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Abstract 

The CD4 receptor is the primary entry receptor for the human immunodeficiency virus. 

Besides this detrimental function, the CD4 receptor is crucial for positive selection and 

development of CD4
+
 T cells as well as for proper functioning of the immune system. 

During T cell activation, the CD4 receptor can fulfill an adhesion function, act as a 

signaling molecule and enhance the sensitivity of T cells to antigens. In addition, the 

CD4 receptor was suggested to be involved in differentiation towards the T helper 2 

subset and in chemotaxis of T cells. In other types of immune cells, diverging functions 

are attributed to the CD4 receptor. The immunological importance of the CD4 receptor 

makes it an interesting target for immunosuppression. This is demonstrated by the 

immunosuppressive potential of several anti-CD4 monoclonal antibodies. These 

antibodies may have several modes of action, such as (1) inhibition of CD4
+
 T cell 

activation by steric hindrance of the CD4/major histocompatibility complex class II 

interaction resulting in antigen-specific tolerance, (2) down-modulation of the CD4 

receptor, (3) switching from a pro-inflammatory T helper 1 to a more 

immunomodulatory T helper 2 type immune response, (4) induction of regulatory T 

cells and enhancement of their activity, or (5) delivery of a negative or attenuated signal 

into the CD4
+
 T cell. In addition, medicinal drugs that target CD4 are interesting 

alternatives for immunosuppressive treatment. The small molecule 

cyclotriazadisulfonamide (CADA) that down-modulates the CD4 receptor in a unique 

way by signal peptide-dependent inhibition of ER co-translational translocation is 

currently under investigation as a novel immunosuppressive drug. 
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List of abbreviations 

APC: antigen-presenting cell; CADA: 

cyclotriazadisulfonamide; cAMP: cyclic adenosine 

monophosphate; CD4: cluster of differentiation 4; 

DAG: diacylglycerol; Foxp3: forkhead box P3; HIV: 

human immunodeficiency virus; IL: interleukin; IP3: 

1,4,5-inositol triphosphate; ITAM: immunoreceptor 

tyrosine-based activation motif; LAT: linker of 

activated T cells; Lck: lymphocyte C-terminal Src 

kinase; MHC: major histocompatibility complex; 

NFAT: nuclear factor of activated T cells; PIP2: 

phosphatidylinositol biphosphate; PKC: protein kinase 

C; PLCγ1: phospholipase Cγ1; TCR: T cell receptor; 

Th: T helper; Treg: regulatory T; ZAP-70: zeta-

associated protein of 70 kDa 

 

1. Introduction 

The cluster of differentiation 4 (CD4) receptor is a 55 

kDa type I integral membrane protein consisting of four 

extracellular immunoglobulin-like domains (named D1 

to D4 and defined by three disulphide-linked loop 

structures), a spanning transmembrane region of 22 

hydrophobic amino acids and a short cytoplasmic tail of 

40 amino acids [1]. Functional binding sites are 

distributed across the extracellular part of CD4: gp120 

of human immunodeficiency virus (HIV) and the major 

histocompatibility complex (MHC) class II bind to the 

D1 domain, the T cell receptor (TCR) binds to D3, 

while the D4 domain is the adhesion site for interleukin 

(IL)-16 and is essential for CD4 dimerization [2-5]. 

 

In lymphocytic cells, the lymphocyte C-terminal Src 

kinase (Lck) is noncovalently linked to the CD4 

receptor by interacting with two closely spaced cysteine 

residues in the cytoplasmic tail of CD4 [6]. Next to its 

signaling function in T cell activation, Lck inhibits 

endocytosis of the CD4 receptor by preventing the entry 

of CD4 into clathrin-coated pits [7]. The CD4 receptor 

is constitutively internalized and recycled in 

nonlymphoid cells, but is excluded from the endocytic 

pathway in lymphocytic cells [8]. Lck also targets the 

CD4 receptor to specialized lipid microdomains 

preferentially localized on microvilli, which are 

important in antigen recognition [9, 10]. 

