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Abstract
Vital gene expressions form the basis for the detection of malaria infection 
levels. Quantification of infected erythrocytes and classification of their 
life cycle stages are done at a macroscopic level by experts, for making 
informed decisions for diagnosis and treatment of malaria. Of late multiple 
computational approaches have been proposed to circumvent the problem 
of dimensionality leading to accurately predicted results. In this work, a 
dimensionality reduction technique based on Genetic Algorithm (GA) is 
applied to Plasmodium falciparum single cell transcriptomics to arrive at 
an optimized subset of features from the larger dataset. Features are chosen 
based on their class variants considering increased efficiency and accuracy, 
to separately transform the selected elements into a lower dimension. For 
the classification of the life cycle of malaria parasites based on single cell 
transcriptome data, a three-pronged approach employing the multiclass 
Support Vector Machine (SVM), Logistic Regression (LR), and Random 
Forest (RF) technique is used.  Further, we constructed protein interaction 
networks of the genes identified by the feature selection method and gene 
ontology analysis elucidated the role of the proteins in the progression of 
the parasite through its life cycle. Our approach presents a novel protocol to 
implement ML techniques on scRNA seq datasets and subsequently harness 
the extracted information for biomarker/drug target detection.

Keywords: Plasmodium falciparum; Malaria; Support Vector Machine 
(SVM).

Introduction
Malaria is a deadly disease caused by the Plasmodium parasite and 

is transmitted through the bite of a female Anopheles mosquito. This 
Plasmodium falciparum attacks the red blood cells (RBCs) and the degree of 
malaria can be estimated by the quantity of infected RBCs [1]. The complex 
life cycle of malaria parasites features diverse developmental strategies, each 
of which is uniquely adapted to thrive in the particular host environment. Six 
Plasmodium species cause human malaria, with the majority of the estimated 
0.4 million annual deaths caused by Plasmodium falciparum (P.falciparum). 
Blood stage development begins when a newly released, extracellular parasite 
(a merozoite) invades an erythrocyte, establishing the ring stage of infection, 
and progressing to the trophozoite stage. During this stage, the infected 
erythrocyte is extensively modified to enable parasite proliferation. After 
that the parasite divides to form a connected group of daughter cells, called 
schizont, which eventually lyses the host erythrocyte, releasing the newly 
formed merozoites to invade new erythrocytes. These steps are collectively 
known as the intraerythrocytic developmental cycle (IDC) [2]. Malaria 
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symptoms include high fever and headache and in some 
severe cases, even seizures and death are caused. Malaria 
mostly affects the economically weak communities of the 
world, where medical treatment is not readily available. For 
the quick and successful recovery of any patient, it is vital 
to diagnose and treat the malarial infection early.  If the 
malaria life cycle stages are somehow ascertained then the 
treatment of the disease becomes easier. Experienced medical 
professionals frequently examine a large number of blood 
films to detect malaria infection. Microscopists normally 
visualize the thick and thin blood smears to identify a disease 
or its cause. However, the accuracy depends upon smear 
quality and expertise in classifying and counting the parasite 
and non-parasite cells. It is fairly challenging to number the 
parasites and infected RBCs manually and needs an expert 
microscopist for quality diagnosis [3]. Recent advances in 
single cell RNA-sequencing (sc-RNA) techniques paved 
new ways to characterize gene expression changes during 
the development stages of the plasmodium life cycle [4,5]. 
Analysis of the gene expression regulation may allow us to 
identify new diagnostic markers as well as a potential targets 
for a new drug. Indeed, many studies have already been 
conducted in the last few years using sc-RNA experiments 
for Plasmodium falciparum. One of the central advantages 
of employing sc-RNA methods is the scope of exploring 
cell-to-cell heterogeneity in the population by uncovering 
hidden variability in gene expression among single cells [5–
7]. Recent studies have elucidated the role of heterogeneity 
in enabling a small fraction of the Plasmodium population 
inside the human host to remain ready to enter into the 
mosquito host by making the transitions to the gametogenesis 
stage [8]. Similarly, heterogeneity plays a crucial role in 
Plasmodium stress response inside the RBC [9]. However, 
the diagnostics of scRNA-Seq is challenging as its outcome 
suffers from a lack of fit due to high dimensional gene 
expression data. Advanced computational skills are needed 
to study and process the massive volume of proteomic and 
genomic data obtainable freely from several repositories [10-
11] and harness them to reveal new biological insights.

The dataset contains redundant characteristics that behave 
as noise during model training. As a result, classification 
performance is degraded and computing time is increased. 
Dimensionality Reduction (DR) techniques are required to 
eliminate redundancy and to retrieve irrelevant details that 
hinder performance. There are two methods for reducing 
the dimensionality of data: Feature Extraction and Feature 
Selection. Feature selection is further divided into the filter, 
wrapper, and embedded methods [12]. In the filter method, 
mathematical measures are used to select the optimal 
features. The wrapper is a feedback method that uses a 
machine learning algorithm to help choose the best features. 
The embedded approach is hybrid of the filter and wrapper 
methods. This paper proposes a wrapper-based feature 

selection technique using the Genetic Algorithm to select 
the optimal features and remove the redundant noise in the 
dataset. To evaluate the performance of these features, SVM, 
LR, and RF classification models are used.

