than with low titer [8] but the HCV RNA titer was
low in patient with HCV-related liver cirrhosis,
which is a risk factor of HCC [9]. HCV and HBV
double infection was strongly correlated with HCC
development in Egyptian [10]; however, HCV RNA
levels was not correlated with HCC. Further, HCV
RNA was detected in both HCC and surrounding
non-tumor tissues [11]. Thus, it is uncertain whether
HCV replication would be a cause of HCV-related
HCCs or not; therefore, the carcinogenetic
mechanisms by HCV replication itself are not

completely elucidated.

Other risk factors of HCC are host liver cirrhosis and
fibrosis, excessive alcohol consumption,
incorporation of aflatoxin B1, nonalcoholic
steatohepatitis, obesity etc. [12], and the most
important causes for the development of liver fibrosis
are chronic HBV or HCV infection, cirrhosis, chronic
alcohol abuse and metabolic syndrome, which are
similar with the risk factors of HCC. Therefore, both
liver cirrhosis and fibrosis as host factors are
important risk factors of HBV- and HCV-related

HCC. Although HCC cells are derived from
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hepatocytes, hepatic fibrosis is induced by hepatic
stellate cells as the major mesenchymal ones in the
liver [13]. Upon activation of inflammation processes
with mesenchymal cells after HBV or HCV
infections, an excessive production of extracellular
matrix proteins from liver stellate cells induces
fibrosis as the results of a wound-healing response,

and finally the loss of hepatocyte functions.

Liver cirrhosis is caused by repetitive and chronic
liver damage, and is characterized by the
development of regenerative nodules with fibrous
connective tissues [14]. Therefore, cirrhosis is an
advanced stage of liver fibrosis and fibrosis processes
containe the protection of the host liver against
infection and the liver regeneration from
inflammation. It leads to liver matrix deposition,
normal liver architecture destruction, parenchymal
disruption, etc. Many cytokines and their related
pathways are implicated in these processes. Although
the liver fibrosis was examined using rodent models,
it has been remained a deep gap between putative
targets for human fibrosis therapy and murine
pathways of complexed fibrosis in the liver [15, 16].
Liver fibrosis and cirrhosis are involved in chronic
hepatitis by HBV and/or HCV in the bed side,
therefore, the prevalence of histologic fibrosis and
cirrhosis has deeply been associated with HBV- or
HCV-associated HCC [17]. In Yan’s lab study, more
than 80% of untreated HBV patients with HCC were
HBV e antigen (HBe Ag)-negative. Although it is
well known that the area of chronic HBV infection is
geographically matched to that of HCC, Chen et al.
[18] of the Taiwan group have found that inactive
HBV carriers have 4.6 times high risk for HCC than
individuals without HCV or HBV, and liver cirrhosis

and loss of serum HBe Ag patients were correlated

Archives of Clinical and Biomedical Research

DOI: 10.26502/acbr.50170092

with the increasing risk of HCC development [19].
Contradictorily, the same Taiwan’s group had
reported 8 years before that HBe Ag positive and no
cirrhosis patients were associated with the risk of
HCC [20]. Finally, above Taiwan’s group has
recently shown that HBe Ag seroclearance by high
levels of HBV core antibody are associated with the
reduced risk of HCC [21]. Other papers showed that
low HBV load patients compensated cirrhosis were
not at low risk for HCC, and high HBV surface
antigen (HBs Ag) levels and low viral load plus low
HBe Ag were implicated in HCC, and high HBs Ag
was related with prognosis after curative resection in
the case of low viral load [22-25]. Therefore, the
relation among liver fibrosis and cirrhosis, viral load
and HBV antigen was far simplified in early HCC
diagnosis and HCC development. About anti-HCV
treatments, it has been reported that new anti-HCV
strategies failed to progress carcinogenesis of the
liver compared with the previous standard-of-care
interferon and ribavirin [26] whereas an HCV cure
and reduction of the risk in HCC have been
developed by direct-acting antivirals (DAAS)
treatment [27] and been achieved a sustained
response of virus (SRV) [28]. Furthermore, although
it is the same problem in HBV infection as in HCV
one, data about the relation between HCV coding
proteins and HCC development is also conflicting. It
is quite difficult to elucidate complex causes of
HBV- and HCV-related HCCs because the onset of
HCC at stage minus one or zero was not be
preciously identified by the readily prepared
biomarker, finally, the etiology of carcinogenesis by
HBV or HCV infection remains to be cleared [29].

The host microRNA (miRNA) has an important role

for initiation, induction, development and metastasis
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of HCC [26, 30]. miRNAs have been reported as a
biomarker for diagnosis, prognosis of HCC [31, 32]
and hepatic fibrosis [33, 34]. We have studied in
silico with the quantum miRNA language for the
etiology of solid tumors, breast, lung, colorectal,
pancreatic, esophageal and gastric cancers by using
circulating diagnostic miRNA panels [35-37]. We
found the hub miRNA in the miRNA biomarker
panel and we showed that the mMiIRNA/MiRNA
quantum language in the hub miRNA modulates
carcinogenesis. To further understand function of
miRNA biomarker panels in human infectious
diseases and cancers, the etiologies of HBV or HCV
infection including concomitant viral miRNA or its
candidates, HBV-miRNA-2 or HCV-miRNA
candidatel and 2, chronic HBV- or HCV-infection
associated liver fibrosis and HBV- or HCV-related
HCC were computationally simulated to elucidate the
mechanisms upon carcinogenesis of hepatocytes
using miRNA memory package (MMP) in the
biomarker miRNA panel, and quantum miRNA
network simulation was performed by miRNA
entangling target sorting (METS) with artificial
intelligence (Al) machine learning (MIRAI). Further,
a human immunodeficiency virus type 1 (HIV-1)
infection case was also investigated as a non-solid
tumorigenic virus in the control simulation with
HIV-miR-N367.

Subsequently, we found the quantum miRNA

previous reported viral

immunity  against  human hepatitis  and

immunodeficiency viruses.

2. Materials and Methods

2.1 Database usage

Google scholar (https://scholar.google.co.jp) was
used for extraction of miRNA panel data. Total

information content was 42,382 in HBV infection,
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58,282 in HCV infection, 4,118 in HBV-associated
fibrosis, 8,605 in HCV-associated fibrosis, 9,056 in
HBV-induced HCC, 8,168 in HCV-induced HCC and
367 in HIV-1 infection. The gene function of protein
was searched by GeneCards (www.genecards.org).
Protein ontology was investigated by GO enrichment
analysis in Geneontology (geneontology.org). Data
mining about miRNA panels was performed by; 1)
data from serum or plasma, 2) cleared in expression

levels of up- and down-regulation.

2.2 METS insilico analysis

MMP calculation and METS analysis were
performed by the computer processing as described
previously [35, 38-42]. In short, MMP from miRNA
biomarker panels was calculated by double miRNAs’
guantum energy levels of double nexus score (DNS)
entangling single miRNA quantum energy levels of
single nexus score (SNS) (Table 1). Data of multi-
targets to a miRNA was extracted from TargetScan
Human 7.2 (targetscan.org) and miRTarBase Ver. 8.0
(mirtarbase.cuhk.edu.cn).  Target  protein/protein
interaction and cluster analysis were searched by
STRING Ver. 11.0 (string-db.org).

2.3 Viral miRNA and functionally analogy
analysis

Data of viral miRNA and viral genome was obtained
from Viral Genomes (ncbi.nim.nih.gov) and
miRBase Ver. 22.1 (miRbase.org). HCV subtype la
sequence (NC_004102.1) was used for prediction of
viral miRNA in the 5’UTR. The functional analogy
between viral miRNA and host miRNA was
performed as previously described [37, 43].
MiRCompare (160.80.35.140) was used for
homology sequence search. The RNA secondary
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structure of RNA was computed by RNA Folding
Form (unafold.rna.albany.edu).

2.4 Al machine learning

Prediction One Ver. 04.08.20 (Sony Network
communications Inc. Tokyo, Japan) was used for Al
machine learning. The area under the curve (AUC) in
receiver operating characteristic (ROC), accuracy,
precision and F values were calculated by Prediction
One.

2.5 MIRAI

Previous METS analysis data in pancreatic, lung,
colorectal, gastric and esophageal cancers [36, 37]
was combined with the present data to produce the

AUC data through Al machine learning.