 

Several cell types express the CD4 receptor: CD4+ T 

cells (including T helper (Th) cells, regulatory T (Treg) 

cells and natural killer T cells), monocytes and 

macrophages, natural killer cells, dendritic cells, 

Langerhans cells, neutrophils, basophils, eosinophils, 

megakaryocytes, mast cells, pro-B cells and certain cells 

in the central nervous system [11-19]. T cells express 

the highest numbers of the CD4 receptor, followed by 

monocytes that express already 10- to 20-fold less CD4 

compared to T cells [20]. 

 

CD4-/- mice present with seriously decreased helper cell 

activity and marked deficiencies in MHC class II-

mediated immune responses [21]. This underlines the 

role of the CD4 receptor in thymic selection during 

which double positive cells down-regulate the 

nonselected co-receptor after interaction with MHC, and 

in particular for the positive selection and development 

of helper T cells [22]. 

 

The CD4 receptor is also known as the primary entry 

receptor for HIV. Binding of a glycoprotein gp120 

trimer on the surface of HIV to three CD4 receptors on 

the target cell induces conformational changes in gp120 

that enables interaction with co-receptors [23, 24]. Co-

receptor binding induces conformational changes in the 

transmembrane glycoprotein gp41, mediating fusion of 

the viral membrane with the target cell membrane [25]. 
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CD4 receptor density plays a crucial role in the 

efficiency of HIV-1 infectivity, as cells with low CD4 

expression require high levels of co-receptor for viral 

infection to occur [26]. Additionally, multimeric CD4 

binding is required for HIV infection, further implying 

that CD4 receptor density is critical for effective HIV 

infection [27]. 

Besides its role in the positive selection and 

development of CD4+ T cells as well as in HIV 

infection, the CD4 receptor is crucial in the immune 

system. The most important role of CD4 is during 

activation of T cells, in which it can fulfill several 

functions. Additionally, the CD4 receptor is suggested 

to play a role in T helper cell differentiation and in 

chemotaxis of T cells towards IL-16. Also in other types 

of immune cells, the CD4 receptor exerts diverging 

functions. This paper reviews the role of the CD4 

receptor in immune function and discusses interference 

with CD4 function by (non)depleting anti-CD4 

monoclonal antibodies and by the CD4 down-

modulating compound cyclotriazadisulfonamide 

(CADA). 

2. The CD4 receptor in T cell activation 

During activation of T cells, the CD4 receptor can fulfill 

several roles including an adhesion function, a signaling 

function as well as enhancement of T cell sensitivity to 

antigens. 

2.1. Adhesion function of the CD4 receptor 

The CD4 receptor was shown to exert an intercellular 

adhesion function during T cell activation and was 

therefore described as a co-receptor [28]. The CD4 

receptor stabilizes the interaction between the TCR on 

CD4+ T cells and the MHC class II molecule on 

antigen-presenting cells (APCs) (Figure 1) [29, 30]. The 

D1 domain of CD4 can interact with both the α2 and β2 

domains of MHC class II, suggesting that specifically 

organized CD4 and/or MHC class II oligomers play an 

important role in CD4+ T cell activation [31]. 

Figure 1: The CD4 receptor has an intercellular adhesion function during T cell activation. The D1 domain of 

CD4 can interact with the α2 or β2 domain of MHC class II, thereby stabilizing the interaction between the TCR on 

the T cell and the MHC class II molecule on the antigen-presenting cell. 
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2.2. The CD4 receptor as signaling molecule 

More important than its function in intercellular 

adhesion, is the signaling function of the CD4 receptor 

in T cell activation. Evidence for a signaling function of 

CD4 came from the observation that Lck positively 

regulates T cell activation [32]. Suboptimal TCR-

induced phosphorylation and reduced calcium signaling 

in Th2 cells compared to Th1 cells was attributed to 

lower levels of the CD4 receptor [33]. Additionally, 

HIV-1 infection was associated with the gradual loss of 

responsiveness of T cells to antigens by interference 

with the association of Lck with the CD4 receptor and 

by defective recruitment of Lck into the immunological 

synapse [34, 35]. 