The main objective of our study is to select top-ranked 
genes from the scRNA-seq profiles at different stages of the 
plasmodium falciparum life cycle inside infected RBC, using 
supervised learning coupled with feature selection. The first 
stage of the proposed model is to optimize the quality of 
data from the dataset by removing the redundant, noisy, and 
irrelevant genes (features). From the literature review (see 
Discussion) it can be concluded that the genetic algorithm 
(GA) showed a better performance than the other selection 
algorithms and thus can be prominently used for feature 
selection from high-dimensional datasets. The subset of 
selected features is further utilized in the second stage of 
the process of classification to produce high classification 
accuracy. We tested the subsets using three classifiers: 
SVM, LR, and RF to ensure the investigation is carried out 
rigorously. The combination of the first and second stages of 
the proposed model will achieve a better identification of the 
different Malaria Life Cycle stages. Additionally, the feature 
selection method can identify genes that significantly change 
expression across the life cycle stages. UMAP projection 
of the cells based on these features supports the distinction 
of stages using these features. We constructed the protein 
interaction network of these genes and performed topological 
analysis and gene ontology enrichment analysis to provide 
hierarchies according to the importance of the genes in the 
network. These genes can be used for diagnosis and drug 
targets. Our study presents a theoretical framework to select 
diagnosis markers and drug targets by implementing ML 
techniques on sc-RNA-seq data.

Results
The single cell RNA-seq dataset utilized here was derived 

from the Malarial Cell Atlas, an open-source database of 
single cell transcriptomic data spanning the complete life 
cycle of malarial parasites. It is freely accessible through a 
dynamic, user-friendly web interface (www.sanger.ac.uk/
science/tools/mca/mca/)[13]. For the current study, we 
considered the 10X scRNA-seq data of the intraerythrocytic 
stages of P. falciparum in the human host. The dataset has 5066 
rows and 6737 columns. Each row corresponds to scRNA-
seq read counts of a gene and each column corresponds the 
same for a single cell. There are 5066 features in this dataset, 
which correspond to all the genes in each cell of the parasite. 
Additionally, each cell is assigned one label among the four 
blood cycle stages (ring, early trophozoite, late trophozoite, 
and schizont). Thus, we set out to utilize classification ML 
algorithms (Material and methods) which would allow us to 
predict the blood cycle stage of the parasite cell based on the 
gene expression pattern.
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Data visualisation,  normalization, and dimensionality 
reduction of the scRNA-seq data:

We used Seurat [14], an R-based Bioconductor package, 
to visualise and then apply dimensionality reduction on the 
single cell RNA-seq data. We integrated the raw expression 
counts and metadata generated by Howick V.M et al. [13] to 
visualize the cells on a suitable manifold. Before performing 
any downstream analysis on the data, it is essential to 
minimize the variance of expression values. For this, we 
used the LogNormalize() method in the Seurat package. 
This operation divides the gene counts of each cell with the 
respective total counts value, using a single cell scale factor 
of 1e4. The resultant values are then subjected to log1p 
transformation, which helps in dealing with the huge number 
of dropouts that are characteristic of any scRNA-seq dataset 
[15]. For further analysis, it is useful to focus on genes that 
exhibit high variation over all cells in the dataset. Hence, we 
selected highly variable features (genes) from the data using 
the Find Variable Features() function. The data was then 
subjected to scaling before applying standard dimensional 
reduction techniques like PCA and UMAP. Next, PCA was 
performed on the data, and the clusters produced from this 
linear dimensional reduction were colored based on the 
blood cycle stages. Using the first 10 PCs, we also performed 
a nonlinear UMAP-based dimensional reduction on the 
cells for a better projection and colored the clusters based 
on the blood cycle stage. RunUMAP() function was used 
with dims=1:10. Figure 1 represents the UMAP projection 
and we notice four clusters for ring, early trophozoite, late 
trophozoite and schizont respectively.

Classification without feature selection:
Next, we implement SVM, LR and RF algorithms to 

classify the cells into the four different stages by including all 
the genes. In order to calculate the prediction accuracy, we 
randomly selected 80% of the cells as training set and 20% 
of the cells are chosen for calculating the   desired accuracy. 
Figure 2 shows the accuracy of SVM, LR, and RF. This is 
the baseline for our experiment. Without feature selection, 
SVM and RF performed best with classification accuracy 
measured this 89%. Logistic regression performed with the 
least accuracy of all (86%).

As listed in Table 1, the following best F1 scores were 
determined: ring 95%, late troph 91%, early troph 83%, and 
schizont 74%.

