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Abstract

Background: Low-grade glioma (LGG) can 

behave aggressively, akin to glioblastoma, and 

prognostic classification is urgently needed. N6-

methyladenosine (m6A) modification is a key 

regulator of transcriptional expression during 

tumorigenesis and progression. This study aimed to 

identify transcriptome biomarkers with prognostic 

predictive value and define molecular 

subclassifications. 

 

Methods: We selected 21 m6A methylation-related 

genes for analysis of 529 LGG samples from 

TCGA LGG datasets and 1,152 brain tissues from 

the GTEx datasets. Through difference analysis, 

Protein−protein interactions (PPI) network, and 

spearman correlation analysis, gene expression and 

correlation were studied. Consensus cluster, gene 

ontology (GO) analysis, Kyoto Encyclopedia of 

Genes, and Genomes (KEGG) analysis were 

performed for classification and functional 

analysis. Lasso Cox regression algorithm and 

univariate and multivariate analyses were used for 

assessing risk factors. 

 

Results: The expression of m6A methylation-

related genes between normal brain and LGG 

samples was significantly different. Consensus 

cluster analysis clearly divided LGG samples into 
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two categories, with a p-value for the difference 

between prognosis close to 0. Through the lasso 

Cox regression algorithm and univariate and 

multivariate analyses, four genetic biomarkers 

(IGF2BP2, IGF2BP3, YTHDC1, and ALKBH3) 

were screened out, and the cumulative analysis of 

these effectively predicted patients’ prognosis. 

 

Conclusion: Consensus cluster analysis based on 

m6A methylation-related genes clearly divided 

LGG samples into two categories. Moreover, the 

cumulative analysis of four genetic biomarkers 

(IGF2BP2, IGF2BP3, YTHDC1, and ALKBH3) 

effectively predicted prognosis. 

 

Keywords: Low-grade glioma; N6-

methyladenosine; Transcriptome biomarkers; 

Prognosis; TCGA 

 

Introduction 

Glioma is one of the most common primary brain 

tumors in adults, accounting for more than 70% of 

malignant brain tumors [1]. Through conventional 

histopathology in conjunction with isocitrate 

dehydrogenase (IDH) mutation and 1p/19q 

codeletion, World Health Organization (WHO) 

grade 2 and 3 gliomas are usually classified as low-

grade gliomas [2-4]. However, low-grade glioma 

(LGG) occurs mainly in young patients between 

the ages of 20 and 40, eventually developing into a 

high-grade malignant tumor [5,6]. In recent years, 

some IDH-wt grade 3 astrocytomas have been 

identified as worse than IDH-mut glioblastomas 

(GBM) and are reportedly underdiagnosed [7]. 

Additionally, some LGGs have been shown to have 

a poorer prognosis and should therefore be further 

stratified for prognosis. However, controversies 

regarding this remain [8]. Therefore, despite the 

same integrated diagnosis via histological type and 

molecular classification, the heterogeneity in 

clinical behavior and prognosis has been 

distinguished and become one of the main 

challenges in clinical practice [9]. 

  

RNA methylation, especially N6-methyladenosine 

(m6A), is the most important epigenetic regulation 

after DNA methylation and a key regulator of 

transcriptional expression [10]. This new 

regulatory layer is called "epitranscriptomics"[11]. 

N6-methyladenosine not only occurs in mRNA but 

also occurs in various tRNAs, rRNAs, long-

stranded non-coding RNAs, about 25% of the 

genome-level transcripts [12]. Through enrichment 

around stop codons, within 5’-, 3’-untranslated 

regions, and long internal exons, N6-

methyladenosine can regulate RNA splicing [13], 

translocation, stability [14-16], protein translation 

[17-19], proliferation, differentiation, and survival. 

During tumor initiation and progression, N6-

methyladenosine can regulate corresponding gene 

expression by modifying oncogenes and tumor 

suppressor genes to achieve tumor regulation [20].  