3. Results and Discussion

3.1 Quantum energy in liver cancers

Quantum energy levels were calculated by MMP
simulation and DNS frequency in HBV and HCV
infection, HBV- and HCV-associated fibrosis
(cirrhosis) or HCC compared with HIV-1 infection as

a control of viral miRNA effects.

3.1.1 MMP maps in virus-associated liver
diseases: Four to six miRNAs were collected for
MMP calculation as the quantum energy level from a
biomarker panel of HBV- and HCV-associated liver
diseases by data mining (Tablel and Figure 1A). The
quantum energy levels of the liver diseases clearly
showed unique radar charts of MMP in HBV- and
HCV-related human liver diseases, and HIV-1
infection (Figure 1A). Interestingly, MMPs from
single- and multi-biomarker panels were also
different in HCV- and HBV-related cancers.
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3.1.2 DNS frequency of virus-associated liver
diseases: According to the MMP characterization,
the mining MMP data in all liver disease cases was
used for a calculation of DNS frequency and each
layer of the quantum core region (QCR) was
determined (Figure 1B). Quantum energy frequency
of virus-related liver disease was widely distributed
among the layer of quantum level O to the layer of
quantum level 144 (over 101). Proportion of DNS
frequency percentage was also irregularly distributed
among each disease. The hub miRNA layer about
liver diseases was selected from the total QCR layers
through the Al machine learning as described above
(Table 1 and Figure 2B red square). The hub miRNA
layer was restricted within low QCR layer limits,
level 0-60.

3.2 METS analysis against liver carcinogenicity by
Al

According to QCR layers as described above, METS
analysis was performed by Al in HBV and HCV
infection, and HBV- and HCV-related fibrosis and
cirrhosis, and cancers. Since MMPs from single- and
multi-panel data of biomarkers were different, METS
data from single and multi-biomarker panels were
cohered for statistical analysis by Al to preciously
supply much data of carcinogenic effects. Quite
recently, it has been shown that human AGO2 protein
binds to the HCV site 1 with miR-122-5p [44]. Since
AGO2 protein induces to catalyze endonucleolytic
cleavage on target mRNA within partially paired
miRNA/MRNA sequences [45], we predicted HCV-
miRNA candidates from HCV 5’UTR site 1 (Figure
1C).

3.2.1 Prediction of human miRNA paralogues in
viral miRNAs: To cohere HBV viral miRNA and
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HCV miRNA candidate effects, the seed paralogue of
viral xentropic mMiRNAs (xenomiRNAs) and
candidates were searched in that of human miRNAs.
Since HBV viral xenomiRNAs have already been
shown [46], the seeds of HBV-miR-1, HBV-miR-2,
HBV-miR-3 and HBV-miR-4, and HCV-miR-
candidate 0, HCV-miR-candidate-1 and HCV-miR-
candiadte-2 were analyzed, and HBV-miR-2 were 75
and 62% homologous to those of hsa-miR-4436a and
has-miR-5000-3p, respectively (Table 2). The seeds
of HBV-miR-4, HCV-miR-candidate 0, 1, and 2 were
62, 62, 62, and 75% homologous to those of hsa-
miR-3910, hsa-miR-5684, hsa-miR-652-5p and hsa-
miR-3155h, respectively (Table 2). The human
miRNA paralogues of HBV-miR-1 and -3 were not
found by sequence homology analysis. In METS
analysis of HBV-miRNAs, the cluster of
protein/protein interaction was only observed in miR-
4436a (the seed paralogue of HBV-miR-2). In METS
analysis of HCV-miRNAs, the cluster of
protein/protein interaction was found in miR-652-5p
(the seed paralogue of HCV-miR-candidate 1) and
miR-3155b (that of HCV-miR-candidate 2). The
protein/protein interaction of HBV-miR-4, and HCV-
miR-candidate 0 were not determined because too

less data number (data not shown).
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3.2.2 MIRAI for virus-associated liver diseases:
The carcinogenic relation among infection, fibrosis
and cirrhosis, and cancer cases was computed in
METS analysis of virus-related liver diseases by Al
(MIRAL) (Table 3). The AUC, accuracy, precision
and F values were calculated in the presence or
absence of viral miRNAs and viral miRNA
candidates. As shown in Figure 1D, the significant
AUC value of carcinogenicity in host miRNA plus
viral miRNA (gray line) was a proper subset of the
host miRNA AUC (blue line) in HBV-related liver
diseases. On the contrary, in HCV-related liver
diseases, the AUC value of host miRNA (brown line)
was a proper subset of the host miRNA plus viral
miRNA candidates AUC (green line) (Figure 1D).
Thus, it is suggested by Al analysis that in HBV-
related carcinogenesis, host miRNA alteration in
fibrosis and cirrhosis has an important role for
progression to liver carcinogenesis, and in HCV-
related tumorigenesis, the first impact of HCV
infection leads to carcinogenesis in the liver through
fibrosis and cirrhosis. To further elucidate etiology of
MIRAI analysis, quantum miRNA network analysis

was performed preciously.
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Cancer & infection

miRNA information

Cancer & infection

miRNA information

Associated Virus | State MiRNA* Level SNS | Associated Virus | State MiRNA* Level SNS
HBV Infection miR-375 up 7 HBV Liver cancer 1 | MiR-122-5p down 9
miR-92a-1-5p up 9 miR-192-5p up 4
miR-21-5p up 5 miR-21-5p up 5
miR-27a-3p up 8 miR-223-5p down 6
miR-122-5p up 9 miR-26a-5p down 5
miR-146a-5p up 3 miR-27a-5p down 8
HCV Infection miR-122-5p up 9 HBV Liver cancer 2 | MiR-25-5p up 9
miR-134-5p up 10 miR-375 up 7
miR-424-3p up 6 let-7f-5p up 7
miR-629-5p up 8 miR-99a-5p down 5
HBV Fibrosis & cirrhosis | MiR-497-5p down 6 miR-125b-5p down 4
miR-486-3p down 8 let-7¢-5p down 9
miR-345-3p up 10 | Hev Liver cancer 3 | MiR-122-5p up 9
miR-371a-5p up 6 miR-331-3p up 5
miR-2861 up 13 miR-494-3p up 4
HCV Fibrosis & cirrhosis | mir-138-5p up 9 miR-224-5p up 5
miR-143-5p up 8 miR-185-5p down 8
miR-140-5p up 6 miR-23b-3p down 4
miR-325 up 7 HCV Liver cancer 4 | miR-122-5p down 9
miR-328-5p up 10 miR-486-5p up 6
HIV-1 Infection miR-16-5p up 6 miR-142-3p down 5
miR-223-3p up 3 miR-331-3p up 5
miR-195-5p up 5 miR-23b-3p down 4
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miR-20b-5p up 7 miR-224-5p up 5
Conventional Liver cancer 5 | MiR-21-5p up 5
miR-106b-5p up 6
miR-224-5p down 5
miR-92a-3p up 5
miR-107 up 6
miR-3126-5p down 8
miR-519d-5p up 6
*miRNA in the bold grid: Hub miRNA
Table 1: miRNA biomarkers in virus-related liver diseases and HIV-1 infection.
Viral miRNA candidate | ID sequences SNS Ar.1alogous human ID sequences SNS | Homology*
MiRNAs
HBV-miRNA-2 >sequence_2 6 hsa-miR-4436a >hsa-miR-4436a MIMAT0018952 9 75
GCAGGTCCCCTAGAAGAAGAA GCAGGACAGGCAGAAGUGGAU
hsa-miR-5000-3p >hsa-miR-5000-3p MIMAT0021020 5 62
UCAGGACACUUCUGAACUUGGA
HBV-miRNA-4 >sequence_4 4 has-miR-3910 >hsa-miR-3910 MIMAT0018184 3 62
TTGAGGCATACTTCAAAGACT AAAGGCAUAAAACCAAGACA
HCV-miRNA-candidate 0 | >sequence_6 1 hsa-miR-5684 >hsa-miR-5684 MIMAT0022473 4 62
CACUCCACCAUGAAUCACUCC AACUCUAGCCUGAGCAACAG
HCV-miRNA-candidate 1 | >sequence_7-1(5'UTR S1) 8 hsa-miR-652-5p >hsa-miR-652-5p MIMAT0022709 7 62
CAGCCCCUAAUGGGGCGACAcCUCC CAACCCUAGGAGAGGGUGCCAUUCA
HCV-niRNA-candidate 2 | >sequence_7-2(5'UTR S1) 7 hsa-miR-3155b >hsa-miR-3155b MIMATO0019012 7 75
GCCAGCCCCUAAUGGGGCGACAcCuUcCC CCAGGCUCUGCAGUGGGA

