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Abstract
Spontaneous, undirected, pointless “mutations,” whether random or 
nonrandom, must be differentiated from “prescribed polymorphisms.” 
Mutations are one-time unique events that occur with no goal or steering 
toward utility. Purposeless Mutations may be caused by nonrandom 
physicodynamic factors such as ionizing radiation and carcinogens. But 
purposeless mutations, nonrandom included, are never “directed” toward 
any biofunction. This is also true of all natural forces, laws, quantum 
events, and irreversible nonequilibrium thermodynamics. None of these 
have ever been observed to pursue or generate nontrivial utility. Prescribed 
polymorphisms, on the other hand, are both nonrandom and “directed.” 
Abundant empirical evidence continues to mount that polymorphic 
programming refinements are quite intentional. The genome not only 
regularly expands its phase space of polymorphic options, but the genome 
also actively selects and controls which polymorphisms to employ to 
meet abrupt and severe environmental challenges. Programming decisions 
must be active, not passive (not just secondary and after-the-fact of later 
phenotypic fitness). Programming precedes and prescribes the computation 
of homeostatic metabolism and the phenotypic fitness of living organisms. 
Without algorithmic optimization at the genomic level, natural selection 
would have no fittest organisms to select. Evolution is way too slow to 
explain so many empirically rapid adaptations. Prescribed Polymorphic 
Adaptation (PPA) results from efficacious cybernetic commands executed 
from programming modules called up into upper memory in rapid response 
to environmental challenges.

Keywords: Nonrandom Mutations; Spontaneous mutations; Directed 
Polymorphisms; Rapid Adaptation; Genetic Drift; Population Genetics; 
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Introduction
The capabilities of random mutations to program, process and execute 

computational haltings of creative new integrated circuits and sophisticated 
biosystems has long been called into question. The fact that many mutations 
are now known to be nonrandom has fostered considerable explanatory hope  
[1-8]. But “nonrandom” is not synonymous with “Directed toward 
biofunction.” Purely physicodynamic causation can produce nonrandom 
mutations with no more formal function than random ones. So random 
vs. nonrandom is not the issue. What matters is elucidating the origin of 
genomic prescription of biofunction, and the execution of those programming 
commands to the end of computational halting. Also of interest is the source 
of the processing machinery (the nanocomputers and extraordinary molecular 
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to deny the obvious empirical orchestration of life’s stunning 
formal cybernetic engineering.

How did genomic programming in protocells and 
progenotes anticipate such potential first-time stressful 
encounters, and plan for them? How did various RNA’s 
and transcription factors get programmed with linguistic-
like symbolizations to switch on these reserve programming 
modules only when needed? We fail to realize that “trial-and-
error searches” are just that—active purposeful searching 
efforts, crude in methodology though they may be. Inanimate 
nature performs NO “trial-and-error searches.” Not even 
evolution pursues such a goal. Programming refinement at 
the genomic level alone increases phenotypic fitness. Even 
with the new more Lamarckian perspectives arising from 
epigenetics, increased fitness still stems back to genomic 
initiation and control—even if it’s only a methyl or acetyl 
group. Thus, the two questions of PI origin and PI refinement 
(algorithmic optimization) are very closely related. What force 
originally programmed the genome in a progenote, and what 
force further algorithmically optimizes that programming 
long before environmental selection can even be mentioned?

We should have admitted a century ago that 
randomness can’t program.

We imagine the capabilities of random mutations to be 
considerable given extensive genetic drift and the large phase 
space of possibilities. But neither drift nor a huge phase space 
of possibilities actually selects for programming fitness. 
Evolution depends squarely upon selection. For mutations to 
be heritably beneficial, they must be actively selected from 
the vast phase space of possibilities at the programming 
genomic level. Programming choices must be made long 
before any living organism is processed to differentially 
survive. This is known as the Genetic Selection (GS) Principle 
[19]. Fittest programming alone prescribes fittest organisms. 
Also involved here is the Formalism > Physicality (F > P) 
Principle [20,21], which posits that  formal organization, 
particularly in the context of life origin, is not a product of 
physical processes. Formal prescription precedes and directs 
the physical interactions of life processes.  Prescriptive 
Information, formal orchestration, engineering and genetic 
algorithms are distinct from and even govern the physical 
instantiation of biological directives. 