 

Like DNA methylation, m6A modification does not 

alter the original base sequence and is catalyzed by 

methyltransferase, demethylase, and m6A-binding 

proteins. m6A methyltransferase is a complex of 

multiple genes, such as METTL3, METTL14, 

WTAP, METTL16, KIAA1429 (VIRMA), 

RBM15,[21] RBM15B,[22] and ZC3H13, which 

are called “writers”[23,24]. As RNA methylation is 

dynamic and reversible, m6A demethylases 

(“erasers”), such as FTO, ALKBH5, and ALKBH3, 

can revert the methylated groups in RNA and its 

coding genes [25]. In addition, m6A modification 

achieves a variety of biological functions through 

m6A-binding proteins, identified as variable 

“readers”. These proteins are diverse, including 

YTH domain family proteins (YTHDC1, 

YTHDC2, YTHDF1, YTHDF2, and YTHDF3), 

[26] insulin-like growth factor 2 (IGF2BPs 

containing IGF2BP1, IGF2BP2, and IGF2BP3), 
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[27] and the HNRNP family (HNRNP C and 

HNRNP A2/B1) [28]. Thus, in-depth study of the 

m6A RNA methylation-related genes above has 

greatly improved our understanding of the function 

and mechanisms of m6A modification in LGG 

occurrence and development [29-32].  

 

In this bioinformatics analysis, we 

comprehensively analyzed the gene expression 

RNA-seq data of the 21 m6A RNA methylation-

related genes above from 11 GTEx normal brain 

datasets (n = 1152) and 14 GDC TCGA Low Grade 

Glioma (LGG) datasets (n = 529). We then 

attempted to identify new strategies for stratifying 

the prognosis of LGG. 

 

Materials and Methods 

Data collection and preprocessing 

The gene expression RNA-seq data and 

corresponding clinical phenotype were downloaded 

from 14 GDC TCGA Lower Grade Glioma (LGG) 

datasets and 11 GTEx normal tissue datasets. All of 

the transcript RNA-seq datasets were obtained 

from UCSC Xena (https://xena.ucsc.edu/). UCSC 

TOIL recomputed and combined the datasets to 

correct for batch effects and to allow for sample 

merging. In the TCGA-LGG datasets, data from 

529 samples was combined into a genomic Matrix 

and then log2 (x + 1) transformed. In the GTEx 

datasets, all of the data were log2 (x + 0.001) 

transformed and combined. Then, GTEx datasets 

were retransformed by log2 (x + 1), and 1,152 

normal brain tissues were extracted from the GTEx 

datasets. Finally, TCGA LGG datasets and GTEx 

normal brain datasets were normalized and merged 

into one Matrix that included all of the gene 

expression RNA-seq data from the 1,681 samples. 

 

The clinical data Downloaded from GDC TCGA-

LGG and GTEX phenotype. Among 529 LGG 

patients, prior to resection, only 1 case accepted 

pharmaceutical treatment and 1 case accepted 

radiation, and the other 527 specimens were 

collected before neoadjuvant treatment. 

Because of GTEX phenotype including sample 

number, primary site, body site detail, and gender, 

we only statistically analyzed gender in normal 

brain tissues and LGG. 

 

Selection of m6A RNA Methylation Regulators 

Based on the literature search, 21 related genes 

were selected from the m6A RNA methylation 

regulators. The gene expression RNA-seq data, 

including normal brain and LGG samples, was 

extracted from the above matrix and reserved for 

subsequent bioinformatics analysis. 

 

Bioinformatic Analysis 

The differential analysis of 1,152 normal brain 

tissues and 529 LGG samples was run using the 

‘Limma’ package from open source software for 

bioinformatics-Bioconductor for R v3.6.2. In the 

results, a p-value < 0.001, p-value < 0.01, and p-

value < 0.05 are indicated by the symbols "***," 

"**," and "*," respectively. The significantly 

differentially expressed genes (DEGs) were 

visualized through heatmap and vioplot. The 

Protein-Protein Interaction (PPI) network of m6A 

RNA methylation related-genes was analyzed using 

the STRING database (https://string-db.org/), 

which collect and collate databases on protein-

protein interactions and can predict protein-protein 

relationships, with a required composite score 

greater than 0.7. The correlation of the m6A RNA 

methylation related-genes was analyzed using the 

‘corrplot’ package from R. Lower grade glioma 

samples were divided into different groups 

according to the expression of m6A RNA 

methylation-related genes through the "Consensus 

Cluster Plus" package. The different clusters were 

verified via principal component analysis (PCA) 

from all genes expressed in the LGG samples. 

https://xena.ucsc.edu/
javascript:;
javascript:;
https://string-db.org/
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Then, analysis was done using ‘survival’ package 

and differential analysis, and the results in the 

different clusters were visualized via heatmap. 