Table 2: Viral miRNA and candidate seed paralogue in human miRNAs (*8 seed).
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Clinical state Vial miRNA* Al analysis™
AUC Accuracy Precision F value

HBV Infection - 0.6014 0.8205 0.9545 0.9000
HBV Infection miR-2 seed 0.5125 0.9059 0.9390 0.9506
HCV Infection - 0.9872 0.9070 1.0000 0.9459
HCV Infection miR-candidate 1 & 2 seed 1.0000 0.9184 1.0000 0.9535
HBV+Fibrosis & cirrhosis - 0.9308 0.8814 0.9259 0.9346
HBV+Fibrosis & cirrhosis miR-2 seed 0.5125 0.9059 0.9390 0.9506
HCV+Fibrosis & cirrhosis - 0.4359 0.7586 0.8800 0.8627
HCV+Fibrosis & cirrhosis miR-candidate 1 & 2 seed 0.7708 0.9429 0.9421 0.9697
HBV+Liver cancer (1 +2) - 0.9283 0.9542 0.9474 0.9730
HBV+Liver cancer (1 +2) miR-2 seed 0.9137 0.9420 0.9344 0.9661
HCV+Liver cancer (3 + 4) - 0.9994 0.9826 0.9867 0.9900
HCV+Liver cancer (3 + 4) miR-candidate 1 & 2 seed 1.0000 0.9888 0.9873 0.9936

*Data of viral miRNA or candidates in Table 2 was integrated into the quantum miRNA network analysis; **Data was caluculated by Prediction One
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Table 3: Statistical Al analysis in hepatitis virus-associated carcinogenesis.
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3.3 HBV infection

HBV is a DNA virus. HBV has a partially double-
stranded and circular genomic DNA (3020-3320 nts)
and it contains 4 open reading frames (orfs)
overlapped partially. These orfs encoded the reverse-
transcriptase (RT)/polymerase (Pol), the capsid
protein including core antigen (HBc) and pre-C plus
core protein (HBe), three envelope proteins (L-HBs,
M-HBs and S-HBs) and the trans-activator x (HBx)

protein.

3.3.1 Network analysis of HBV infection with host
mMiRNAs: After data mining, six miRNAs were
selected as an MMP of HBV infection from
biomarker panels of it [47, 48] (Figure 2A and 2B).
miR-146a-5p, mMiR-92a-1-5p, miR-21-5p, miR-122-
5p, miR-27a-3p and miR-146a-5p were upregulated
(Table 1). These miRNAs shut down the expression
of 34 proteins at once and these proteins are
implicated in several cell functions, such as the cell
proliferation (EGFR, IGF1R), cell cycle (CDC25A),
transcription factors or repressor (FOXO1, SRF,
CREB1, ATN1), apoptosis (BCL2, BCL2L2),
inflammatory response (NFKB1, MTDH), innate
immunity (TLR4), signal transduction system
(ROCK1, YWHAZ, SMAD4), ubiquitin system
(YOD1, BRCAL), cell adhesion (COL1Al) and
metabolic pathways (PKM, LDHB, PDK1, ALDOA,
CTDNEP1, PRKAB?2). It may simultaneously induce
acute liver injury with the hepatic acute-phase
reaction (APR).

Although anti-apoptotic BCL2 was inhibited by miR-
21-5p upregulation with miR-34a-5p and miR-34c-5p
(Figure 2), upregulation of miR-21-5p, miR-34a-5p
and miR-122-5p was observed in sera of non-

alcoholic fatty liver [49]. Therefore, miR-21-5p and
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miR-34a-5p upregulation would be a key of liver
injury. After HBV infection, a lethality of
unfunctional liver cells could be modulated by
themselves under the upregulation of these miRNAs
and infected cells would be locked down.
Subsequently, it is suggested that BCL2 suppression
would induce apoptosis of hepatocytes and cell death
of liver cells to protect HBV proliferation, and then
would induce inflammation following liver injury
[50]. The role of HBx protein remained controversial
about apoptotic stimulation [51, 52]. Recently, Li et
al. [53] have reported that HBx protein inhibits
apoptosis; however, Kong et al. [54] have
documented that increasing apoptosis in hepatoma
cells were associated with increasing expression of
tumor necrosis factor (TNF) receptor superfamily
member 10b (TNFRSF10B, DR5) that mediated by
HBx protein through NF-kB pathway. Since both
experiments have been performed by cancer cells and
on other cases, the results were obtained from
experiments using mice, the effects of HBx protein to
human liver cells have still not elucidated. Thus,
escape from species bias and cultured tumor cell bias,
guantum network simulation from the diagnostic
miRNA panel is very useful to understand bona fide
human hepatocyte and stromal cell conditions under
HBYV infection as described above. BCL2 inhibition

was anti-virus and anti-carcinogenesis.

The epidermal growth factor (EGF) is known to be
necessary in DNA synthesis of rat primary
hepatocytes [55]. The continuous activation of EGF-
epidermal growth factor receptor (EGFR) signaling is
considered as a key factor of inflammation and
development for cancers [56]. And expression of
EGFR was enhanced by inhibition of SOCS5-

mediated ubiquitination in the M1 polarized
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macrophages [57]. HBx protein inhibited the
expression of EGFR via upregulation of miR-7-5p in
HCC cells and HBx protein decreases cell
proliferation of HCC cells [58]. In our simulation of
HBV infection, miR-146a-5p upregulation inhibited
EGFR with miR-7-5p (Figure 2A); therefore,
inhibition of EGFR expression would also decrease
proliferation of HBV-infected liver cells. In rat
model, EFGR inhibitor erlotinib  prevented
hepatocyte proliferation, cirrhosis and hepatocellular
carcinogenesis [59]. Further, EGFR was a host-entry
cofactor when HBV binds to the cell surface [60], it
is suggesting that during HBV infection, EGFR has
an advantage in infection rather than in cell growth
by EGF/EGFR, the receptor-ligand signaling. The
internalization and downregulation of EGFR would
rationally protect superinfection of HBV. Since
EGFR polymorphisms was not associated with the
risk of HBV-related hepatocellular carcinoma in
China [61], EGFR downregulation would be
implicated in virally invading steps on acute phase
HBYV infection. EGFR suppression has anti-virus and

anti-tumor effects.

3.3.2 The quantum immunity and HBV viral
miRNA: HBV-miR-2 inhibited spermidine N'-
acetyltransferase family member 2 (SAT2) (Figure
2B). SAT is involved into hypoxia-related proteins
and hypoxia-related enzymes, such as hypoxia
inducible factor 1 subunit alpha (HIF1A) and
ornithine decarboxylase (ODC) [62, 63]. Since SAT
binds to HIF1A and RACKL resulting in oxygen-
independent HIFLA ubiquitination and degradation,
inhibition of HIF1A levels via SAT contributed to the
anti-tumor activity [64]. Since HBV-miR-2 inhibited
SAT2 (Figure 2B), HBV-miR-2 would be decreasing
hypoxic level. Therefore, HBV-miR-2 would be
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anti-tumor. Further, hypoxia induces hepatitis in
general [65], while reducing hypoxic state by HBV-
miR-2 would result anti-inflammation and anti-
carcinogenesis. HBV-miR-2 inhibited thioredoxin
domain containing 17 (TXNDC17, TRP14) and
taxilin a (TXLNA) expression in our quantum
simulation by using the seed paralogue search for
host/viral miRNAs (data not shown). NFKB1
expression was inhibited by upregulation of miR-
146a-5p with mir-155-5p and miR-508-3p (Figure
2B). TXNDCL17 inhibited the TNF-a inducing NF-kB
activation [66]. Although NF-kB was inhibited by
upregulation of miR-146a-5p with miR-155-5p and
miR-508-3p, downregulation of TXNDC17 by HBV-
miR-2 may indirectly sustain the ability of NF-kB
inducing inflammation and carcinogenesis. TXLNA,
o-taxilin bound to syntaxin (STX) family and
syntaxin binding proteins (STXBPs) [67] (Figure
2B). Their association is related with intracellular
traffic machinery [68] and with HBV particle
releasing from infected cells [69]. Therefore,
downregulation of TXLNA would induce
suppression of lethal viral releasing and would
maintain persistent infection of HBV. On the
contrary, TXLNA is also a cytokine, inteleukin-14
(IL-14) or B-cell growth factor (BCGF), which are
mainly produced by T cells [70] and inhibition of IL-
14 would suppresses inflammation. Further, HBX
inhibits TXLNA gene transcription in T cell lines
[71]. Thus, HBV-miR-2 and HBx would promote
anti-inflammatory state and represses tumorigenesis
in chronic infection state. In the case of HBV-miR-3
expressing infected cells, HBV-miR-3 represses
HBV protein, such as HBx, and suppresses viral
replication [46]. At that case under early phase,
HBV-miR-2 with HBV-miR-3 would induce anti-

inflammation and anti-carcinogenesis conditions. It is
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suggested that HBV-encoded miRNAs would affect
to be distinctive between acute and chronic phases of
HBYV infection. Taken together, this is a first report of
‘quantum mMiRNA immunity’ that HBV infection
would be preventive with programmed host defense
mechanisms, such as shutdown and lockdown plus
apoptosis, and it would be anti-carcinogenesis. The
etiology of HBV infection was strongly supported by
MIRALI in the qguantum miRNA network analysis
(Figure 1D).