Suppose 1% of purposeless mutations were deemed 
“beneficial.” Could 3.8 million species have been 
programmed so ingeniously by such extreme inefficiency 
just since earth’s cooling? Population genetics shows there 
have not been enough generation times even of prokaryotes 
since the cooling of earth [22-28]. The model of nothing but 
mutations plus environmental selection flunks the Universal 
Plausibility Principle [29-31]. What very few examples we 
have of beneficial mutations are usually accompanied by far 
worse secondary effects. Genomic commands are executed 

machinery) needed to execute those programming commands. 
Both the programming and the processing equipment needed 
to execute those cybernetic commands would have had to 
have evolved at the same place and time for either to have had 
any selectivity. The fundamental question is how all of these 
halting computations got programmed using representational 
symbol systems, often superimposed multidimensional 
codings, and such highly integrated holistic circuitry. How 
did the symphony of life get so formally orchestrated? 

Just being nonrandom alone does not help our model in 
the slightest. In fact, nonrandomness can preclude efficacious 
programming choices by severely limiting contingency and 
eliminating phase space possibilities of active selection. Active 
selection from among real options at bona fide decision nodes 
is the essence of programming. All known life is undeniably 
programmed and cybernetically processed [8-12]. What are 
the capabilities of the full array of the newly recognized non-
random mutations? Are any nonrandom mutations actually 
“directed” toward new computational success—what this 
author calls “Prescribed Polymorphic Adaptation (PPA)”? If 
so, what force or law is doing the directing? Did the same 
force or law program the genome in the first place? To 
what degree are genetic variants creatively produced and 
purposefully controlled? No force or law can program. The 
program would consist of all the same “choices” (all “1’s,” 
or all “0’s,” by law!). Programming requires contingency and 
freedom of active selection from among real options.

Mutations of WHAT?
Have we ever adequately pursued the question, “Mutations 

of WHAT?” Exactly what is being mutated? How did 
Prescriptive Information [13-15] and steering mechanisms 
toward utility arise in an inanimate environment? The 
question of abiogenic origin of Prescriptive Information 
(PI) is not very different from the question of origin of 
algorithmic optimization at the already-existing genomic 
level. Prescriptive information (PI) is required for both. 
What caused PI in a prebiotic environment? PI is as abstract, 
conceptual, nonphysical and formal as the mathematical laws 
that govern physicodynamics [13-18]. In reality, purposeless 
mutations are almost always deleterious. This includes many 
of the supposedly neutral ones. Because of the prevalence of 
superimposed, multidimensional coding, a neutral mutation 
in one language can scramble other superimposed languages. 
The effects of this linguistic corruption in multidimensional 
languages may not become evident for many generations. 
Many supposedly neutral mutations are anything but neutral. 

Purposeless mutations don’t program. They alter 
programming, almost always for the worse. What very few 
cases of seeming benefit are almost always accompanied 
by additional deleterious effects that outweigh the supposed 
benefit. Should this be surprising? Only if we are locked into a 
purely metaphysical Kuhnian paradigm rut that is determined 
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computationally as formal processes that arise only from the 
far side of The Cybernetic Cut [32-34]. The Cybernetic Cut 
is a great ravine that divides formalism from 
physicodynamics. The only way this seemingly infinitely 
deep ravine can be traversed is via the very narrow, 
one-way Configurable Switch Bridge [32-34] from the 
far formal side to the near physicodynamic side. 
Symbolized commands using physical symbol vehicles 
in a Material Symbol System can alternatively replace 
physical configurable switches to cross this narrow one-way 
bridge. 