Through univariate Cox regression analyses and 

the LASSO (the least absolute shrinkage and 

selection operator) Cox regression algorithm, 4 

genes and their coefficients of the m6A RNA 

methylation regulators were determined to be 

related to prognosis. The risk score of every sample 

was calculated by the sum of every coefficient 

multiplied by corresponding gene expression. The 

survival and receiver operating characteristic 

(ROC) curves were compared by different risk 

scores. Finally, based on clinical phenotype from 

the TCGA LGG datasets, univariate and 

multivariate Cox regression analyses were used to 

assess the impact of the risk score. 

 

Statistical analysis 

The statistical analyses were performed using R 

v3.6.2 (https://www.r-project.org/) and IBM SPSS 

22.0 software. Wilcoxon rank sum test was used to 

compare the difference in gene expression between 

normal brain and LGG samples. LGG samples 

were clustered into two groups and chi-square test 

was used to analyze the relationship between the 

clusters and clinical data like age, gender, 

neoplasm grade, laterality, location, IDH status, 

and histology. The univariate Cox regression 

analysis was used to analyze the gene expression of 

21 related genes with survival time and status. Chi-

square test was also used to analyze the distribution 

of clinical phenotype to the risk score. The ROC 

curve was tested for the forecast efficiency of the 

risk score. The Kaplan–Meier method with a two-

sided log-rank test was used to compare the 

survival time with different groups. The univariate 

and multivariate Cox regression analyses were used 

to assess the impact of the risk score and clinical 

characteristics on prognosis. The risk score for 

prognosis was calculated according to the 

following formula: 

Risk score = ∑ 𝐶𝑜𝑒𝑓𝑖 ∗ 𝑥𝑖
𝑛
𝑖=1  

where 𝐶𝑜𝑒𝑓𝑖 is the coefficient, and 𝑥𝑖 is the 

relative expression value of z-score transformation 

of each selected gene. This formula is used to 

calculate the risk score for each patient in the 

TCGA LGG data set. 

 

Results 

Gene expression RNA-seq of m6A RNA 

Methylation Regulators in LGG 

To reveal the important biological functions of 

m6A RNA Methylation regulators in the formation 

and progression of LGG, the gene expression 

RNA-seq data of 21 m6A RNA methylation-related 

genes were statistically analyzed in 1,152 normal 

brain tissues from GTEx and 529 LGG cancer 

samples from TCGA. Compared with normal brain 

tissues, the difference in the expression of 20 m6A 

RNA methylation-related genes in LGG samples 

was highly significant (p < 0.001) where the 

difference in YTHDC2 gene expression was 

slightly smaller (P < 0.01; Figure 1A). Among 

these, the expression of 10 genes (RBM15B, 

METTL16, YTHDF3, IGF2BP3, RBM15, 

METTL14, ZC3H13, YTHDF1, YTHDF2, and 

ALKBH5) increased in the LGG samples, and the 

expression of others notably decreased (Figure 1B). 

To better understand the interactions between 21 

m6A RNA methylation regulators, PPI network 

was used to analyze the interactions between these 

regulators (Figure 1C-D) and spearman’s 

correlation to analyze the correlation of regulators 

(Figure 1E). The PPI network can identify proteins 

with similar functions, known as functional 

modules, and core genes based on pairwise 

relationships and nodes. Identifying these core 

genes is very important for understanding the 

structure of biological systems. Among the PPI 

network of 21 m6A RNA methylation-related 

https://www.r-project.org/
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genes, 61 pairwise relationships were identified. 