Feature selection:
From the dataset, we observed that there are many genes 

that do not change expression levels across the life cycle 
stages. Thus, feature selection would allow us to extract genes 
whose expression could have a more significant effect on the 
life cycle changes, while also reducing the dimensionality 
of the dataset. In order to select useful features, a genetic 

algorithm (GA) based pipeline was implemented (details 
in the Materials and Methods section). The GA pipeline 
removed redundant features and yielded the most optimal 
features. Table 2 depicts the number of features before and 
after selection. Out of 5066 initial features, a subset of size 
378 was selected by the GA, reducing the dataset by 92.5%.

Classification with feature selection:
In this section, we present the results of classification 

using the features selected by the GA pipeline, for each of the 
three ML models used. Figure 3 shows the accuracy of SVM, 
LR, and RF, after feature selection. RF performed best with 
classification accuracy measured this 92%. SVM and LR 
achieved 91% and 88% accuracy respectively. The coming 
sections show the test results of the SVM, LR, and RF models 
respectively.

Figure 1: Three dimensional visualization of  the cells from the 
scRNA dataset shows a distinct cluster of life cycle stages. UMAP 
of cells based on scRNA-seq counts of all variable features. The cell 
clusters are colored based on the blood cycle stages of Plasmodium 
Falciparum.

 
Figure 2:  Classification accuracy of different models without 
feature selection. The classification accuracy is shown for different 
machine learning protocols namely SVM,   LR, and RF.
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Using multiclass Support Vector Machine:
Table 3 presents the precision, recall, and f1 scores 

of the SVM model for the four different classes. For late 
troph and ring, we have achieved an f1 score of 0.93 and 
0.96, respectively. We got a f1 score for early troph at 0.85. 
Schizont was the worst, at 0.79.

Table 4 presents the precision, recall, and f1 scores of the 
LR model for the four different classes. For late troph and ring, 
we have achieved an f1 score of 0.90 and 0.95, respectively. 
We got a f1 score for early troph at 0.83. Schizont was the 
worst, at 0.68.

Using Random Forest:
Table 5 presents the precision, recall, and f1 scores of the 

RF model for the four different classes. For late troph and ring, 
we have achieved an f1 score of 0.94 and 0.96, respectively. 
We got a f1 score for early troph at 0.87. Schizont was the 
worst at, 0.79.

Confusion matrix and mutual information between 
predicted and true labels for three models:

Figure 4 shows the confusion matrix of the three models. 
The confusion matrix for the SVM model shows that 44 
samples were predicted as late troph which should have been 
labeled as early troph. Similarly, 31 samples were predicted 
as late troph which were otherwise labeled as schizont. For 
late troph class, 15 samples were misclassified as early troph. 
For ring class, 6 samples were misclassified as early troph.

The confusion matrix for the LR model shows that 40 
samples were predicted as late troph which should have been 
labeled as early troph. Similarly, 40 samples were predicted 
as late troph which were otherwise labeled as schizont. For 
late troph class, 29 samples were misclassified as early troph. 
For ring class, 9 samples were misclassified as early troph.

The confusion matrix for the RF model shows that 35 
samples were predicted as late troph which should have been 
labeled as early troph.  Similarly, 31 samples were predicted 
as late troph which were otherwise labeled as schizont. For 
late troph class,

10 samples were misclassified as early troph. For ring 
class, 8 samples were misclassified as early troph. These were 
some of the common misclassifications in all three models.

As listed in Table 1, the following best F1 scores were determined: 
ring 95%, late troph 91%, early troph 83%, and schizont 74%.

F1 scores(%)
SVM LR RF

Malaria Life Cycle Stage

early troph 0.83 0.78 0.82

late troph 0.91 0.88 0.91

ring 0.95 0.94 0.95

schizont 0.74 0.68 0.72

Table 1: F1 scores of different models of the different classes 
without Feature Selection.

 Number of Features
Full Dataset 5066

Features Selected after GA pipeline 378

Table 2: Numbers of features selected.

 
Figure 3: Classification accuracy of different models with feature 
selection. The classification accuracy is shown for different machine 
learning protocols namely SVM, LR, and RF after the selection of 
the 378 features following the genetic algorithm.

Metric (%)
precision recall F1-score

Malaria life cycle stage
early troph 0.91 0.79 0.85

late troph 0.89 0.97 0.93

ring 0.94 0.97 0.96

schizont 0.91 0.7 0.79

Table 3: Test results of SVM model with Feature selection.

Metric (%)
precision recall F1-score

Malaria Life Cycle Stage
early troph 0.86 0.79 0.83

late troph 0.88 0.92 0.9

ring 0.94 0.96 0.95

schizont 0.74 0.63 0.68

Table 4: Test results of LR model with Feature Selection.