Natural selection is entirely passive, secondary, and 
after-the-fact of genomically programmed adaptations. 
The Genetic Selection (GS) Principle [19] 
distinguishes passive selection of organismic final 
fitness (undirected natural selection) from active selection 
for potential function (computationally halting formal 
selection at decision nodes, logic gates and 
configurable switch-settings). This dichotomy of selection 
type also prevails in molecular evolution [11]. Initial 
active selection must occur largely at the level of 
nucleoside selection, prior to the realization of any 
polynucleotide capabilities, let alone holistic integrated 
biofunction. Many other types of logic gates are employed 
in three-dimensional genomic programming and 
control (alternate RNA splicing’s, programmed 
polymorphisms called up into upper memory from 
programming modules held in reserve, micro and mini 
satellites, methylation’s of certain DNA sites, specific 
acetylations of histones, lncRNA regulation, tandem repeat 
variability, unique transcription factor binding sites, etc. 
referenced below). What exactly is computing all of the 
biofunctional programming success prior to phenotypic 
realization of fitness? Natural selection is way down the 
causal line, at the very end.

Sequence variants
 “Sequence variant” is generally considered to be a 

more inclusive term than “polymorphism” (as recommended 
by the Human Genome Variation Society). In this paper, 
however, we are trying to distinguish between pointless 
mutations vs genomically prescribed functional sequence 
variations. This author uses the term "Prescribed 
Polymorphic Adaptation (PPA)” to emphasize which 
sequence variants have been empirically shown to have 
been purposefully biofunctional. These specifically 
Prescribed Polymorphisms are genomically executable 
commands capable of producing far more rapid adaptation 
than evolution could ever account for. They are usually 
supplemented by epigenetic regulation. Programming and 
computation are formal, not physical. Active choices 
have to be made genomically prior to the realization of 
phenotypic benefit. What optimized life’s algorithms at the 
programming level? 

The “100,000 Genomes Project Consortium” found 
that a typical human genome contains three to five million 
single nucleotide polymorphism (SNP) variants [35]. Wang 

et al [36] also found 3.1 million unique, non-redundant 
high-quality sequence variants in chickens, primarily single 
nucleotide polymorphisms (SNPs). In humans, 99.9% are 
single nucleotide variants (SNVs) and small indels (short 
sequences of nucleotides that are inserted or deleted). The 
consortium also found an average of 2,100 to 2,500 structural 
variants. The structural variants typically affect 20 million 
bases [37]. Only 0.1– 0.2% of human DNA differs [37]. 
Most of the 3-5 million variants involved are inherited. 
But each of us typically has 70-80 new variants of our own. 
One small variant can have dramatic effect on our 
wellbeing. 3% of our DNA consists of short tandem repeats 
of varying length. This variation can be caused by 
purposeless mutation (typically resulting in “nucleotide 
repeat expansion disorders” [very often resulting in 
neurodegenerative disorders]) [38-47], or by programmed 
polymorphisms prescribed for very useful adaptive 
purposes [48-62]. Larger structural variants include 
deletions and duplications of DNA greater than one kilobase. 
These are known as “copy number variants” (CNV’s) 
[63-69]. Large rearrangements and insertions, inversions, 
translocations can also occur. Epigenetic variations such as 
DNA methylation and chromatic remodeling from histone 
protein acetylations do not affect the DNA sequence itself. 
They are configurable switch settings that help regulate 
gene function [70-77]. They can cause imprinting disorders, 
however [78-81]. Variants can occur during embryonic 
development or from aging, resulting in 
“mosaicism” (genetically different populations of cells 
within the same individual) [39,82-84].

Nonrandom Mutations
Numerous papers have provided evidence of nonrandom 

mutations [1,85-95]. When mutations are shown statistically 
to be nonrandom, is this the result of purely physicodynamic 
causation, or are nonrandom mutations somehow actively 
directed toward algorithmic optimization? If directed, what 
force or law would be doing the directing toward utility? 
Physicodynamics has no perception or appreciation of 
utility. The laws of motion do not pursue, let alone achieve, 
computational halting. Pointless mutations have no goal. 
Physicodynamics has no perception of or interest in 
function. Whether random or nonrandom, programming in 
the absence of goal “Does not compute!” “Nonrandom” 
mutation is not synonymous with “directed toward 
successful adaptation.” Nonrandom mutations can be 
caused by physicodynamic factors that have nothing to do 
with biofunction or organismal fitness. How are 
purposeless mutations able to optimize programming?