Among them, the hub genes WTAP, METTL3, 

ALKBH5, METTL14, and FTO had the most 

connections with other genes (Figure 1C and D), 

which contained 14, 13, 12, 12 and 8 nodes 

respectively. To clarify the biological relationship 

of the above genes, gene correlation was analyzed 

and is shown in Figure 1E. Like previous research, 

YTHDF3, YTHDF2, and YTHDF1 in the ‘reader’ 

and RBM15B and RBM15 in the “writer” groups 

played synergistic roles. The relationship between 

ALKBH5 in the “erasers” and YTHDF1 and 

YTHDF2 in the “readers”; METTL3 in the 

“writers” and YTHDC2 and HNRNPA2B1 in the 

readers; RBM15B and RBM15 in the “writers” and 

YTHDF1 and YTHDF2 in the “readers” were also 

very related. However, KIAA1429 gene expression 

was negatively related to YTHDF3, YTHDF2, and 

YTHDF1 in the ‘readers’ and RBM15B and 

RBM15 in the “writers.” We speculated that genes 

at different stages of m6A RNA methylation 

regulation also had a feedback effect, forming 

closed-loop biological regulation. 
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Figure 1: Landscape of m6A RNA methylation-related genes in lower-grade glioma. (A) Gene expression 

RNA-seq of 21 m6A RNA methylation-related genes in LGG and the difference by statistical analysis. Red is 

up-regulated and bule is down-regulated in the left diagram. N: normal brain tissue; T: Tumor, which is LGG in 

the right diagram. (B) Vioplot visualizes gene expression of m6A RNA methylation between normal brain tissue 

and LGG. Green is normal brain tissue and red is LGG. (C and D) Protein-protein interactions (PPI) network of 

21 m6A RNA methylation-related genes in LGG and node analysis of PPI by bar plot. Numbers in Figure C 

refer to nodes; The circle represents the protein and straight lines represents protein-protein interactions, called 

pairwise relationships in Figure D. (E) Spearman’s correlation analysis of the 21 m6A modification regulators in 

LGG. Red is positively correlated and green is negatively correlated. *, **, *** represents p < 0.05, p < 0.01, 

and p < 0.001, respectively. 
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LGG consensus clustering based on m6A RNA 

methylation regulation 

Studies have shown that tumor grade does not fully 

reflect biological performance, and a new 

classification was investigated using the 

‘Consensus ClusterPlus’ software package. Based 

on gene expression in the RNA-seq data of 21 m6A 

RNA methylation-related genes from 529 LGG 

samples, nine different clusters were tested with 

different CDF values. Based on consensus cluster 

analysis research, with the change of K value, the 

change of CDF value tends to be flat, and its K 

value can be used as the best cluster number of the 

data. We found that, when K>4, the relative change 

of the area under the CDF curve did not change 

significantly. Therefore, in the TCGA data set, k = 

3 seems to have a small CDF value (Figure 2C), 

but after dividing it into three groups, the 

correlation between the groups is high (Figure 2B). 

Therefore, two clusters were identified based on 

smaller CDF values and correlation between the 

groups (Figure 2A, 2C). The new classification of 

two subclasses was further analyzed and verified 

using PCA of all gene expression (Figure 2D). The 

results showed that cluster 1 can gathered together 

and cluster 2 can also be gathered together (Figure 

2D), and the results contributed to the next analysis 

of clinical characteristics. 

 

To further verify the impact of new classification 

on prognosis, the survival curves of the two 

subclasses were analyzed for 529 LGG patients 

(Figure 3). The overall survival of cluster 1 and 

cluster 2 were highly different, with a p-value of 0e 

+ 00, close to zero. Additionally, the 5-year 

survival rates of clusters 1 and 2 were 66.2% and 

15.8%, respectively. This classification predicted 

prognosis more accurately, superior to tumor grade 

and histology type which are currently in use. 

Then, the correlation of the two clusters and their 

clinical characteristics was explored. Figure 3A 

shows that the clustering was closely related with 

information such as tumor grade, IDH mutation, 

histology type, and location; the correlation p-value 

was less than 0.001. There was also a correlation 

with gender and age, but these were not related to 

tumor laterality. This new classification thoroughly 

distinguished the malignancy and prognosis of 

LGG. Then, to elaborate on the clustering results 

and biological functions of cluster 2, 601 

differentially expressed genes (DEGs) were 

identified by difference analysis between cluster 1 

and cluster 2. Gene Ontology (GO) enrichment and 

Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway analysis were used to enrich 

upregulated and downregulated genes in the cluster 

2 and cluster 1 subgroups. Differential genes were 

most enriched in extracellular matrix structural 

constituent, cell adhesion molecule binding, 

substrate-specific channel activity, and 

glycosaminoglycan binding, as shown by GO 

analysis (Figure 3E). KEGG analysis indicated that 

these genes play an important role in the PI3K-Akt 

signaling pathway, focal adhesion, human 

papillomavirus infection, ECM-receptor 

interaction, cell adhesion molecules (CAMs), and 

phagosome. (Figure 3C-D). In short, the 

classification integrated clinical information and 

accurately predicted patient prognosis in clinical 

practice. 