During T cell activation, the TCR is the antigen-

recognition unit that interacts with the MHC class II 

molecule presenting the antigen. On T cells, the TCR 

associates with the CD3-ζ complex (Figure 2) [36]. The 

CD3 receptor is composed of four transmembrane 

polypeptide chains, a γε and a δε heterodimer. Both 

intracellular domains of the CD3 receptor and of the 

disulfide-linked ζ-dimer contain immunoreceptor 

tyrosine-based activation motifs (ITAMs), which are 

substrates for phosphorylation by protein tyrosine 

kinases [37]. The CD4 receptor is also associated with 

this TCR/CD3-ζ complex upon T cell activation, 

thereby bringing Lck in the proximity of the ITAMs 

[38]. Lck can then phosphorylate the ITAMs in the 

cytoplasmic tails of CD3 and of the ζ-dimer, thereby 

generating binding sites for proteins bearing Src 

homology 2 domains such as zeta-associated protein of 

70 kDa (ZAP-70) [39]. Recruitment of ZAP-70 results 

in enhanced activation of this kinase [40]. ZAP-70 will 

consequently phosphorylate components of distinct 

downstream signaling pathways such as linker of 

activated T cells (LAT) and phospholipase Cγ1 (PLCγ1) 

[41]. LAT in turn will recruit additional signaling 

molecules with Src homology 2 motifs, while PLCγ1 

hydrolyzes phosphatidylinositol biphosphate (PIP2), 

producing diacylglycerol (DAG) and 1,4,5-inositol 

triphosphate (IP3). DAG then activates protein kinase C 

(PKC), while IP3 induces calcium mobilization in the 

cytosol [42, 43]. Elevated intracellular calcium levels 

result in several effects by binding to the calcium-

binding protein calmodulin. One of these effects is 

nuclear import of the transcription factor nuclear factor 

of activated T cells (NFAT) and thereby induction of 

transcription of the IL-2 gene [44, 45]. The final result 

of all these induced signaling pathways is T cell 

activation, characterized by increased cytosolic calcium 

levels, transcription factor activation, enhanced 

production of cytokines and massive proliferation. 

Next to localizing Lck in the proximity of the 

TCR/CD3-ζ complex, the CD4 receptor also increases 

calcium mobilization from intracellular stores after 

engagement of CD4 by MHC class II and it counteracts 

the TCR-mediated increases in cyclic adenosine 

monophosphate (cAMP) [46]. In the absence of 

additional modifying signals, TCR signaling results in 

the accumulation of cAMP in the cytosol resulting in 

partial T cell activation without the induction of 

efficient proliferation and cytokine production [47]. 

CD4-mediated signals result in the reduction of cAMP 

levels by activating cAMP phosphodiesterases that 

degrade cAMP and by inhibiting adenylyl cyclase that 

produces cAMP from ATP. In addition, it was 

suggested that LAT can associate with the CD4 

receptor, thereby recruiting LAT in the proximity of 

ZAP-70 [48]. 
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On the other side, the CD4 receptor and Lck seem to be 

involved in apoptosis of T cells. CD4 crosslinking in the 

absence of simultaneous TCR engagement results in 

Lck-dependent T cell apoptosis [49]. Additionally, 

CD4-Lck signaling contributes in the elimination of 

activated T cells by Fas-mediated apoptosis [50, 51]. 

This is an important immunoregulatory mechanism to 

maintain homeostasis and prevent tissue damage. 