Multiple papers have investigated the likelihood of 
mutations being deleterious [96-112]. Pre-assumed is the 
dogma, “All adaptive alleles in existence today began as 
mutations" [96]. Mutation is blindly believed to be the source 
of Prescriptive Information and efficacious programming 
commands. The problem with most of these papers is failure 
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mutations provided is embarrassingly short, not to mention 
glaringly contrived. A classic example is the point mutation 
producing sickle cell anemia. The claimed benefit of this 
purposeless mutation is malaria resistance. Ask any sickle-
cell anemia sufferer if they view their mutation as 
being “beneficial.” They would far rather have to take anti-
malarial drugs like everyone else than to spend a greatly 
shortened lifetime of ache in hypoxic lactic-acid-build-up 
agony. This is the number-one example we are given of a 
“beneficial” purposeless mutation.

Differentiating purposeless mutations 
from efficacious polymorphisms

Pointless, one-time, unique mutations must never 
be confused with “prescribed polymorphisms.” This is 
true whether those pointless mutations are random or 
nonrandom. “Nonrandom” is not synonymous with “Directed 
toward biofunction.” The empirical evidence of directed 
polymorphisms literally doubles each year in the 
literature. The percentage of “pointless mutations” that are 
considered to be beneficial simultaneously shrinks as we 
realize that those “beneficial” pointless mutations were not 
really spontaneous, purposeless mutations at all, but 
prescribed polymorphisms. They were executable 
commands motivated by Prescribed Polymorphic 
Adaptation (PPA). Statistical measures of the 
percentage of beneficial purposeless “mutations” is 
hopelessly skewed by a failure to dichotomize “pointless 
mutations” from “prescribed polymorphisms.” 

Active selections at bona fide decision nodes were 
necessary to produce computational haltings that were 
only later realized to produce phenotypic benefit [11]. The 
programming of Prescriptive Information had to 
precede phenotypic reality. Reprogramming is required to 
optimize fitness before natural selection can favor it. For 
mutations to have programmed all genomes, mutations not 
only had to be nonrandom, they had to be directed toward 
biofunction and adaptation from the start. Purposeless 
mutations and prescribed polymorphisms both 
introduce new alleles. Both result in the change 
of nucleotide sequencing. Base substitutions, 
insertions, deletions, inversions and translocations can 
all be observed in both pointless mutations and prescribed 
polymorphisms. It is not always immediately apparent 
which of the two it is. Yet the difference is absolute. The 
genomic alteration was either intended and prescribed, or 
it was not. Practically all beneficial “polymorphisms” are 
not “purposeless mutations.” Efficacious polymorphisms 
are genomically prescribed. The genome can actually 
improve itself with better programming choices. It 
resembles an AI system of “learning” from previous 
environmental challenges. This is exactly how virtually all 
really rapid adaptation is achieved. Evolution would be 
way too slow to account for bacteria developing resistance 
to a new antibiotic in only 48 hours, even with prokaryotic 
generation times of 20 minutes.

to delineate between purposeless mutations vs. prescribed 
polymorphisms. That failure leads to completely bogus 
measurement of the percentage of beneficial pointless 
mutations. We were forced into supporting Physicalism by a 
beginning purely metaphysical presuppositional imperative. 
We were enslaved by the starting axiomatic dogma of science 
that “Mass and energy alone are sufficient. ” Abundant 
empirical evidence to the contrary is piling up in the biological 
literature by the month [113-123]. Chance and Necessity are 
clearly not sufficient [124]. Virtually every activity in any 
cell is prescribed by formal executable commands leading to 
formal computational halting. Mass and energy interactions 
have no mind for “computational success.” Mass/energy 
interactions cannot even recognize “usefulness” of any kind.