Metric (%)
precision recall F1-score

Malaria life cycle stage
early troph 0.93 0.82 0.87

late troph 0.9 0.97 0.94

ring 0.95 0.97 0.96

schizont 0.91 0.7 0.79

Table 5: Test results of RF model with feature selection.
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A comparison of classification without vs with feature 
selection:

Figure 5 shows the accuracy of classification without 
feature selection vs. classification with feature selection. We 
have reduced our feature set from 5066 to 378, using which 
we achieved an improved accuracy of 91% in the SVM 
model, 88% in the LR model, and 92% in the RF model. 
For the SVM model, without feature selection, we got a f1 
score of 0.83, 0.91, 0.95, and 0.74, whereas, with feature 
selection, we got a f1 score of 0.85, 0.93, 0.96, and 0.79 for 
early troph, late troph, ring, and schizont, respectively.  For 
the LR model,  without feature selection, we got a f1 score 
of 0.78, 0.88, 0.94, and 0.68, whereas, with feature selection, 
we got a f1 score of 0.83, 0.90, 0.95, and 0.68 for early troph, 
late troph, ring, and schizont, respectively. For the RF model, 
without feature selection, we got a f1 score of 0.82, 0.91, 
0.95, and 0.72, whereas, with feature selection, we got a f1 
score of 0.87, 0.94, 0.96, and 0.79 for early troph, late troph, 
ring, and schizont, respectively. Using the selected features, 
we achieved similar or better f1 scores across all four classes, 
in all three models. This proves the robustness of the features 
selected from the GA pipeline. For the early troph class, we 
achieved the best f1 score of 0.87 from the RF model. For 
the late troph class, we achieved the best f1 score of 0.94 

from the RF model. For the ring class, we have achieved the 
best f1 score of 0.96 from both the SVM and RF models. For 
schizont class, we have achieved the best f1 score of 0.79 
from the SVM and RF model. The schizont class has seen 
lesser f1 scores than the others, this could be because of the 
lesser number of schizont cells in the dataset.

We also calculated the mutual information (MI) between 
the predicted labels and the true labels of the three models 
using the joint probabilities from the confusion matrix (see 
Materials and Methods section). For instance, C(1,1) of 
the confusion matrix represents the joint probability P(X, 
Y) where X= true label of early troph and Y corresponds 
to correctly predicted early troph. Similarly, C(1,2) would 
reflect the joint probability P(X, Y) where X= true label of 
early troph while Y= incorrectly predicted to be late troph. 
Figure 6 shows the comparison of MI with and without 
feature selection. One of the advantages of displaying 
accuracy using mutual information is that the upper limit of 
the mutual information is exactly known. So, the accuracy of 
the model can be compared with the ideal case. In our case, 
since the number of labels is four, the maximum possible 
mutual information for an error-free case is 2 bits, however, 
maximum information acquired by the models is 1.28 bits 
here.

A                                                                      (B) 
 

   
 
   C 

              
Figure 4: Confusion matrix of different models shows the prediction accuracy for different stages. The heatmaps display the confusion matrix 
in predicting the four different stages as indicated after feature selection for three different models (A) SVM (B) LR (C)  RF models.
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Classification with randomly selecting 378 features:
In order to test whether the GA-based feature selection 

algorithm is able to select the features appropriately, we 
randomly chose 378 features from our dataset and evaluated 

the prediction accuracy using the SVM, LR, and RF models. 
We achieved an accuracy of 0.81, 0.79, and 0.80 for the 
models. Table 6 shows the f1 scores of the different classes 
for the three models.

 
Figure 5: Classification accuracy with feature selection vs without feature selection demonstrate the legitimacy of the selected features. The 
bar graphs display a comparison between the values of accuracy for the three models and for classification with feature selection and without 
feature selection as indicated.

 
Figure 6: Mutual information with and without feature selection. The bar graphs display a comparison between the values of mutual information 
in bits between predicted and actual labels for the three models and for classification with feature selection and without feature selection as 
indicated.
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The accuracy and the f1 scores of this experiment were 
lower compared to the classification results with feature 
selection using the GA pipeline. These results demonstrate 
the legitimacy of the feature selection method.

Construction and analysis of protein-protein 
interaction network:

Understanding protein-protein interactions (PPIs) is 
critical for cell physiology in normal and pathological states 
because they are required for practically every process in a 
cell [16]. Protein-protein interaction networks (PPIN) are 
graphs of the interactions between proteins in a cell. Protein-
protein interaction happens in specified binding areas and 
serves a specific function. The feature selection method 
provided us with 378 proteins in Plasmodium falciparum. 
We used the Search Tool for the Retrieval of Interacting 
Genes/Proteins database (STRING 11.0b) [17] to construct 
the PPI network associated with these proteins. STRING can 
then construct a PPI network containing all of these proteins 
and their connections. Their interactions were generated with 
high confidence from high-throughput lab experiments and 
prior information in curated databases (sources: experiments, 
databases; Scores ≥ 0.90). The network construction shows a 
set of highly connected modules (Figure 7).

The topological analysis of the PPI network:
Various topological measures are generally used to 

evaluate both the global and node characteristics in the PPI 
networks, including degree (k), between centrality (BC), 
eccentricity, closeness centrality (CC), eigenvector centrality 
(EC), and clustering coefficient [18]. Here, the highest degree 
nodes are identified using degree distribution. Additionally, 
we have used Markov Clustering Algorithm (MCL) to find 
clusters in the network (Figure 7).