Figure 2: The TCR and CD4 downstream signaling pathway after antigen recognition. Upon antigen 

recognition, the CD4 receptor associates with the TCR/CD3-ζ complex and localizes Lck in the proximity of the 

ITAMs on the ζ-dimer and on the γε and δε heterodimers of the CD3 receptor. These ITAMs are phosphorylated by 

Lck, thereby creating binding sites for ZAP-70, resulting in enhanced activity of this kinase. ZAP-70 on its turn will 

phosphorylate LAT and PLCγ1. LAT will recruit additional signaling molecules, while PLCγ1 hydrolyzes PIP2, 

which produces DAG and IP3. DAG activates PKC, while IP3 induces calcium mobilization in the cytosol. These 

increased calcium levels then bind to calmodulin, resulting in nuclear import of the transcription factor NFAT and 

thereby enhanced transcription of the IL-2 gene. 
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2.3. The CD4 receptor enhances T cell sensitivity 

The adhesion and signaling function of the CD4 

receptor stress its importance in T cell activation. It was 

first suggested in 1987 that CD4 can enhance T cell 

responsiveness and that it may be crucial in the response 

to suboptimal levels of antigen [52]. Later on, it was 

demonstrated that preventing or reducing the association 

of CD4 with the ligand-engaged TCR could convert 

typical agonists into partial agonist stimuli and that the 

functional role of the CD4 receptor in T cell activation 

varies depending upon the potency of the ligand [53, 

54]. In vitro, in the presence of CD4 even one agonist 

peptide-MHC molecule can produce a transient increase 

in cytosolic calcium and as few as ten agonist peptide-

MHC molecules can result in sustained calcium flux and 

the formation of an immunological synapse [55]. This 

sensitivity is highly dependent on CD4, as blocking this 

receptor with antibodies renders T cells unable to detect 

less than about 30 agonistic ligands. 

The enhancement of T cell sensitivity by the CD4 

receptor can be explained by the 'pseudodimer' model 

(Figure 3). In this model, the binding of a first TCR 

(TCR1) to an agonist peptide-MHC molecule creates a 

hotspot for activation that can recruit another TCR 

(TCR2) via the CD4 receptor associated with it [56]. 

TCR2 then binds to an endogenous peptide-MHC 

molecule and the resulting stable pseudodimer complex 

of TCR1 binding to an agonist peptide and TCR2 

binding to an endogenous peptide, triggers an activation 

cascade starting with Lck carried by the recruited CD4 

receptor [57]. So in the presence of CD4, T cells can use 

endogenous peptide-MHC molecules to achieve 

maximal sensitivity. 

   

Figure 3: The pseudodimer model explains enhanced T cell sensitivity in the presence of the CD4 receptor. 

The binding of TCR1 to an agonist peptide-MHC molecule creates a hotspot for activation that can recruit TCR2 via 

the CD4 receptor associated with it. TCR2 is then able to bind to an endogenous peptide-MHC molecule and the 

resulting stable pseudodimer complex, as shown on the right side of the figure, activates intracellular T cell 

signaling starting with the Lck kinase of the recruited CD4 receptor. The CD4 receptor thus enables the use of 

endogenous peptide-MHC molecules to achieve maximal sensitivity of T cells. 
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3. The CD4 receptor in T helper cell 

differentiation and T cell chemotaxis 

Besides its role in T cell activation, the CD4 receptor is 

suggested to be involved in peripheral T cell 

differentiation towards the Th2 subset. When CD4+ T 

cells were activated in vitro in the presence of a 

nondepleting anti-CD4 monoclonal antibody, a Th2-

type response was induced with elevated levels of IL-4 

and IL-13 [58]. Additionally, development of the Th2 

subset was impaired in CD4-/- mice [59, 60]. CD4-

dependent signaling pathways would be involved in the 

regulation of a late checkpoint in the expansion and 

commitment phase of Th2 development, which is 

associated with resistance to activation-induced cell 

death [61]. Lck in turn would mediate Th2 

differentiation through effects on the Th1 transcription 

factor T-bet and on the Th2 transcription factor GATA3 

[62]. 