3.4 HCV infection

HCV is a positive strand RNA virus. HCV genome
(9600 nts) is not integrated into the human genome.
The HCV orf is coding a 3000 amino acids
polyprotein and it is processed into 3 structural
proteins (core, E1 and E2) and 7 non-structural
proteins (p7, NS2, NS3, NS4A, NS4B, NS5A and
NS5B). Since HCV proteins are associated with host
proteins, such as tumor suppressors, TP53, TP73, it is

a possible idea that HCV infection would cause HCC.

3.4.1 HCV infection and liver specific miR-122:
Liver specific miR-122-5p upregulation is well
known as enhancement of propagation of HCV [72,
73]; however, let-7b-5p strongly inhibited HCV
replication [74]. In our computer simulation, miR-
122 upregulation was cooperated with let-7b-5p
(Figure 2C). let-7a-5p in the let-7 family was
downregulated in the plasma of chronic HCV
infected patients [75]. Further, low expression of
miR-122 did not allow HCV propagation to human
primary synovial fibroblast [76]. On the other hand,
HCV mutants were propagated in the miR-122-
deficient PBMCs [77]. Although miR-122 seed
region has an affinity to HCV internal ribosomal
entry site (IRES) and site 1 plus 2 RNA in the 5’UTR
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[78, 79], quantum energy levels between miR-122
and the site 2 of 5’UTR HCV were very different
among genotypes of HCV [80]. It is suggested that
the enhancing effects of miR-122 on HCV
propagation may deeply be dependent on viral
subtypes. Thus, HCV propagation would be
dependent on; 1) not only miR-122 levels but also
other miRNA levels, such as let-7 family levels, 2)
HCV RNA genomic mutation including HCV
subtypes, 3) infectious host states including fibrosis
and cirrhosis. Therefore, miravirsen, anti-miR-122,
single therapeutic regimen may not be enough to
treatment of HCV infection. The etiology of human
diseases may have been usually searched about
common miRNAs, such as miR-122 in HCV
infection but the functions of biomarker miR-122-5p

would be conflicting in previously reported papers.

3.4.2 Network analysis of HCV infection with host
mMiRNAs: Four miRNAs were selected as an MMP of
HCV infection from biomarker panels of it [81]
(Figure 2C). miR-122-5p, miR-134-5p, miR-629-5p,
and miR-424-3p were upregulated by HCV infection
(subtype 1b/2a/3a/others; 76.9/10.2/5.1/7.7%) (Table
1). It is well known that after asymptomatic acute
infection of HCV, HCV dominantly leads to
persistent infection on a high proportion of infected
individuals [82]. Therefore, the network scheme of
HCV infection was very different from that of HBV
infection. As miRNA-depend host defense
machinery, it has been documented that host
miRNAs directly target HBV and HCV genomic
RNA [83, 84]; however, in HCV, miR-122-5p has
only been showed to bind HCV 5’UTR sitel and site
2 [78, 79]. In our simulation, miR-122-5p with miR-
142-3p and miR-101-3p inhibited Rac family small
GTPase 1 (RAC1) expression (Figure 2C). RACl is a
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factor of HCV entry [85]. Furthermore, cAMP
responsive element binding protein 1 (CREB1) was
suppressed by upregulation of miR-122-5p with miR-
33b-5p (Figure 2C). CREBL1 was activated by HCV
infection [86] and the CREB1 phosphorylation
induced liver specific peroxisome proliferator-
activated receptor gamma coactivator 1 alpha (L-
PGC-1a) activation. The upregulation of L-PGC-1a
enhanced replication of HCV [87]. Therefore,
inhibition of CREB1 would indirectly block HCV
replication. Thus, HCV entry and replication would
be repressed by RAC1 and CREBL1 downregulation

as the quantum miRNA immunity.

3.4.3 Strong defense by the quantum miRNA
immunity against HCV: HCV infection effectively
reduced expression of hepatocyte nuclear factor 4
alpha (HNF4A) with a pinpoint. The hepatic
transcriptional factor, HNF4A was downregulated by
upregulation miR-629-5p with miR-34a-5p and miR-
24-3p (Figure 2C), and autophagy related 5 (ATG5)
was also inhibited by upregulation of miR-629-5p
with miR-30a-5p, miR-30d-5p and miR-30e-5p
(Figure 2C). HNF4A controls several hepatic genes
and HNF4A-dependent gene

downregulation is associated with alcoholic hepatitis

expression

in patients [88]. Upregulation of HNF4A is essential
for viral late stage processing, such as assembly and
secretion in liver carcinoma cells [89]. Upregulation
of ATG5 participates viral replication [90]. These
results suggested that host cells would defensed from
HCV proliferation by quantum miRNA immunity. It
would not be distinct from bona fide liver cell failure
because prevention of acute injury of hepatocytes by
HCV particle burst from the cell surface would be
implicated in hepatitis with persistent HCV infection.

HNF4A treatment inhibited proliferation of liver
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cancer stem cells [91] and the stress-induced HNF4A
downregulation resulted in a long-term suppression
of miR-122-5p, which increases the HCC risk [92].
Therefore, inhibition of HNF4A expression by the
host defense against HCV infection stress would be
highly carcinogenic. Further, human HCC is
autophagy defective with HCV infection [93]. ATG5
is downregulated by increasing of miR-30e in Huh7.5
hepatoma cell line [94]. So, suppression of ATG5

may be tumorigenic.

Zinc finger Matrin-type 5 (ZMATS5) and thioredoxin
like 4A (TXNL4A) expression were inhibited by
miR-134-5p with human specific miRNA-3188 and
miR-424-3p with human specific miR-6880-5p,
respectively (Figure 2C). Both proteins are related
with the pre-mRNA splicing machinery [95, 96] and
HCV replication needs to hijack host splicing
pathway [97, 98]. Therefore, suppression of function
in the spliceosome would protect from HCV
proliferation. These data showed a new idea on
demand of HCV infection; namely, the first defense
response of the host as quantum miRNA immunity
could be elucidated beyond previous old researches,
which have been explained in the replication steps of
the HCV life cycle soon after absorption of viruses
by the in vitro HCV experiments. This is a first report
of quite early host defense response machinery
against HCV infection. Although TXNL4A is a
member of the U5 small ribonucleoprotein particle
(snRNP), anti-U5 snRNP autoantibody was found in
a patient of systemic sclerosis and polymyositis
accompanied by large-cell lung carcinoma [99].
Therefore, splicecosome TXNL4A may be related
with  carcinogenesis. Given the early and
programmed human defense reactions against HCV

as the quantum miRNA immunity, it is suggested that
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the HCV preventive protein expression could
developed to cancerous states in the host liver. The
etiology of HCV infection was supported by MIRAI
in the quantum miRNA network analysis (Figure
1D).

3.5 HIV-1 infection

HIV-1 is a twin positive strand RNA virus and infects
to helper CD4+ T cells and macrophages. The HIV-1
genomic DNA is integrated into the host genome.
Since HCV and HBV were mainly susceptible for the
hepatocyte, HIV-1 infection in T cells and
macrophages was monitored as a control for quantum
miRNA network analysis as described previously
[41], and it was followed by the updated database

information.