This PPIN is composed of 378 nodes with the number 
of edges: 600, average node degree: 3.17, average local 
clustering coefficient: 0.309, expected number of edges: 621, 
PPI enrichment p-value: 0.807. We can see that proteins in the 
red cluster (designated as 1st cluster) have the highest degree 
and high betweenness centrality. So, we can consider the red 
cluster as disease module.  We analysed other topological 
properties like degree, BC, eccentricity, CC, EC, clustering 
coefficient, etc of this Red cluster using Gephi [19].

The proteins in Table 7 from red cluster have high degree 
and betweenness centrality (BC). In this cluster, the number 
of nodes: 36, number of edges: 252, average node degree: 14, 
average local clustering coefficient: 0.83, expected number 
of edges: 127, PPI enrichment p-value < 10^-6. We can see 
that this cluster has lesser nodes with high interaction and 
high clustering coefficient. So, this is a small world network. 
We can see from the above table that C6KSW6 and C6KSY0 
have the highest degree with high BC. We considered these 
two proteins as the hubs or bottlenecks as these nodes have 
high degree (k) and BC. We have chosen 3 more proteins 
that have high degree and BC to consider as the backbone 
of the PPIN. These proteins are Q8I2V4, Q8IAM1, and 
Q8I4R5. These 5 proteins are highly connected in PPIN and 
have control over the network. In order to delineate the role 
of the PPN clusters, gene ontology (GO) enrichment analysis 
were performed separately for different proteins belonging to 
the 6 clusters as designated in the Figure 7 and GO terms 
having enrichment p-values less than 0.05 are selected. The 
1st cluster is found to be enriched for the Rhoptry protein 
family which is known to play crucial role in the virulence 
of the parasite inside the host [20]. The 2nd cluster proteins 
predominately belong to the apical complex family which 
mediate host penetration and invasion [21].

The 4th cluster is enriched with ribosomal protein 
plausibly to regulate translation during the IE life cycle stages 
[22-23]. The fifth cluster is composed of proteins belonging 
to symbiont containing vacuole membrane which is likely 
central to nutrient acquisition, host cell remodeling, waste 
disposal, environmental sensing, and protection from innate 
defense etc [24]. One of the components of 6th cluster is 
found to be the proteins in the nucleolus which are important 
for regulation of ribosomal biogenesis [25].

Out of the 5 proteins with high degree and betweeness 

F1 scores
SVM LR RF

Malaria Life Cycle Stage
early troph 0.63 0.61 0.6

late troph 0.86 0.85 0.86

ring 0.87 0.84 0.86

schizont 0.72 0.69 0.71

Table 6: F1 scores of different models of the different classes with 
randomly selecting 378 features. 

Proteins name Degree betweeness centrality Description
C6KSW6 29 116.68 Leucine-rich repeat protein

C6KSY0 29 83.89 AP2 domain transcription factor, putative

Q8I2V4 25 31.35
Regulator of chromosome condensation-PP1-

interacting protein
Q8IAM1 25 26.76 AP2 domain transcription factor, putative

Q8I4R5 23 41.62 Rhoptry neck protein 3

Table 7: Topological analysis of the PPI network of the selected proteins.
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in the PPI network, Q8I4R5 (from the red cluster) showed 
p-value less than 0.05 in the GO enrichment analysis. We see 
that Q8I4R5 is a rhoptry protein (UniProt ID: RON3) [26]. 
As RON3 affects the functional translocation of exported 
proteins and glucose uptake, it could be a potential target for 
drug design.

The function of a membrane protein complex called the 
Plasmodium translocon of exported proteins (PTEX), which 
exports specific parasite proteins across the parasitophorous 
vacuolar membrane (PVM) that encases the parasite in the 
host RBC cytoplasm, is essential for Plasmodium spp. survival 
within the host red blood cell (RBC). The core of PTEX has 
three proteins: EXP2, PTEX150, and the HSP101 ATPase. 
Only EXP2 is a membrane protein out of these three proteins. 
Studying the PTEX-dependent transport of members of the 
exportome, we found that when the parasite rhoptry protein 
RON3 was conditionally disrupted, exported proteins such as 
the ring infected erythrocyte surface antigen (RESA) were 
unable to move in parasites. Additionally, RON3-deficient 
parasites did not progress through the ring stage, and their 
intake of glucose was drastically reduced. The results show 
that RON3 affects two translocation processes, including 
the movement of the parasite exportome through PTEX 
and the movement of glucose from the RBC cytoplasm to 

the parasitophorous vacuolar (PV) space, where it can enter 
the parasite via the hexose transporter (HT) in the parasite 
plasma membrane [26]. (see figure 8). 