 

Furthermore, Cluster 2 data was further analyzed, 

including 62 LGG patients. Among them, there 

were 9 cases of G2 and 53 cases of G3 in tumor 

grade. In histology type, 38 Astrocytoma 

Anaplastic, 5 Astrocytoma NOS, 7 

Oligodendroglioma Anaplastic, 3 

Oligodendroglioma NOS and 8 Mixed gliomas 

were included. It could be shown that these tumors 
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were mainly anaplastic and NOS, with high degree 

of malignancy and GBM characteristics. 

 

We also used 21 m6A RNA methylation-related 

genes to carry out the same consensus cluster for 

the gene expression RNA-seq data from GDC 

TCGA GBM datasets mentioned before, and found 

that the correlation between their clusters was too 

high to cluster like those of LGG. We concluded 

that due to the complexity of GBM initiation and 

development, epigenetic changes such as DNA 

methylation, mutation, deletion, and amplification 

may also play an important role in addition to m6A 

RNA methylation. 

 

 

Figure 2: Consensus clustering of m6A RNA methylation-related genes. (A) Consensus matrix k = 2; (B) 

Consensus matrix k = 3; (C) The cumulative distribution function (CDF) of consensus clustering varied with k 

from two to nine in right diagram; relative change in area under CDF curve with k = 2–9 in left diagram; (D) 

principal component analysis (PCA) of all gene expression RNA-seq in the TCGA LGG datasets. LGG was 

divided into two categories: cluster1 (red), cluster2 (blue). 
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Figure 3: Different clinical characteristics and biological functions of the two clusters. (A) Heatmap shows 

gene expression RNA-seq and clinical characteristics of the two clusters (cluster 1/2), and statistical analysis of 

the correlation between the two clusters and clinical characteristics. (B) Kaplan–Meier overall survival (OS) 

curves of the two clusters from 529 TCGA LGG patients. Cluster 1 subgroup are marked with red, and cluster 2 

subgroup are marked with light blue. (C-D) KEGG enrichment analysis for genes with upregulated and 

downregulated expression between clusters 2 and 1. (E) GO enrichment analysis for genes with upregulation 

and downregulation of expression between cluster 2 and cluster 1. *, **, *** represents p < 0.05, p < 0.01 and p 

< 0.001, respectively. 
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Prognostic Value of the lasso regression risk 

score 

To clarify the effect of m6A RNA methylation-

related genes on prognosis in LGG, univariate Cox 

regression analysis and forest illustration of gene 

expression were established, and 12 genes related 

to prognosis were identified (Figure 4A). Eight 

genes with a high hazard ratio that may shorten the 

survival time of patients with LGG, such as 

RBM15 (HR = 2.55, 95% CI = 1.46–4.43), 

IGF2BP2 (HR = 1.86, 95% CI = 1.64–2.12), 

IGF2BP3 (HR = 2.18, 95% CI = 1.82–2.61), 

YTHDF2 (HR = 2.85, 95% CI =1.82–4.48), 

HNRNPA2B1 (HR = 1.99, 95% CI = 1.40–2.82), 

YTHDF1 (HR = 2.44, 95% CI = 1.36–4.39), 

WTAP (HR = 1.67, 95% CI = 1.03–2.72), and 

IGF2BP1 (HR = 168988.16, 95% CI = 119.95–

238073557.7), were screened. Four low risk ratio 

genes were FTO (HR = 0.39, 95% CI = 0.25–0.60), 

YTHDC1 (HR = 0.34, 95% CI = 0.1–0.62), 

ALKBH3 (HR = 0.43, 95% CI = 0.24–0.75), and 

METTL3 (HR = 0.58, 95% CI = 0.38–0.89). These 

genes played a positive role in the prognosis of 

patients with LGG. 