3.5.1 Network analysis of HIV-1 infection with
host miRNAs: Four miRNAs were selected as an
MMP of HIV-1 infection from biomarker panels of it
[100-102] (Figure 3A and 3B). miR-16-5p, miR-20b-
5p, miR-195-5p, and miR-213-3p were upregulated
by HIV-1 infection (Table 1). miR-16-5p
upregulation suppressed CDK6 with let-7b-5p, miR-
34a-5p, miR-449a, miR-124-3p, miR-214-3p, miR-
107, miR-30a-3p and miR-203a-3p (Figure 3A and
B). Upregulation of miR-195-5p simultaneously
inhibited CDK6 with let-7-5p, miR-34a-5p and miR-
449a (Figure 3A and B). CCND3 expression was
reduced by miR-16-5p upregulation and CCNE1
expression was blocked by increasing expression of
miR-16-5p with 15a-5p (Fig. 3A and 3B). Cyclin
dependent kinase 6 (CDK®6), cyclin D3 (CCND3),
cyclin D1 (CCND1) and cyclin E1 (CCNEZ1) are cell
cycle-related proteins. CCND3 and CCND1 form a
complex with CDK®6, whose function is required for
G1/S transition and is linked to HIV-1 susceptibility
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[103]. CCNEL1 also makes a complex with CDK2 and
its complex needs for G1/S transition. Therefore,
HIV-1 infection would induce G1/S arrest of infected
cells. Since infection of quiescent lymphocytes with
HIV-1 does not produce progeny virus [104], the
quantum simulation showed that infectious host CD4
T cells would be defended against HIV-1 infection by
cell cycle inhibition. Further, infection of DNA
viruses, RNA viruses or retroviruses has been
implicated in G2/M arrest [105], therefore, host
defense machinery of G1/S arrest against HIV-1
would be specific response to HIV-1. In
macrophages, knockdown of CCND3 complexed
with CDKG6 inactivated SAM domain and HD
domain-containing protein 1 (SAMHD1) and led to
decreased dNTP levels, and inhibited the HIV-1
reverse transcription [106]. Further, HIV-1 Tat
protein was phosphorylated by CDK2/CCNE1 and
inhibition of its phosphorylation inhibited HIV-1
transcription via Tat in T lymphocytes [107] and non-
proliferating  macrophages [108]. In  fact,
pharmaceutical cyclin inhibitor r-roscovitin inhibited
HIV-1 transcription by blocking of Tat function via
inhibition of CDK2/CCNE1 activities in peripheral
blood mononuclear cells (PBMCs) [109].

Aillet et al. [110] has reported that HIV-1 infection to
T and monocyte cell lines decreased BCL2
expression level. As shown in Figure 3A, BCL2 gene
expression was inhibited by upregulation of miR-16-
5p with miR-34a-5p, miR-34c-5p plus miR-15a-5p
and upregulation of miR-192-5p with miR-34a-5p
and miR-34c-5p. Thus, cell cycle arrest and apoptosis
would be a defense machinery to HIV-1 infection in
PBMC and would be a cause of decrease of CD4+ T

lymphocyte number in early HIV-1 infection period.
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3.5.2 The quantum miRNA immunity and HIV-
mMiR-N367: On the other hand, as described
previously [41], HIV-miR-N367 inhibited RB
transcriptional repressor 1 (RB1) with miR-106a-5p,
miR-106b-5p, miR-26a-5p and miR-519a-3p (Figure
3B). HIV-miR-N367 has been found to inhibit
transcription in trans and translation of HIV-1
proteins [111, 112]; however, downregulation of RB1
would progress T cell G1/S cell cycle, which would
induce HIV-1 infection [103, 104]; therefore, HIV-1
nef/3’LTR function was both positive and negative
viral factor in T lymphocytes [113]. In the case of
macrophages, inhibition of RB1 in HIV-1 R5
infected human monocytes led to increasing
apoptosis in vitro, therefore, RB1 upregulation would
mediate apoptosis resistance feature in asymptomatic
viremic HIV+ donors [114]. Thus, it is suggested that
elevation of apoptosis by HIV-1-N367 may decrease
macrophage number during the early infection [115].
Although Dicer expression inhibited HIV-1
replication in T cells and macrophages [116, 117], as
shown Figure 3B, HIV-miR-N367 inhibited DICER1
expression with miR-103a-3p, miR-18a-5p, miR-107
and miR-9-5p. Therefore, downregulation of
DICER1 by HIV-miR-N367 would induce inhibition
of host miRNA biogenesis and high susceptibility of
HIV-1 infection as a positive factor. Taken together,
although the effects of host miRNAs could not make
the latency, apoptotic effects by host miRNAs and
HIV-miRNA would enhance susceptibility of HIV-1
infection and induce decreasing of T and
macrophages in the early stage of infection.
Subsequently, it causes immunodeficiency state of
host, and then at the latency, HIV-1 replication would
start being inhibited by HIV-miRNA in trans as a
negative factor. Since HIV-miR-N-367 plus other
host miRNAs were simulated to activate viral

Archives of Clinical and Biomedical Research

Vol. 4 No. 3 — June 2020. [ISSN 2572-9292].

DOI: 10.26502/acbr.50170092

production, such as reactivation after the latency,
HIV-1 nef/3°LTR region functions reciprocal without
encoded Nef protein as described previously [41].
This updated data is also suggested that HIV-miR-
N367 would be a curator of HIV-1 infection, which
will not be complete without it for an acquired
immunodeficiency with the latency. It was not
statistically related to T cell and macrophage
tumorigenesis (data not shown) while HIV-miR-
N367 has previously been predicted as a tumor
suppressor [41]. From the results of the quantum
network analysis in HBV and HCV infection, it is
strongly supported by MIRAI that anti-HIV-miR-
N367 may cure HIV-1 infection with host quantum
miRNA immunity as an HIV-1 miRNA vaccine in
plant [37, 118].

3.6 Fibrosis and cirrhosis after hepatitis virus
infection

Cirrhosis is an advanced stage of fibrosis. Cirrhosis is
frequently indolent, asymptomatic and unsuspected
until complication of liver disease present [14]. The
diagnosis of asymptomatic cirrhosis is usually liver
transaminases, radiologic tomography and liver
biopsy when incidental screening tests. However,
computerized tomography (CT) and magnetic
resonance imaging (MRI) are not sensitive to
diagnose cirrhosis. Therefore, more advanced
diagnostic tools are necessary. The inflammation
processes after HBV or HCV infections are deeply
implicated in expression of miRNAs [119, 120].
Although clinical non-symptom of fibrosis and
cirrhosis is similar among liver diseases [14],
circulating miRNA profiles are very different from
HBV-associated fibrosis to HCV-associated one.
miRNA biomarker panel would be a good tool for

early diagnosis of HCV-related fibrosis and cirrhosis.
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However, the etiologic schema of miRNA biomarker
panels in virus-associated fibrosis remains to be
proven. The liver fibrosis has mainly been examined
in vivo using rodent models; therefore, there is a deep
gap between putative targets for human fibrosis and
murine fibrosis models [15, 16]. In their analytic data
by single cell RNA sequencing, hepatic fibrosis was
involved in the hepatic mesenchymal cells, therefore,
therapeutic target for fibrosis has been determined in
the functional zonation. It would not be suitable for
precision medicine. For the establishment of miRNA
biomarker in fibrosis and cirrhosis, quantum miRNA
network analysis was performed to understand
human hepatocyte information in liver fibrosis on

demand.

3.6.1 Network analysis of HBV-related fibrosis
and cirrhosis: In human miRNA biomarker by liquid
biopsy, five miRNAs were selected as an MMP of
fibrosis after HBV and HCV infections from
biomarker panels of them [13, 33] (Table 1). miR-
2861, miR-371a-5p, and miR-345-3p were
upregulated, and miR-486-3p and miR-497-5p were
downregulated by fibrosis under HBV infection
(Table 1). miR-138-5p, miR-143-5p, miR-140-5p,
miR-325 and miR-328-5p were upregulated by
fibrosis plus HCV infection (Table 1).