Because of our purely metaphysical presuppositions, we 
are reluctant to even acknowledge the possibility of intent. But 
rapidly growing empirical evidence in the fields of genomics 
and molecular biology proves the reality of genomic intent. 
Chance and Necessity cannot explain the source of Prescriptive 
Information and its cybernetic executable commands. This is 
the essence of genomics. Any cell manifests the intent to keep 
achieving homeostatic metabolism and to stay alive. The cell 
is constantly having to outsmart environmental challenges 
with insightful polymorphic editing. But our protracted denial 
of the nonphysical, conceptual, formal nature of Prescriptive 
Information (PI) and its source in nature force us to resort to 
a crude statistical differentiation between pointless mutations 
and prescribed polymorphisms. When the frequency of 
proven beneficial effect rises above 1%, the likelihood of 
pointless mutation nose-dives. We know fully well that 
the number of supposedly beneficial pointless mutations is 
miniscule. We also know that most helpful polymorphisms 
must be somehow prescribed. But we dare not admit it. We 
view bench science as superior to philosophy. But then we 
let pure metaphysics violate Einstein’s minimum-metaphysic 
principle of science. 

When we talk about mutations, we are talking about 
alterations in programing strings. We are not talking about 
phenotypes. Programming consists of a recorded string of 
active selections at the genomic level. Formal choices at 
decision nodes must be made that function as executable 
commands. Strings of choices at logic-gate decision nodes 
must successfully compute. Configurable switch-settings 
must also be efficacious. Fittest organisms are the organisms 
with the fittest programming. Halting computations must be 
prescribed and cybernetically processed before phenotypic 
fitness can be secondarily selected. No programming and 
processing—No organism. Fittest programming alone 
prescribes fittest organisms. Even when pointless mutations 
seem to have some element of accidental benefit, other 
adverse effects usually accompany those pointless mutations 
which are far worse than the benefit. When one studies the 
defense of the macroevolutionary model, the list of beneficial 
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This manuscript started out with the title “The capabilities 
of mutations.” What should be pursued is “the capabilities 
of Genomically Prescribed Polymorphisms.” Big difference! 
The capabilities of spontaneous purposeless mutations, not 
surprisingly, is negligible. Functional polymorphisms are 
not just random genetic drift that happens to be secondarily 
beneficial phenotypically. Suppose nonrandom mutations 
were militated by laws or constraints as their source of 
nonrandomness. “Necessity” would kill the vast contingency 
potential of genetic drift. Necessity would eliminate most 
of the phase space of possibilities. Laws are compression 
algorithms. Laws describe hidden order. Order shrinks 
possibility complexity (Figure 1). The opportunity of 
purposeless mutations to contribute to evolution would be 
severely compromised by laws or constraints on possibility 
space. The best of conceptual complexity requires a large 
possibility space from which to make active selections. We 
appeal to genetic drift as the source of a large possibility space. 
This is exactly what Necessity (law) would have eliminated. 
The usefulness of law-militated nonrandom mutations would 
be greatly reduced. So, we need to understand that from an 
evolutionary viewpoint, nonrandom mutations are no friend. 
They are the enemy of the evolution model because law 
causation would limit genetic drift. We must dichotomize 
“purposeless mutations,” whether random or nonrandom, 
from all of the other forms of “polymorphisms.” The only 
way nonrandom mutations would be regularly beneficial 
would be if their nonrandomness was directed toward 
biofunction. This would require Choice Causation at the 
genomic programming decision-node level. Chance or 
Necessity knows nothing of issuing executable commands. 
Only the Prescriptive Information (PI) of genomes could 
cause such steering toward usefulness.

The Three fundamental categories of reality
Chance or Necessity is a false dichotomy. There are 

three fundamental ontological categories, not two: Chance, 
Necessity and Choice [125]. Physicodynamic Causation 
must be distinguished from Choice Causation, even within 
the natural sciences. The Universal Determinism Dichotomy 
(UDD) [125,126] discounts “chance” as a real cause of any 
effect. Chance is merely a descriptive term. The science of 
Biology demands acknowledgement of the UDD. There 
is no escaping it. Homeostatic metabolism and life are 
formally orchestrated at bona fide “decision nodes,” not mere 
“bifurcation points.” Life is not only instructed, it is steered 
and directed by executable commands that are then processed 
by nanocomputers and very sophisticated molecular 
machines. Mere genetic drift and large phase spaces alone 
do not constitute active selection for utility. Quantum 
Mechanics and irreversible nonequilibrium thermodynamics 
manifest zero preference for function. We are not talking 
about passive, secondary, natural selection of the fittest 
organisms. That is far down the road. We are talking about 

the superior programming and computation that produces 
fittest phenotypic organisms. 