 

To better predict the prognosis of patients with 

LGG based on the 12 m6A RNA methylation-

related genes above, a model was established 

through lasso regression analysis. According to the 

lambda value and minimum partial likelihood 

deviance (Figure 4B and C), 4 genes (IGF2BP2, 

IGF2BP3, YTHDC1, and ALKBH3) in the LGG 

datasets were identified, and their coefficients were 

calculated through lasso regression algorithm. 

Then, through gene expression and the 

corresponding coefficient, a risk score for each 

sample was calculated, and all of the samples in the 

LGG datasets were divided into a high-risk or a 

low risk group. The low risk group had better 

survival than the high-risk group, as shown through 

Kaplan–Meier overall survival (OS) curves; the 

differences in OS were statistically significant (p < 

0.001; Figure 4D). Then, the risk score was applied 

to predict a 3-year survival rate via ROC curve. 

The area under the curve (AUC) was 0.77 (Figure 

4E). The results showed that the risk score could 

estimate the survival time of the patient and 

accurately predict the patient's prognosis. 

Furthermore, 10 genes with minimum partial 

likelihood deviation (IGF2BP2, IGF2BP3, FTO, 

HNRNPA2B1, YTHDC1, RBM15, IGF2BP1, 

YTHDF1, ALKBH3, and METTL3) were used to 

build another model through lasso regression 

analysis. The AUC of the 10-gene model was 

0.799, slightly better than the four-gene model 

above (Figure 4F). 
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Figure 4: Establishment of the lasso regression model and the effect of risk score on prognosis (A) The hazard 

ratios (HR) of m6A RNA methylation-related genes by univariate Cox regression. Hazard ratio (HR), 95% 

confidence interval (CI) is calculated by univariate Cox regression; The HR of 12 genes was statistically 

significant and determined for the next analysis; (B, C) Four genes and their corresponding coefficients were 

screened to construct a risk model by lasso regression analysis. (D) Kaplan–Meier overall survival (OS) curves 

of high and low risk groups, based on risk score calculated by four genes. (E) ROC curves of prognostic 

efficiency of risk score calculated by four genes. (F) Prognostic efficiency of risk score calculated by ten genes. 

 

Risk scores accurately predicted patient 

prognosis 

Since risk score was closely related with prognosis, 

and the relationship between risk score and clinical 

characteristics may aid in identifying clinical risk 

factors in clinical practice. Common clinical 

features from the TCGA LGG datasets such as age, 

gender, IDH mutation, tumor grade, laterality, 

location, and histology type were considered. Chi-

square test indicated that clinical characteristics 

such as IDH mutation, tumor grade, and histology 

type greatly influenced the risk score. Clinical 

features like age, gender, laterality, and location 

had no effect on the risk score. Moreover, 

compared with the low-risk group, the IGF2BP2 

and IGF2BP3 genes were up-regulated and the 

YTHDC1 and ALKBH3 genes were down-

regulated in the high-risk group. 

 

To further reveal the impact of clinical features and 

risk score on prognosis, the univariate and 

multivariate Cox regression analyses were also 

discussed. The hazard ratio (HR) provides 

statistical tests for the efficacy of the risk score and 

assesses the relative risk for prognosis. Age, tumor 

grade, and risk score were closely related to the 

patient's prognosis. This was especially true for the 

risk score, the hazard ratio (HR) was 

3521512343195467.0 in the univariate analysis and 

74987798824590.5 in the multivariate analysis. 

These results indicated that a slight increase in risk 

score may increase the risk of the patient. 
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Figure 5: Relationship between the risk score and clinical characteristics, and its impact on prognosis. (A) 