High level expression of hepatoma-derived growth
factor (HDGF) is involved in liver fibrosis and
carcinogenesis [121]. HDGF bound to nucleolin on
the cell surface of liver cells and HDGF/nucleolin
signal induced PI3K/Akt pathways in hepatoma cells.
Upregulation of HDGF was induced by
downregulation of miR-497-5 with miR-16-5p in
fibrosis plus HBV infection (Figure 4A). Further,
WNT3A was increased by upregulation of miR-497-
5p with miR-216a-3p (Figure 4A). Reactivation of
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WNT/B-catenin pathway in the niche of liver cells is
linked to the pathogenic disorders in liver fibrosis
[122]. Blocking of WNT/B-catenin pathway by
siRNA inhibited hepatic stellate cell activation in
human hepatic tissues [123]. Simultaneously,
activation of WNT/B-catenin pathway is related with
liver cell carcinogenesis [124]. In 1996, Ihara et al.
firstly demonstrated that WNT/B-catenin pathway
overexpression was observed in hepatocellular
carcinoma [125]. Thus, these data strongly suggested
that fibrosis and carcinogenesis would be progressed
in the liver at the same time about HBV-related
fibrosis. The etiology of HBV-associated fibrosis was
strongly supported by MIRAI in the quantum miRNA
network analysis (Figure 1D). Since HBV-miR-2
would induce anti-inflammation and  anti-
carcinogenesis conditions (Figure 2B), HBV-miR-2
mimic may be able to use in treatment of HBV-

induced fibrosis and cirrhosis.

3.6.2 Network analysis of HCV-related fibrosis
and cirrhosis: In contrast to HBV-derived fibrosis,
HCV-related moderate fibrosis in the early stage was
in inactive or dormant state because of asymptomatic
and chronic HCV infection [126]. It is common that
some individuals have fibrosis even if HCV was
asymptomatically infected because fibrosis and
cirrhosis are asymptomatic in HCV infection.
Expression of RHOC or ROCK2 was inhibited by
upregulation of miR-138-5p, and expression of
enhancer of zeste homolog 2 (EZH2) was also
blocked by miR-138-5p upregulation with let-7a-5p,
miR-214-3p and miR-124-3p (Figure 4B). High level
expression of EZH2 was implicated in liver failure
[127] and inhibition of EZH2 reduced fibrosis [128].
Activation of the RHO-associated serine/threonine
kinase (ROCK) is required for multiple profibrotic
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responses [129]; therefore, RHOC and ROCK?2
suppression would be anti-fibrosis. Since ROCK?2 is
known as the promoter of tumorigenesis [130],
downregulation of ROCK2 by host miRNA would be
anti-cancer. Although DNMT1 was downregulated
by upregulation of miR-140-5p with miR-185-5p
(Figure 4B), promoter hypomethylated genes in the
genome-wide profiling were the gene cluster of the
immune-related and defense response pathways but
not cancer ones [131]. It is suggested that host
defense and recovery systems would be dominant in

fibrosis under HCV infection.

On the contrary, HCV NS5A protein bound to EIF4F
and upregulated translation initiation [132]. It is well
known that upregulation of translation initiation is
generally implicated in  tumorigenesis. The
upregulation of host translation initiation has been
involved in 4EBP1 (EIF4EBP1) inactivation.
Therefore, inactivation of 4EBP1 in HCV infection
may play a critical role in tumorigenesis, but the
advantage of translation initiation would contribute to
viral protein translation. Although EIF4EBP1 was
reduced by upregulation of host miR-138-5p (Figure
4B), it is not certain whether downregulation of
4EBP1 by HCV NS5A or host miR-138-5p could be

related to carcinogenesis or not.

It was analyzed by MIRAI that host miRNAs would
not contribute for carcinogenesis in HCV-related
fibrosis (Figure 1D). Therefore, the seed of HCV-
miRNA candidate 1 and 2 were predicted and were
analyzed in the quantum miRNA network by using
the seed paralogue of host/viral miRNAs as
previously described [37] (Table 2). HCV-miRNA
candidate 1 targeted G protein subunit gamma 11
(GNG11) to downregulate with miR-493-5p and
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miR-1298-3p, and HCV-miRNA candidate 2 targeted
TAR (HIV-1) RNA binding protein 2 (TARBP2) to
downregulate with miR-217 and miR-6807-3p
(Figure 1C and Figure 4B). Efficient HCV RNA
replication requires TARBP and Dicer to produce
mature miR-122-5p [133]. Therefore, suppression of
TARBP would suppress viral replication. HCV-
miRNA candidates would be implicated in
suppression of HCV proliferation and subsequently
in establishment of persistent and slow infection. On
the other hand, downregulation of TARBP2 increased
cancer stem cells (CSCs) and contributed for CSC
clonogenicity, proliferation in Ewing sarcoma family
tumors [134]. Furthermore, downregulation of
TARBP2  exhibited properties of miRNA-
independent regulation in cancer, such as sorafenib
resistance in HCC [135]. Therefore, suppression of
TARBP2 by HCV-miRNA candidate 2 would only
be tumorigenic in HCV-induced fibrosis and
cirrhosis. However, G protein upregulation was
mediated renal fibrosis in heart failure [136] and
aberrant activation of G protein-coupled receptor is
implicated in prostate cancer progression [137].
Therefore, downregulation of GNG11 would be anti-
inflammation and anti-cancer. Taken together, the
aberrant balance of etiology was shown by host
miRNAs in HCV-associated fibrosis and cirrhosis
among anti-inflammation, anti-oncogenesis and viral
producible. Only when the HCV-miRNA candidate 2
was presented, HCV-induced fibrosis and cirrhosis
was occasionally carcinogenesis. The indefinite
etiology of HCV-associated fibrosis and cirrhosis
was supported by MIRAI in the quantum miRNA
network analysis (Figure 1D, Table 3).

3.6.3 Miravirsen and HCV-miR-candidate: Anti-
miRNA agents, miravirsen targets miR-122-5p
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(Figure 1C) and the liver specific miR-122-5p is
essential for HCV propagation in general [72, 73].
Therefore, miravirsen inhibits HCV proliferation in
the bedside [138] and miR-122-5p biogenesis was
simultaneously blocked by miravirsen in vitro [139].
MIRAI data strongly suggests that eradication of
HCV by miravirsen or RG-101 [140] could be
effective for prevention of HCV infection and its
progression of carcinogenesis. However, in our
simulation, it is also suggested that anti-HCV-miR-
candidate 2 according to HCV subtypes would be
essential for enough treatment of HCV-related high

carcinogenic viral infection.

3.7 HBV-related HCC

Since it has been reported in the meta-analysis of
HCC miRNA biomarker panels from complexed
HCC clinical conditions of patients as described
above [48], simulations of HBV- and HCV-
associated HCC were performed in both single panel
data and multiple panel data included into the meta-
analysis.

3.7.1 Network analysis of HBV-associated HCC:
As the case one (stage I-11, 61%; I11-1V, 25%), single
panel of mMiRNA biomarker (liver specific miR-122-
5p downregulated data) was applied for the quantum
miRNA network analysis. Six miRNAs were selected
as an MMP of HBV-related HCC from biomarker
panel of it [141] (Fig. 5A and 5B). miR-21-5p and
miR-182-5p were upregulated, and miR-122-5p,
miR-26a-5p, miR-27a-5p and miR-223-5p were
downregulated in HBV-associated HCC (Table 1).
As the case two (stage I, 68.7%; II, 12.5%; IlI-IV,
18.8%), multiple panels of miRNA biomarker (no
miR-122-5p in the panel) were used for the analysis
[47, 48, 142, 143]. miR-125b-5p, let-7¢-5p and miR-
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99a-5p were downregulated, and let-7f-5p, miR-25-
5p and miR-375 were upregulated.

3.7.2 A common therapeutic target of HBV-
associated HCC: High mobility group AT-hook 2
(HMGAZ2) expression was increased by down
regulation of miR-26a-5p with let-7a-5p, let-7b-5p,
let-7c-5p, let-7d-5p, let-7i-5p, let-7e-5p and miR-
4458, and miR-26a-5p with let-7a-5p, let-7b-5p, let-
7c-5p, let-7d-5p and miR-196a-5p in the case 01
(Figure 5A). HMGA2 was also augmented by
downregulation of let-7c with let-7b in the case 02
(Figure 5B). It suggests that the relation between
HMGAZ2 and let-7 family has an important role for
oncogenesis in the hepatocytes. Previous our studies
have demonstrated with quantum miRNA network
that HMGAZ is implicated in carcinogenesis upon
lung cancer from smoking, and gastric cancer stage |-
IV at the etiological level [36, 37]. In HCC, HMGA2
overexpression induced invasion and metastasis
[144]. Further, HMGAZ2 expression was significantly
enhanced by tumorigenic HBx and HMGA?2
upregulation augmented proliferation of HCC cells,
metastasis and invasion [145]. Interestingly, although
WNT3A was upregulated in HBV-associated fibrosis
(Figure 4A), long noncoding RNA (IcnRNA),
LSINCT5 induced HMGA2 expression and the
oncogenic activities was related with interaction
among LSINCT5 in HCC cell lines [146]. HMGAZ2
and WNT/B-catenin pathways were contributed to the
oncogenic properties of endometrial carcinoma cell
lines [147]. Proliferation of HCC cell line was
blocked by propofol and propofol inhibited HMGA2
expression and WNT/B-catenin pathway [148]. Thus,
it is newly suggested by our simulation that HBV-
associated fibrosis would be related with HBV-

associated tumorigenic  progression upon the
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connection between both WNT3A and HMGA2

upregulation.