Furthermore, CD4 was identified as the primary 

receptor for the pro-inflammatory cytokine IL-16 that is 

implicated in the pathogenesis of asthma and several 

autoimmune diseases by recruitment of CD4+ T cells to 

sites of inflammation [63]. IL-16 inhibits HIV-1 and 

SIV infection, as well as T cell activation in the mixed 

lymphocyte reaction and after stimulation with anti-

CD3 antibodies [64, 65]. The CD4 receptor was shown 

to be involved in the chemotactic response of CD4+ T 

cells towards IL-16 by activation of Lck, followed by 

increases in cytosolic calcium levels and IP3, and 

translocation of PKC from the cytosol to the cell 

membrane [66-68]. However, this function of the CD4 

receptor is rather controversial as experiments in CD4-/-

mice demonstrated that CD4 is not required for the 

functional activity of IL-16 [69]. In human and murine 

mast cells, the tetraspanin CD9 was identified as an 

alternate receptor for IL-16 [70]. 

4. The CD4 receptor in other types of immune 

cells 

Although the major importance of CD4 lies in CD4
+
 T 

cells, the receptor is expressed in several other types of 

immune cells. In monocytes and eosinophils, CD4 

would function as a chemotactic factor receptor, while 

in pro-B cells it transduces a signal that induces 

differentiation towards pre-B cells and expression of 

recombination-activating gene-1 and -2 [71]. In active 

natural killer cells, the CD4 receptor plays a role in 

chemotaxis towards IL-16 and in cytokine production of 

interferon-γ and tumor necrosis factor-α [72]. In spleen-

resident dendritic cells, CD4 is involved in the priming 

of invariant natural killer T cells [73]. 

5. Interference with CD4 receptor function 

The important role of the CD4 receptor in the immune 

system is demonstrated by the immunosuppressive 

potential of anti-CD4 monoclonal antibodies. The small 

molecule CADA down-modulates the CD4 receptor and 

may therefore also have immunosuppressive effects. 

5.1. Anti-CD4 monoclonal antibodies 

Depleting anti-CD4 monoclonal antibodies 

The depleting anti-mouse CD4 monoclonal antibody 

GK1.5 and the depleting anti-rat CD4 monoclonal 

antibody OX38 were successfully used in rodent skin 

and small bowel allograft transplantation models [74, 

75]. Several other depleting anti-CD4 monoclonal 

antibodies showed benefit in transplantation models 

with various organs. CD4+ T cells are depleted by these 

antibodies by antibody-dependent cellular cytotoxicity 

or by complement-dependent cytotoxicity [76]. Massive 

and long-lasting reduction of the number of CD4+ T 

cells is associated with a number of side effects related 

to general immunosuppression. Therefore, experiments 

with local secretion of the depleting antibodies by 
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transgenic or transduced allografts were performed [77, 

78]. Still, these depleting anti-CD4 monoclonal 

antibodies, while being immunosuppressive, have been 

found to deplete Treg cells too and thereby inhibit the 

induction of antigen tolerance [79]. 

Nondepleting anti-CD4 monoclonal antibodies 

The immunosuppressive potential of depleting anti-CD4 

monoclonal antibodies is obvious, but it was also shown 

that nondepleting anti-CD4 monoclonal antibodies 

could induce a permanent state of antigen-specific 

unresponsiveness (tolerance) in mice [80]. Nondepleting 

anti-CD4 monoclonal antibodies were able to control 

collagen-induced arthritis and experimental autoimmune 

encephalomyelitis in mice [81, 82]. These antibodies 

often did not only prevent, but also control ongoing 

autoimmune diseases. The effect of nondepleting anti-

CD4 monoclonal antibodies was not restricted to rodent 

models, as it was shown in baboons that the humanized 

nondepleting anti-CD4 monoclonal antibody TRX1 is 

able to induce antigen-specific tolerance without long-

term immunosuppression [83]. 

These nondepleting anti-CD4 monoclonal antibodies 

may have several mechanisms of action. Using in vitro

T cell activation assays, no correlation was found 

between the degree of T cell activation inhibition and 

the specificity of the monoclonal antibodies for different 

regions on the CD4 receptor, even not the binding site 

of MHC class II [84]. CD4 down-modulation may be 

required for the tolerizing effect of nondepleting anti-

CD4 monoclonal antibodies and it was shown in vitro 

that resting CD4+ T cells absolutely require Fc receptor-

mediated crosslinking of a humanized nondepleting 

anti-CD4 antibody for CD4 to be down-modulated, 

while activated CD4+ T cells did not [85, 86]. 