Expression profile of the selected features:
The analysis above provides us with a set of proteins that 

are associated with the progression of the malaria pathogen 
through different stages of the blood cycle.  Thus, the 
expression pattern of these proteins would elicit the identity 
of the stages. In order to investigate the overall expression 
pattern of the genes across the different stages, we extracted 
the selected 378 features from the dataset. For each feature, 
we find the average RNA-seq read counts for all four classes 
(early troph, late troph, schizont, and ring). The average 
values are then transformed into log scale. We observed that 
genes fall into different clusters according to the expression 
patterns (Figure 9) and also the expression patterns vary 
among the stages. For instance, the genes at the bottom have 
a very low expression in ring phase. Similarly, genes at the 
top cluster are displaying low expression for all stages. These 
expression patterns may be harnessed to look for specific 
markers for different stages. Additionally, we visualised 
the clustering behaviour of cells after feature selection by 
GA, using the 378 features via the Seurat package. As done 

 Figure 7: Protein-protein interaction network exhibits different clusters. The graph shows the protein protein interaction network of the 378 
proteins selected by the feature selection method. The different colors indicate different identified clusters.
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previously, the normalized counts were subjected to linear 
and non-linear dimensionality reduction using PCA and 
UMAP respectively. Figure 13 shows clear clusters of all 
the four blood cycle stages - ring, early troph, late troph, and 
schizont, which supports that the selected features can serve 
as markers for the respective stages. 

Discussion
In the last decade, numerous machine learning (ML) 

approaches have been proposed to yield more accurate results 
for various diseases. Karthik and Sudha, [27] reviewed 
ML methods for classifying gene expression models 
or computational analytical structures for complicated 

Figure 8: Different enriched biological functions for the first six protein-protein interaction clusters. The p-values of the enrichment of different 
gene ontologies for the six clusters of the PPI network as indicated by the color code. The horizontal dashed line represents a threshold of 0.05.
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Figure 9:  The expression profiles are distinct among the stages. Expression profile of the selected genes across the different stages. The heat 
map shows the average RNA count of the selected 378 genes across the different stages as indicated. A hierarchical clustering is performed on 
the expression levels in order to group genes with similar expression patterns indicated by the dendrogram.
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diseases, by identifying several differentially expressed 
gene techniques. Authors in [28] used Convolutional 
Neural Networks (CNNs) based deep learning models for 
attribute extraction and categorization. For achieving higher 
categorization accuracy, they selected certain dominating 
features including size, color, shape, and cell count from 
the images. Similarly, a more effective two-stage approach 
based on CNNs on a larger dataset was also proposed by [29]. 
It remains an especially challenging task to distinguish the 
multiple growth stages of parasites. Seng et al. [30] developed 
a deep-learning approach for the recognition of multi-stage 
malaria parasites in blood smeared images using a novel 
deep transfer graph convolutional network (DTGCN). They 
reported higher accuracy and effectiveness compared to a 
wide range of state-of-the-art approaches.

Numerous ML approaches have been proposed in the 
literature to enhance gene expression data classification 
such as clustering, classification, and dimensional reduction, 
among others [31]. Training of ML models using initial high-
dimensional features performs unsatisfactorily in practice and 
may result in network overfitting and increased redundant 
information. This problem was addressed using random 
forests classifier in [32, 33]. Hossain et al. [34] designed an 
effective variational quantum circuit (VQC-based) approach 
to recognize the existence of malaria from RBC images 
through the classification of an optimized feature set extracted 
from them. Murad et al [35]. used algorithms based on 
multifilter and hybrid approaches to feature selection leading 
to an accuracy of more than 90%. Mei et al. [36] suggested 
a dimensionality reduction method for classifying tumor 
gene expression data. Arowolo et al [37]. and Li et al.[38] 
proposed a dimensionality reduction approach for classifying 
gene expression.

To overcome the dimensionality problem, Rokach et al. 
devised a genetic algorithm-based feature selection method. 
They evaluated the fitness function of several, obvious 

Figure 10: Three  dimensional visualization of the cells based 
on selected features. UMAP of cells using 378 features. The cell 
clusters are colored based on the blood cycle stages of Plasmodium 
falciparum.

Figure 13: Flowchart of entire pipeline.

Figure 11: Proposed computational model framework.

Figure 12: Pseudocode of the proposed method.
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tree classifiers using a new encoding approach [39]. Zhang  
et al. proposed a classifier ensemble with feature selection 
based on GA. The authors of this work created a new hybrid 
method that combines a multi-objective genetic algorithm 
with an ensemble of classifiers. The GA- ensemble approach 
was tested on a variety of datasets and its performance was 
compared using a variety of classifiers [40]. Cheng-Lung 
Huang [41] suggested a feature selection method based on 
GA and SVM optimization. The ultimate goal was to improve 
the SVM classification accuracy while optimising the feature 
subset and parameters. Chaung et al. [42] employed a 
hybrid technique that began with a genetic algorithm with a 
dynamic variable to pick a sample of genes, which were then 
ranked using chi square analysis, and the level of accuracy 
of the selection was assessed using SVM. Shutao et al. 
[43] used Particle Swarm optimisation and GA to perform 
highly accurate classification. The authors in [44] achieved 
a classification accuracy of 90.32 % using GA for feature 
selection and a SVM Classifier.