3.7.3 Case specific therapeutic targets on HBV-
associated HCC: In the case 1, zinc finger E-box
binding homeobox 2 (ZEB2) was upregulated by
suppression of miR-27a-5p with miR-383-5p (Figure
5A), and in the case 2, tumor protein 53 (TP53) was
increased by downregulation of miR-125b-5p with
miR-612 and miR-34a-5p, respectively (Figure 5B).
As the host defense mechanisms against viral
infection and tumorigenesis, viral proliferation would
be inhibited by expression of ZEB2 [149] and tumor
proliferation would be inhibited by upregulation of
tumor suppressor TP53, respectively. Although ZEB2
upregulation was observed in HCC tissues and cell
lines [150], ZEB2 has been deeply related with
oncogenesis of esophageal squamous cell carcinoma
(ESCC) stage 0-1 (AUC, 0.999) [37]. Further,
overexpression of TP53 upregulated HBx expression
levels [151]. HBx upregulation would lead to
HMGAZ2 increasing and further proliferation of HCC
cells as described above. In turn, tumor suppressor
TP53 would be a specific driving force of
oncogenesis in HBV-associated HCC. Therefore,
host defense mechanisms would grow to induce

cancerous and lethal state of the liver.

3.8 HCV-related HCC

As the case three (no cancer stage information),
single panel of miRNA biomarker (liver specific
miR-122-5p upregulated data) was used for the

quantum miRNA network analysis.
3.8.1 Network analysis of HCV-associated HCC:
Six miRNAs were selected as an MMP of HCV-

related HCC from biomarker panel of it [152] (Figure
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5C and 5D). miR-122-5p, miR-494-3p, miR-224-5p
and miR-331-3p were upregulated, and miR-23b-3p
and miR-185-5p were downregulated in HCV-
associated HCC (Table 1). As the case four (cancer
stage 1), multiple panels of miRNA biomarker (miR-
122-5p downregulated data) were integrated into the
analysis [153-155]. miR-122-5p, miR-142-3p and
miR-23b-3p were downregulated, and miR-486-5p
and miR-224-5p were upregulated (Table 1).

3.8.2 Common therapeutic targets of HCV-
associated HCC: Tumor suppressor, phosphatase
and tensin homolog (PTEN) was inhibited by
upregulation of miR-494-3p with miR-4465, miR-
20b-5p and miR-20a-5p, and with miR-17-5p, miR-
214-3p, miR-20a-5p, MiR-222-3p, miR-106b-5p and
miR-21-5p in the case 3 (Figure 5C). In the case of 4,
PTEN was suppressed by upregulation of miR-486-
5p with miR-17-5p, miR-214-3p and miR-20a-5p
(Figure 5D). PTEN was downregulated in HCV-
associated HCC cirrhotic tissues (63.1% of low level)
compared with normal liver ones (91.3% of high
level) [155]. As a cause of PTEN reduction in HCV-
associated HCC, it has been documented that HCV
core protein downregulated PTEN expression by
activating NF-kB [157] and PTEN negatively
modulated HCV replication [158]. Taken together, it
is suggested that both host miRNAs and viral factors
suppressed PTEN tumor suppressor, and would
accelerate oncogenic progression of hepatocytes.
HCV RNA information may make hepatocytes to be
free from host defense machinery by controlling of

miRNA quantum language.
Hepatocyte growth factor (HGF) receptor (MET) was
increased by downregulation of miR-23b-3p with

miR-206, miR-34c-5p, miR-34a-5p, miR-1-3p and
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miR-199-3p in the case 3, and downregulation of
miR-23b-3p with miR-206 in the case 4 (Figure 5D).
c-MET expression was augmented in 25-100% of
HCC cells compared with normal liver ones [159].
Knockdown of c¢-MET decreased HCC cell
proliferation in vitro and in vivo [160, 161].
Therefore, MET is a therapeutic target of HCC and
the MET inhibitor capmatinib showed antitumor
activity in phase I and Il trials (HBV positive: 87%,
HCV positive: 16%) [162, 163]. However, c-MET
has not been specifically related with HCV
replication. In the case 4, tumorigenic HMGAL and
HMGAZ2 were also upregulated by suppression of
miR-142-3p with let-7b-5p, let-7a-5p and miR-196a-
5p, and with let-7b-5p, let-7e-5p, let-7¢c-5p, miR-
4458, let-7i-5p, let-7d-5p and let-7a-5p, respectively
(Figure 5D).

3.9 Conventional HCCs

To further understand the difference between virus
specific HCC and conventional HCC, the etiology
analysis by conventional HCC miRNA biomarkers
was performed by the quantum miRNA network
analysis in the case five (stage I-Il, 51.8%; IlI-IV,
28.0%). Seven miRNAs were selected from the
miRNA biomarker panels in patient sera, and five of
seven mMIiRNAs were applied for computing
simulation (Table 1) [165-166]. miR-92a-3p, miR-
106b-5p, miR-107 and miR-21-5p were upregulated
and miR-224-5p was downregulated. Although the
five miRNAs were not contained in meta-analysis
data [167], the panels using these five miRNAs AUC
was over 0.950 and in the meta-analysis by using 34
studies the summarized AUC was 0.92. Therefore,
the five miRNAs would be a candidate as a potential
and diagnostically conventional biomarker for HCC.
Since miR-3126-5p (downregulation) and miR-519d-
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5p (upregulation) were less reference and target score
data in HCC, the network analysis has not been

performed (data not shown).

Tumor suppressors, PTEN, runt-related transcription
factor 3 (RUNX3) and retinoblastoma 1 (RB1) were
suppressed by upregulation of miR-106b-5p with
miR-20a-5p, miR-17-5p and miR-214-3p, with miR-
532-5p, miR-106a-5p and miR-20a-5p, and with
miR-106a-5p, respectively (data not shown). Further,
cell cycle inhibitor, cyclin dependent kinase inhibitor
1A (CDKN1A) was repressed by upregulation of
miR-106b-5p with miR-93-5p, miR-17-5p, miR-20a-
5p, miR-20b-5p, MiR-106a-5p, miR-526b-3p (data
not shown). Tumor suppressor control protein E2F1
was reduced by upregulation of miR-106b-5p with
miR-149-5p, miR-34a-5p, miR-20a-5p, miR-106a-
5p, miR-17-5p (data not shown). PTEN
downregulation was associated with HCC as
described above. RUNX3 expression was decreased
in HCC tissues and HCC cell lines and
overexpression of RUNX3 reduced tumorigenesis of

the cancer stem cell lines [168].

Although miR-106b/25 and miR-17/92 clusters were
implicated in downregulation of tumor suppressor
protein expression in the quantum miRNA network,
serum miR-106b-5p upregulation has been identified
as early diagnostic biomarker of HCC [165, 169].
miR-106b-5p overexpression promotes oncogenic
progression and metastasis of HCC in vitro and in
vivo [170, 171]. Finally, Gu et al. [172] showed that
miR-106b-5p expression level was high in HCC
tissues and was related with poor prognosis of
patients. They found the target RUNX3 tumor
suppressor. From these simulation data, the etiology

of virus specific HCC could be distinguished from
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that

of conventional HCC. It is suggested that the

HCC therapeutic target should be separated between

virus-related and conventional HCC in the precision
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analysis by MIRAI would be useful for investigation

of etiology in

panels.
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Figure 2: HBV and HCV infection by METS simulation.
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(A) Network with protein clusters by METS simulation was depicted in HIV-1 infection; (B) Coherence of the hub miRNAs in the host and HIV-1-miR-N367 was performed in
the METS analysis. miRNAs: red, upregulation. Proteins: blue, downregulation.
Figure 3: HIV-1 infection by METS simulation.