Any programmer will affirm that programming refinement 
is not achieved by pointless “fork-in-the-road coin flips.” 
Real active selections must be made at bona fide “decision 
nodes” from among real options. This is the essence of 
“programming.” Efficacious commands must be issued that 
arise from Choice Causation alone, not Physicodynamic 
Causation. Disallow Choice Causation, and we disallow 
life. Everything about life depends upon efficacious choices 
at bona fide decisions nodes. Programming is impossible 
without purposeful choices in pursuit of computational 
success. Mutations are “bugs” that corrupt programming. 
They are not a succession of ingenious programming 
choices that we observe in any genome. These recorded 
command choices produce Prescribed Polymorphisms that 
alone produce rapid adaptation. The religion of blind belief 
in “purposeless mutations’ all-sufficiency in programming 
genomes” is more childish and archaic than Ptolemaic 
astronomy. Purposeless accidents do not construct Sydney 
Opera Houses. Typographical errors do not write PhD 
theses. Raw mass/energy interactions did not produce our 
cell phones. Chance and Necessity can explain none of 
these formal achievements. Yet they pale in comparison 
to the orchestration of homeostatic metabolism of any 
prokaryote. Nothing is more formal and choice-instructed 
than life itself. Life arises only out of efficacious executed 
commands. And those commands can be executed only by 
machinery that itself had to be manufactured with efficacious 
executed commands. Physicodynamically-caused mutations 
can have just as random effects as random mutations. The 
alteration lacks purpose. Programming “bugs” corrupt 
successful computations; they do not produce them. This 
is the reason why pointless mutations are almost never 
beneficial. Evolution has no goal. As long as we insist on 
limiting our thought to macroevolution, we will never be 
able to elucidate the mechanism of rapid adaptation though 
Genomically Prescribed Polymorphisms (GPP). Prescribed 
polymorphisms can arise only from preprogrammed genomic 
intent and goal. These executable commands are called up 
into upper memory from pre-programmed modules triggered 
by environmental challenges. Configurable switches are 
turned on by environmental challenges.

The mountain of empirical evidence for 
“Genomically Prescribed Polymorphisms’

First, the distribution of polymorphisms of any kind 
is statistically less common specifically in critical exons 
[1,56,60,127]. It’s as though nature knows better than to 
“mess” with “what already seems to work best.” Why 
would this be the case if all polymorphisms were pointless 
and unregulated? If mutations are unrelated to utility, the 
mutation rate should be constant across the board. Helpful 
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and nonhelpful mutations should occur equally in all exons if 
they are 1) the result of random typographical copying errors 
or 2) the nonrandom result of physicodynamic causation 
that is blind to “usefulness.” Mere mass/energy interactions 
are oblivious to formal function. Nonrandom purely 
physicodynamic causation could care less what might be 
helpful. Our traditional concept of mutation has no causative 
“good vs. bad” connotation. So, the question remains, “Why 
is the distribution of mutations statistically less common 
specifically in critical exons [1,56,60,127]? 

Says Monroe et al [1]

“Mutations occur less often in functionally constrained 
regions of the genome—mutation frequency is reduced by 
half inside gene bodies and by two-thirds in essential genes.”

“Epigenomic and physical features explain over 90% 
of variance in the genome-wide pattern of mutation bias 
surrounding genes.

“Observed mutation frequencies around genes in turn 
accurately predict patterns of genetic polymorphisms in 
natural Arabidopsis accessions (r = 0.96).”

“Genes subject to stronger purifying selection have a 
lower mutation rate.”