Heatmap showing gene expression RNA-seq of the four genes screened above and clinical characteristics of the 

high and low risk LGG patients. Contribution of clinical characteristics to the risk score was statistically 

analyzed. (B) Univariate Cox regression analyses of the relationship between clinical characteristics, the risk 

score, and overall survival of patients in the TCGA LGG datasets. (C) Relationship between clinical 

characteristics, the risk score, and overall survival of patients in the TCGA LGG datasets. *P < 0.05, **P < 0.01, 

and ***P < 0.001. 
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Gene expression of four genes screened in 

human tissues 

RNA-seq gene expression data of the four genes 

screened above was studied in human normal 

tissues. Genotype-Tissue Expression (GTEx) 

dataset includes genotype data from approximately 

714 donors and approximately 11,688 RNA-seq 

samples from 53 tissue sites and 2 cell lines. The 

GTEx dataset has sufficient capacity to detect 

quantitative trait loci in 48 tissues, including 31 

solid organ tissues, 10 brain regions, and whole 

blood. GTEx dataset analysis showed that 

expression of the IGF2BP2, IGF2BP3, YTHDC1, 

and ALKBH3 genes was present in 31 human solid 

organ tissues (Figure 6). In most tissues, expression 

of the IGF2BP3 gene was low while expression of 

ALKBH3 and YTHDC1 was high. Based on the 

hazard ratios (HR) in the univariate Cox regression, 

we speculated that IGF2BP3 may be the best 

biomarker.

 

 

 

Figure 6: Histogram visualizing gene expression of the four genes screened above in the 31 solid organ tissues 

in females and males. A: ALKBH3; B: IGF2BP2; C: IGF2BP3; and D: YTHDC1. 

 

Discussion 

The epigenetic landscape of low grade glioma 

(LGG), especially crucial genetic alterations, has 

rapidly changed the understanding of glioma 

biology and its prognosis [33]. In the revised 2016 

WHO Classification of Tumors of the Central 

Nervous System (CNS), an integrated approach 

was advocated for clinical practice, including 

conventional histopathology and genetic features 

[34]. However, due to the heterogeneity of tumor 

tissues, some lower-grade gliomas may behave as 

aggressively as glioblastoma and result in worse 

outcomes than IDH-mutation GBM [8,9]. 

Therefore, prognostic classification and 

development of new strategies for dividing this 

tumor type into groups with favorable and 

unfavorable outcomes is needed [35].  

 

With advances in technology, identification of 

RNA modifications such as transcriptome 

alterations have attracted the interest of biologists 

worldwide. m6A modification, a pleiotropic 
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regulator in multiple cancers, occurs specifically at 

the RRm6AACH motif in mRNA [36]. Like DNA 

methylation, methyltransferases (writers), 

demethylases (erasers), and m6A binding proteins 

(readers) are dynamic during the occurrence and 

development of cancer [37]. Among these, a 

balance is needed between methyltransferases and 

demethylases. The m6A methyltransferase complex 

consists of METTL3 and METTL14, their adapters 

WTAP, RBM15, RBM15B, HAKAI, VIRMA 

(KIAA1429), and ZC3H13, and the methylase 

METTL16 [38,39]. m6A demethylation is 

catalyzed by ALKBH5, ALKBH3, and FTO. The 

balance maintains a dynamic process. RNA 

alterations after m6A modification require the 

binding of m6A binding proteins to initiate 

different downstream effects and exert biological 

functions [40]. Based on their interaction with m6A 

in RNA, m6A binding proteins are classified as 

either direct readers, such as YTH domain 

containing proteins (YTHDC1-2), the YTH-family 

proteins (YTHDF1-3), and IGF2BP1-3, or indirect 

readers, like HNRNP A2/B1 and HNRNP C 

[41,42]. Therefore, this study analyzed 21 m6A 

methylation-related genes in 529 LGG samples 

from the TCGA LGG dataset and 1,152 brain tissue 

from the GTEx dataset to identify transcriptome 

markers with prognostic predictive value and 

define molecular subclassifications. 

 

This study found that compared with normal brain 

tissues, the expression of m6A methylation-related 

genes in LGG samples was significantly different, 

inferring that m6A methylation-related genes may 

be related to LGG tumorigenesis and progression. 