Archives of Clinical and Biomedical Research Vol. 4 No. 3 - June 2020. [ISSN 2572-9292]. 111



Arch Clin Biomed Res 2020; 4 (3): 089-129

DOI: 10.26502/acbr.50170092

SPTENS .m """"""""""
snzs b’, 1
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and 2 was performed in the METS analysis of fibrosis and cirrhosis, and the network was presented. miRNAs: blue, downregulation; red, upregulation. Proteins: red,
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Figure 4: HBV and HCV-associated fibrosis and cirrhosis by METS simulation.
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Figure 5: HBV- and HCV-associated HCCs.
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4. Conclusions

In general, HCC is the poorest prognostic tumor and
the low prognosis is due to lack of effective
diagnostic tools for early HCC. Recently, the
combination of a-fetoprotein (AFP) and ultrasounds
surveillance has been wused for screening and
detection of early HCC [173]. However,
ultrasonography is low sensitivity of detection of
HCC and often results in cirrhosis as misdiagnosis of
HCC. AFP is low sensitivity and high false-positive
rate even with tumor markers [174]. Therefore,
conventional HCC diagnostic tool would be required

for early diagnosis of HCC onset.

4.1 The quantum miRNA immunity

We have shown that miRNA biomarker panels would
be etiologically useful for early diagnosis of several
cancers. For liver viruses and HIV-1 infection, virus-
related fibrosis or cirrhosis and virus-related human
HCC, miRNA biomarker panels were also available.
Especially, Al machine learning was harnessed from
miRNA biomarker panels to serve the elucidation of
causes in the complexed virus-related diseases. It is
believed that host cells are hijacked by virus and it
has been documented that in a non-immunologic
manner, cellular miRNA aberration rationally
induces HCC and immunodeficiency by viral
infection [175]. However, our Al simulation data
suggested that the virus infection was clearly
controlled by a new host miRNA defense machinery
as programmed ‘the quantum miRNA immunity’, and
the quantum miRNA immunity was distinct from
innate and adaptive immunity [176, 177], such as
natural immunity, cellular immunity and humoral
immunity (Figure 6). It was confirmed as the third
immunity programmed by quantum miRNA language

and the neo-mechanism was controlled by miRNAs
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with virus-specific. Although extracellular miRNAs
have been reviewed to contribute for pathogenesis of
viral infection [178], host defense mechanisms
against viruses have been explained by RNA
interference (RNAI)-related machinery in one to one
of the two-dimensions [179]. It is a first report that
the MMP program of host and virus miRNAs have an
important role for early host defense machinery as
the quantum miRNA immunity to inhibit and block
virus infection and invasion in the integrated multi-
dimensions. In the quantum mMIiRNA immunity
(Figure 6), HBV infected host participated in cellular
function shutdown and cellular lockdown plus
apoptosis through miRNA hub upregulation of miR-
146-5p and miR-21-5p, on the other hand, HCV
infected host was inhibited by suppression of virus
production under less cell death and keep persistence
in salt down through miRNA hub upregulation of
miR-629-5p, MiR-134-5p and miR-424-3p. HIV-1
infected host induced cell cycle arrest and then cell
death of T plus macrophage through miRNA hub
upregulation of miR-16-5p and miR-195-5p. Thus,
the host defense mechanisms on the quantum miRNA
immunity showed quite unique characters among
three different viral infection. It was suggested that
these systems are not aberration of mMIRNA
expression and the miRNA expression is completely
programmed according to the quantum language in
host against exogenous quantum energy information

of virus.

4.2 Interaction between host miRNA and viral
miRNA

Given the quantum miRNA immunity in the host, the
information in HBV and HIV-1 was charged by viral
integration into host genome DNA. HBV-miR-2 from

the own genomic DNA inhibited inflammation,
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fibrosis and cirrhosis through suppression of IL-14
and SAT2. As mentioned in Figure 4A, host miR-
497-5p  downregulation induced inflammation
through upregulation of WNT3A and HDGF;
therefore, wound and healing were repeated for the
long term, which would induce fibrosis and cirrhosis.
As WNT3A and HDGF upregulation would be
miR-497-5p
downregulation causes carcinogenesis in HBV-
related fibrosis and cirrhosis. HIV-1 miRNA N367
from integrated provirus DNA blocked miRNA

carcinogenic, finally host

biogenesis through suppression of DICER1 and
makes latency, and then prepared to reactivate viral
replication (Figure 3). Since host miRNA decreased
T and macrophage via cell cyclin suppression and
apoptosis, such as CCND3 and CCNE1l by
upregulation of miR-16-5p, during the latency,
immunodeficiency was continued for the long term

but not carcinogenic. On the contrary, HCV infection
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itself was quite carcinogenic while suppression of
HNF4A by upregulation of host miR-629-5p is
strongly carcinogenic. Therefore, HCV infection
stress might be aimed to make tumorigenic and a part
of HCV RNA, HCV-miRNA candidate 2 is also
carcinogenic. It is suggested that HBV fibrosis
(cirrhosis) and HCV infection would be the minus
one stage of virus-associated HCC and
carcinogenesis could be predicted in the minus on
stage of cancer with miRNA biomarker panel [36].
Further, the risk of carcinogenesis would be remained
in infectious host after hepatitis virus was eradicated.
Thus, according to the host-virus interaction of
miRNAs from miRNA biomarker panels, HBV-miR-
2 mimic, anti-HCV-miRNA candidate 2, and anti-
HIV-miR-N367 may be available for therapeutic
agent development to prevent fibrosis and cirrhosis,
carcinogenesis, and immunodeficiency, respectively
(Figure 6).
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Figure 6: The quantum miRNA immunity.

4.3 The etiology analysis by miRNA biomarkers as upregulation of MET and reduction of PTEN in the
an early HCC diagnostic tool case of HCV-related HCC. HCV core protein
In HCC cancer stages, therapeutic targets were inhibits PTEN. As PTEN upregulation suppresses
different among HBV- and HCV-related HCCs, and HCV replication, PTEN downregulation is also
conventional HCC. HBV-related HCC was induced implicated in HCV production. About conventional
by downregulation of the hub miRNAs, miR-26a-5p, HCC, upregulation of miR-106b-5p resulted
miR-27a-5p, miR-125b-5p and let-7c-5p via suppression of tumor suppressors, PTEN and
augmentation of HMGA2, ZEB2 and TP53. Tumor RUNX3. Thus, three different HCC etiological
suppressor, TP53 upregulation is implicated in HBV phenotypes were preciously distinguished by miRNA
HBx protein overexpression and the HBx upregulates biomarker panels of HCCs. The further progressed
HMGAZ2. Therefore, HBV-related HCC is deeply classification and etiology simulation by the miRNA
involved into HBV genome integration into the host panel would be necessary to confirm the precious
cell genome. Downregulation of miR-23b-3p and medicine among cancer stages and individuals in
upregulation of miR-494-3p and miR-486-5p tuned HCC.
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4.4 Meet the quantum miRNA immunity with
Covid-19

We have already discussed about the deep relation of
the immune and cancer in the retrovirus-related
integrating site BIC/miR-155 in the human genome
[41, 180]. Although oncomir miR-155 is the seed
paralogue of KSHV-miR-K12-11 and spumavirus
miR-S4, the relation between host immune system
and carcinogenesis upon host and viral miRNAs has
not yet been cleared. Here, using Al computer virtual
reality, miRNA biomarker of HCC was showed as
the etiology of carcinogenesis in the liver by the
quantum miRNA analysis upon a proof of the
concept and it was found that there is the new
programmed host defense system ‘the quantum
miRNA immunity’ against virus infection, which
might be quite difficult to prove in the in vitro and in
vivo experiments, and clinical investigations. The
guantum miRNA immunity against viruses would be
presented in common use. Under Covid-19 pandemic
outbreak as the RNA storm [Fujii, 2017], biomarker
panels of Covid-19 infection and Covid-19-
associated pneumonia should be investigated soon.
The quantum miRNA algorithm with Al machine
learning could reveal both the etiology and the target
of Covid-19 infection and Covid-19-associated
pneumonia. The hidden quantum miRNA immunity
against Covid-19 would be cleared under
asymptomatic infection of Covid-19 [181]. Further
investigations would be required for clinical use of
miRNA biomarker and the clinical etiology analysis
with Al.
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