 In this paper, we used ML classifying techniques in 
conjunction with a GA-based feature selection algorithm on 
sc-RNAseq datasets. Single cell RNA-seq is a very recent 
technique to characterise gene expression at the single cell 
level. Till now no previous ML algorithm has been developed 
to be implemented on single cell data. Specifically, in malaria 
parasites single cell characterization of the life cycle stages 
would be critical in identifying markers for the stages that 
can be harnessed to develop new drug targets. Here, we used 
only one scRNA-seq data sets in order to present the general 
protocol. The study has proposed a two-stage model for feature 
selection and classification which has been shown to improve 
the classification of the different stages of the Malaria Life 
Cycle. This was achieved by removing  the irrelevant features 
from the total data set considered for analysis. The study’s 
main finding is that using a feature selection procedure before 
applying a classification algorithm results in more accurate 
predictions. The use of GA as a feature selection process 
significantly reduced the number of features included in the 
dataset. The proteins and the corresponding PPI network 
identified through the method are found to be functionally 
important for the progression through life the cycle stage 
from previous studies [20–25]. However, the protocol must 
be employed and tested for other available similar data sets in 
order to strengthen the benchmark. Our work offers a general 
theoretical framework integrating ML techniques and network 
analysis for identifying protein targets for malaria parasites. 
The general framework can be implemented in other diseases 
as well. For further research, the hybrid methods for feature 
selection, the impact of parameter fine tuning on various 
algorithms’ levels and the use of other methods including 
Ensemble Learning may be attempted.

Material and Methods
System Design:

The proposed classification technique comprises two 
stages, namely:

Dimensionality Reduction with Feature Selection

Classification

Dimensionality Reduction with Feature Selection:

The dimensionality of the gene expression dataset is 
high. The dataset has redundant features which act as noise 
while training a model. This results in poor classification 
performance and high computational time. Dimensionality 
reduction is a technique that removes redundant features that 
hinder performance. We have used the feature selection [45] 
dimensionality reduction technique.

Let X be the initial m dimensional set of features, defined 
by the equation X = x (i) | i = 1, 2,...m where x(i) are the 
defined features and m are the genes. The process of feature 
selection generates Y (i) | i = 1, 2,...,p where Y(i) represents 
the new subset of features and p is now the number of 
features in the subset with p ≤ m. There are three types of 
feature selection methods - Filter, Wrapper, and Embedded 
approaches [46-47].

Figure 11 shows the proposed computational model 
framework. The feature selection stage uses GA for 
dimensionality reduction. Genetic Algorithm (GA) is 
a metaheuristic, evolutionary, stochastic optimization 
algorithm inspired by the process of natural selection. 
GAs are commonly used to generate optimum solutions to 
problems employing three biologically inspired operators 
selection, crossover, and mutation.

Classification
Classification is the process of identification of which of 

a set of categories or sub-populations an observation belongs 
to. Usually, the individual observations are grouped into a 
set of quantifiable properties called features. These features 
may either be categorical or ordinal or integer or real-valued. 
In the field of machine learning, the observations are called 
instances, the variables termed as features are grouped to 
form a feature vector, and the to-be-predicted categories are 
called classes. Figure 12 shows the pseudo-code of the entire 
pipeline. We have used three classification algorithms in our 
research viz. Support Vector Machines, Logistic   Regression 
and Random Forest.

Support vector machines (SVM) are one of the most 
popular, robust, non-probabilistic, binary, linear and non-
linear classifier, supervised learning algorithms that analyze 
data for classification or regression analysis in machine 
learning. Based on a set of categorized training data, an SVM 
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training model assigns new unseen examples to either of 
the trained categories, creating the decision boundaries (or 
hyperplanes) that can segregate n-dimensional space into 
classes.

Logistic regression (LR) is another powerful supervised 
ML algorithm used for binary classification problems that can 
be generalized to multiclass classification. A logistic function 
is used to model the probability of a discrete outcome 
based on an input variable. LR is  an extensively employed 
algorithm for classification problems in industry owing to 
its high simplicity and efficiency particularly for linearly 
separable classes.

Random forests (RF) are an ensemble learning 
classification method and work by constructing a multitude of 
decision trees at training time. For classification jobs, the RF 
output is the class selected by most trees. Ensemble learning 
combines many classifiers to provide solutions to complex 
problems. In Machine learning RFs also assist in reducing 
the training set overfitting by decision trees and also increases 
precision.

Experimentation:
The following sections will introduce each of the followed 

steps in detail. A summary of the  implementation of the 
entire pipeline is depicted in Figure 13.

 Data Preparation:
In order to create an independent test set and improve 

the classification validity and accuracy, the input data was 
divided into the training and testing sets in a ratio of 80% and 
20% respectively.  The training set was created to validate the 
feature selection while the test set served a similar validation 
role in the classification process. The training set is then 
processed through the GA pipeline.