In a collagen-induced arthritis model in mice, the 

nondepleting anti-CD4 antibody KT6 seemed to control 

pathogenic CD4+ T cells by switching their cytokine 

production from a Th1- to a Th2-like profile [81]. 

Additionally, production of the Th1 cytokine interferon-

γ was severely reduced by the nondepleting anti-CD4 

antibody RIB5/2 after allograft transplantation in rats 

[87]. An in vitro study with the nondepleting anti-mouse 

CD4 antibody YTS177.9 showed that IL-2 secretion 

was suppressed by this antibody through inhibition of 

the transcription factors NFAT and activator protein-1 

(AP-1) [88]. 

Another mechanism that was proposed to explain the 

tolerizing effect of nondepleting anti-CD4 monoclonal 

antibodies, was by induction of differentiation of naive 

T cells into adaptive Treg cells or by activation of the 

suppressive function of Treg cells [89, 90]. The anti-

mouse CD4 antibody YTS177.9 was shown to induce 

forkhead box P3 (Foxp3)+ Treg cells in a murine model 

of multiple sclerosis [82]. In contrast, YTS177.9 could 

inhibit proliferation of effector CD4+ T cells in an in 

vitro mixed lymphocyte reaction, without expansion or 

activation of immunosuppressive Foxp3+ Treg cells 

[91]. The same group demonstrated that the anti-human 

CD4 antibody RPA-T4 could inhibit CD4+ T cell 

proliferation in the mixed lymphocyte reaction in the 

absence of Foxp3+ Treg cells. In line with these data, 

YTS177.9 was able to induce tolerance in Foxp3 mutant 

scurfy mice and in genetically engineered mice that 

were depleted of Foxp3+ Treg cells [92]. On the other 

side, the humanized CD4-specific monoclonal antibody 

tregalizumab (BT-061) induces a unique 

phosphorylation of TCR complex-associated signaling 

molecules exclusively in Treg cells by recognition of a 

specific conformational epitope on the D2 domain of 

CD4 [93]. Thereby, it selectively activates the function 

of Treg cells without activating effector T cells. 
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Although being very promising, tregalizumab did not 

show significant clinical efficacy in a phase IIb 

randomized, placebo-controlled trial including patients 

with active rheumatoid arthritis [94]. 

Aberrant intracellular signaling was also observed in 

CD4+ T cells in the presence of nondepleting anti-CD4 

monoclonal antibodies. The anti-mouse CD4 antibody 

YTS177.9 decreases tyrosine phosphorylation of ZAP-

70 and LAT, resulting in severely reduced proliferation 

of the responding CD4+ T cells in vitro [95]. The 

signaling profile of these anti-CD4-treated cells 

resembles that of anergic cells. Additionally, in the 

above-mentioned Foxp3 mutant scurfy mice, tolerance 

induction by YTS177.9 was associated with down-

regulation of the co-stimulatory tumor necrosis factor-

receptor superfamily members OX40 and CD30 [92]. 

Signaling through OX40 and CD30 promotes the 

differentiation and survival of CD4+ T cells that initiate 

autoimmunity in scurfy mice [96]. OX40 is also 

implicated in other autoimmune conditions, such as 

rheumatoid arthritis and multiple sclerosis [97]. 

Nondepleting anti-CD4 monoclonal antibodies may 

therefore have several modes of action, such as (1) 