In addition, we analyzed the protein−protein 

interaction (PPI) networks and correlation analysis 

of 21 m6A methylation-related genes and found 

that similar to previous studies, some genes like 

YTHDF3, YTHDF2, YTHDF1 or , RBM15B, and 

RBM15 played a synergistic role and some genes 

RBM15, KIAA1429 and YTHDF1 respectively 

affected writers, erasers, and readers, with a 

potential feedback effect. Next, using 21 m6A 

methylation-related genes for consensus cluster 

analysis, the LGG samples were divided into two 

categories. The difference in prognosis between the 

two clusters was highly significant, with a p-value 

close to 0. The LGG samples were clearly divided 

into a favorable and an unfavorable group, and this 

clustering was closely related to clinical features 

like patient age, gender, IDH mutation, tumor 

grade, location, and histology type. The difference 

between clusters 2 and 1 was also analyzed, and 

601 differential genes were identified. Through GO 

enrichment and KEGG pathway analysis, 

differential genes were enriched in terms of 

extracellular matrix structural constituent, cell 

adhesion molecule binding, PI3K-Akt signaling 

pathway, focal adhesion, and ECM−receptor 

interaction. These results will facilitate our future 

research. 

 

We also used the univariate Cox regression 

analyses to screen out 12 genes related to prognosis 

and established risk models through the lasso cox 

regression algorithm. Finally, four genetic 

biomarkers with prognostic predictive value were 

selected and the risk score for each sample was 

calculated. Through survival analysis and ROC 

analysis, the risk score accurately predicted the 

patient's prognosis. The relationship between 

clinical characteristics and risk score was 

discussed, and the risk score was correlated with 

IDH mutation, tumor grade, and histology type. 

Through univariate and multivariate analysis, we 

found that risk score had the greatest effect on 

prognosis, indicating that the cumulative analysis 

of these four genes could effectively predict the 

prognosis of LGG patients. 

 



Arch Microbiol Immunology 2021; 5 (2): 214-231  10.26502/ami.93650059 

 

 

Archives of Microbiology & Immunology Vol. 5 No. 2 – June 2021  228 

In recent years, liquid biopsy, especially in blood, 

has received considerable attention in monitoring 

disease response and tracking tumor development. 

Finding specific molecular markers for early 

detection and prognosis is a hot spot in glioma 

research. Through lasso regression algorithm, risk 

score calculated by 4 genes (IGF2BP2, IGF2BP3, 

YTHDC1, and ALKBH3) in the LGG datasets 

could accurately predict the patient's prognosis. 

Then, the gene expression of these four genetic 

biomarkers, (IGF2BP2, IGF2BP3, YTHDC1, and 

ALKBH3) was analyzed in 31 human solid organs. 

In most tissues, the expression of the IGF2BP3 

gene was low while the expression of ALKBH3 

and YTHDC1 was high. Based on the hazard ratios 

(HR) in the univariate Cox regression, we 

speculated that IGF2BP3 may be the best 

biomarker in liquid biopsy. Of course, these four 

genetic biomarkers are merely the results of 

bioinformatics analysis and need further 

experimental and clinical validation. 

 

Although RNA methylation in cancer did not 

attract research until very recently, and no small-

molecule inhibitors of RNA methyltransferases are 

currently available, Small-molecule FTO 

inhibitors, including rhein, meclofenamic acid 2 

(MA2), and R-2-hydroxyglutarat (R-2HG), have 

been shown to induce growth inhibition and 

apoptosis in cancer cells, and R-2HG 

independently or conjunctly with other anticancer 

drugs can synergisticly block the progression of 

leukemia in mice [43]. However, we believe that, 

in the future, effective and specific small-molecule 

m6A modification inhibitors can be developed 

through small-molecule compound library 

screening and/or chemical synthesis, and their 

pharmacokinetic, safety and anticancer efficacy can 

be tested in animal models [12]. 

 

Ultimately, through the bioinformatic analysis, we 

found that m6A methylation-related genes play an 

important role in the occurrence and progression of 

low-grade glioma. Using consensus cluster 

analysis, LGG samples were accurately divided 

into a favorable and an unfavorable group. Next, 

through the lasso regression algorithm, four genetic 

biomarkers (GF2BP2, IGF2BP3, YTHDC1, and 

ALKBH3) were screened out, and the cumulative 

analysis effectively predicted the prognosis of 

patients. IGF2BP3 was under-expressed in most 

normal tissues and had a high hazard ratio, 

suggesting that it may be the best biomarker in 

liquid biopsy. However, further research is needed 

to confirm the clinical significance of genetic 

biomarkers in LGG. Finally, the understanding of 

m6A modification is still in its infancy and the 

application of m6A modification in LGG diagnosis 

and prognosis needs further research and clinical 

verification. 
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