Genetic Algorithm:
Genetic Algorithm (GA) is a stochastic evolutionary 

optimization technique. It starts with an initial randomized 
set of the population of features (500 here) and then creates 
another population using subsets of the available features 
whose individuals are evaluated using the Random Forest 
predictive model for the target task. The tournament selection 
technique is used to pick the higher fitness subsets to be 
carried forward into the next generation for applying the 
cross-over (updating the winning feature sets with features 
from the other winners) and mutation (probabilistically 
introducing or removing some features) genetic operators. 
The individuals of this subset are stored in the Hall of Fame 
which is continuously sorted so as to have the first element 
with the maximum fitness value so far. This process is 
iterated to yield the optimum features for the set termination 
criteria (maximum generations= 100, if no change in the best-
fitted individual for 20 generations). Few other GA modelling 

parameters used in our research are - uniform crossover 
probability of 0.5 and flip-bit-mutation probability of 0.2.

Classification Process:
After the GA has selected the optimal features, these 

features are then subjected to different classification 
algorithms (SVM, Random Forest, Logistic Regression) to 
measure the classification accuracy of the selected feature set. 
This yields us the classification accuracy of the four different 
classes viz early troph, late troph, schizont, and ring.

Mutual Information:
Mutual Information (MI) is a measure of how much one 

variable’s uncertainty is reduced when the other variable’s 
value is known. It is given by the formula [48] :

where P (X1, X2) is the joint distribution of the two 
variables. P (X1) and P (X2) is the marginal distribution of the 
two variables. It’s a dimensionless quantity that’s measured 
in bits.  Each element of the confusion matrix represents the 
conditional probability of predicting a class y’ given the true 
category y - p(y′|y).  The joint probability of P (y, y′) is equal 
to the multiplication of the probability of true label P (y) and 
conditional probability P (y′|y).  P (y′) is given by the sum of 
joint probability over true label y. We have used this to find 
the I(y; y′).

Data and Software Availability:
The data are freely accessible as a processed dataset 

through a user-friendly web interface   (www.sanger.ac.uk/
science/tools/mca/mca/)[13]. Our dataset has 5066 rows and 
6737 columns. Each row corresponds to a single cell and each 
column corresponds to a gene. We have 5066 features in our 
dataset. We have four different malaria life cycle stages (early 
troph, late troph, ring, and schizont).

Ada, the High-Performance Computing Data Center of 
International Institute of Information Technology Hyderabad, 
India was utilized for the computation. It consists of 92 nodes, 
each equipped with dual Intel Xeon E5-2640 v4 processor, 
128 GB RAM,  two scratch disks (2 TB SATA and 960 GB 
SSD SATA) and four Nvidia GTX 1080 Ti / RTX 2080 Ti 
GPUs. The cluster has a total of 1472512 GPU cores, 3680 
CPU cores and 11776 GB RAM.  For our experiment, we 
have used 40 cores with maximum memory per CPU of 2 GB 
on a Linux Ubuntu operating system. The proposed model is 
implemented using Python with the genetic selection library 
for the Genetic Algorithm implementation and the sklearn 
library for the classification algorithms. The relevant data and 
python scripts can be found in this GitHub code 

(https://github.com/swarnimshukla/Supervised-learning-
of-Plasmodium-falciparum-life-cycle-stages-using-single-
cell-transcriptomes-iden).
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We used the R-based Seurat (v4.1.0) package developed 
by Satija lab [14] for visualisation and dimensionality 
reduction of single cell RNA-seq data. This was implemented 
in R (v4.1.3), run on RStudio environment (v1.3.1093). 
We followed the standard pre-processing workflow, 
normalisation, linear and non-linear dimensionality 
reduction recommended by Seurat developers with default 
parameters unless otherwise mentioned in the results 
section. The feature selection method provided us with 
378 proteins in Plasmodium falciparum. We have used the 
Search Tool for the Retrieval of Interacting Genes/Proteins 
database (STRING 11.0b)[17] to construct the PPI network 
associated with these proteins. STRING software https://
string-db.org/ can then construct a PPI network containing 
all of these proteins and their connections. Their interactions 
were generated with high confidence from high-throughput 
lab experiments and prior information in curated databases 
(sources: experiments, databases; Scores ≥0.90). Various 
topological measures are generally used to evaluate the both 
global and node characteristics in the PPI networks, including 
degree (k), between centrality (BC), eccentricity, closeness 
centrality (CC), eigenvector centrality (EC), and clustering 
coefficient[18]. Here, the highest degree nodes are identified 
using degree distribution. Additionally, we have used Markov 
Clustering Algorithm (MCL) (using STRING) to find clusters 
in the network. Among these clusters, we identified a red 
cluster which contains the node with the highest degree and 
high betweeness centrality. We have analysed topological 
properties like degree, BC, eccentricity, CC, EC, clustering 
coefficient, etc of the Red cluster using Gephi[19] software.
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