inhibition of CD4+ T cell activation by steric hindrance 

of the CD4/MHC class II interaction that might result in 

antigen-specific tolerance, (2) down-modulation of the 

CD4 receptor, (3) switching from a proinflammatory 

Th1 to a more immunomodulatory Th2 type immune 

response, (4) induction of Treg cells and enhancement 

of their activity, or (5) delivery of a negative or 

attenuated signal into the CD4+ T cell [76]. These 

antibodies could represent a promising therapeutic 

approach for human autoimmune diseases and to 

prevent graft rejection after organ transplantation. Due 

to immunogenicity and the generation of anti-mouse 

immunoglobulins, murine monoclonal antibodies cannot 

be used in humans, but several humanized nondepleting 

anti-CD4 monoclonal antibodies have been tested in 

clinical trials. Many attempts were done to use these 

antibodies as potential immunosuppressive agents in 

autoimmune diseases and after organ transplantation 

[98]. Most of these attempts failed, mainly because 

there was not enough knowledge about the mechanism 

of action of anti-CD4-induced tolerance, about the 

optimal dose and about the 

pharmacokinetic/pharmacodynamic profile of these 

antibodies. One example is the monkey/human chimeric 

anti-CD4 monoclonal antibody Clenoliximab, that 

reached phase II clinical trial for the treatment of 

rheumatoid arthritis, but was discontinued afterwards 

[99]. 

5.2 Cyclotriazadisulfonamide (CADA) 

The small molecule CADA is a synthetic macrocycle 

that was selected from an antiviral HIV screening 

program of the US National Cancer Institute (Figure 4). 

CADA was shown to have a broad antiviral activity 

against different HIV strains in several T cell lines and 

in peripheral blood mononuclear cells [100, 101]. This 

antiviral effect of CADA is due to specific down-

modulation of the CD4 receptor, which is the primary 

entry receptor for HIV. For 19 CADA analogs, it was 

shown that the CD4 down-modulating activity directly 

correlates with their anti-HIV potency [102]. 
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Figure 4: Chemical structure of cyclotriazadisulfonamide or CADA (9-benzyl-3-methylene-1,5-di-p-

toluenesulfonyl-1,5,9-triazacyclododecane). 

This down-modulating effect of CADA was similar for 

surface and intracellular CD4 expression [100]. 

Depending on the cell type, the kinetics of CD4 down-

modulation in the presence of CADA varied. The down-

modulating activity of CADA is also reversible: when 

the compound is removed, CD4 expression is rapidly 

restored to normal levels. CADA does not compromise 

cellular viability as was demonstrated by long-term 

(about 1 year) CADA treatment of T cells with recovery 

of CD4 expression when treatment was ceased [103]. 

The sensitivity of the CD4 receptor to CADA is species-

specific, as expression of murine CD4 was not affected 

by the compound, while primary T cells of macaques 

responded in a similar way as human T cells. 

CADA does not bind directly to the extracellular part of 

CD4 resulting in receptor internalization, nor does it act 

at transcriptional level as similar mRNA levels for CD4 

were obtained in the presence or absence of CADA 

[100]. This suggests that CADA acts at the 

(post)translational level. Indeed, CADA was shown to 

inhibit ER co-translational translocation of human CD4 

by selectively binding to its signal peptide [103]. In 

contrast, no interaction of CADA with the murine CD4 

signal peptide was observed. CADA was therefore 

identified as the first signal peptide-binding compound 

that selectively inhibits the translocation of a specific 

protein into the endoplasmic reticulum in a signal 

peptide-dependent way. The immunosuppressive 

potential of CADA is currently under investigation. Due 

to its unique mechanism of CD4 receptor down-

modulation, CADA may provide a fascinating example 

of CD4-involved immunosuppression. 

6. Conclusion 

The CD4 receptor plays a crucial role in the immune 

system, especially during T cell activation in which it 

can fulfill an adhesion or signaling function and 

enhance sensitivity of T cells to antigens. Despite 

promising in vitro and in vivo immunosuppressive 

effects of non-depleting anti-CD4 monoclonal 

antibodies, translation into clinical use as 

immunosuppressive agents to treat autoimmune diseases 

and/or to prevent rejection after organ transplantation 

has not been successful so far. In addition, the small 

molecule CADA down-modulates the CD4 receptor by 

a unique way of signal peptide-dependent inhibition of 

ER co-translational translocation of the protein. The 

immunosuppressive potential of this compound is 
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currently under investigation and will undoubtedly 

provide new insight in the field of CD4-involved 

immunosuppression. 
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