This suggests a causal link between sequence 
alterations and biological pragmatism. The reduced rate of 
polymorphisms is clearly not pointless. It is being directed 
from the perspective of utility. In critical exons, the genome 
is commanding itself, “Don’t alter proven efficacious 
programming with purposeless mutations.” The genome then 
obeys its own command. “Don’t mess with a good thing!” 
There is purpose in not mutating.

Prescribed Polymorphic Adaptation (PPA) is the real key 
to life’s adaptation success in rapidly changing environments. 
Prerecorded modules are called up into upper memory as 
needed to meet sudden challenges. Genomically prescribed 
adaptive polymorphisms generate more fit organisms for 
the environment to then only secondarily favor. According 
to Albert [61], most common polymorphisms are potential 
regulatory polymorphisms located in noncoding regions, 
including promoter/upstream and downstream intron regions, 
that may affect transcription [128]. Polymorphisms located 
within introns and untranslated regions transcribed as RNA 
affect transcription, RNA splicing, stability or translation 
[129]. Such polymorphisms can also be located in intergenic 
regions of unknown function [62].   Albert proposes four 
classes of genetic polymorphisms [61]. Notice that functional 
polymorphisms are freely acknowledged. That many 
polymorphisms are functional rather than purposeless is 
empirically based and well-observed:

• Class 0: Function not determined. Either (A) no function
is known, or (B) theoretical function is predicted but has
not been experimentally demonstrated.

• Class 1: Functional in vitro. The functional effect of the
polymorphism on a target DNA element or regulatory
mechanism has been demonstrated using in vitro assays
(e.g., gel shift, reporter assay, ligand binding); however,
the function of the polymorphism on endogenous gene
expression or in vivo is unknown.

• Class 2: Functional in vivo. In addition to class 1
requirements, (A) function effect of the polymorphism
on the endogenous gene has been tested in model
cellular systems (e.g., human transformed cell lines,
human B lymph-oblasts, primary cell cultures) using
methods such as relative allelic expression and chromatin
immunoprecipitation, and (B) in vitro function is
correlated with a functional change in human tissue.

• Class 3: Functional phenocopy. In addition to class 1
requirements, (A) function has been demonstrated in vivo
using model organisms such as knockin mice, and (B)
function is correlated with a functional change in human
tissue.

Other factors such as specific transcription factors
and lncRNA regulation are involved in determining 
which polymorphisms are functional. But even epigenetic 
configurable-switch-settings are genomically controlled. 
These controls do not arise from “purposeless mutations.” 
Such sophisticated functionality does not just spontaneously 
generate. It is genomically prescribed. All sorts of factors 
such as micro and mini satellites can be involved in 
adaptation. Alternate splicing, transcription factor binding 
at specific DNA sites, and the specific unit and number 
variations of tandem repeats are no accidents. Purposeless 
mutations introduce only constraints describable with 
probability bounds. But prescribed polymorphisms and 
other regulatory factors define formal controls. Much of the 
evidence of prescribed polymorphic functionality comes in 
the form of research dealing with the loss of that functionality 
[48-57,130,131]. The loss of functionality is often caused 
by purposeless mutations. But research emphasizes and 
reinforces the existence of prescriptive commands in the 
wild type that produce very sophisticated benefits prior to 
their mutated loss. What exactly generated those executable 
commands in the first place?

Programming modules are called up into upper 
memory when needed.

 “Prescribed Polymorphic Adaptation (PPA) uses prior 
programming modules held in reserve and called up real-
time to meet previously-anticipated changing environmental 
challenges. “That’s impossible,” we say. “Evolution cannot 
anticipate need.” And right we are. The problem is, that is 
exactly what genomic programming does, as empirically 
demonstrated in large numbers of papers summarized by 
geneticist Jeffrey P. Tomkins [76,132-137]. What is negated 
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is our purely metaphysical starting axiom that disallows any 
formalisms in nature. Not only is life filled with formalisms 
at every turn, but even the laws of physics are abstract, 
conceptual mathematical formalisms. Robert Endres expands 
on Wigner’s [17] and Hamming’s [16] “unreasonable 
effectiveness of mathematics in the natural sciences” with his 
“unreasonable likelihood of being: origin of life, terraforming, 
and AI” [18]. There is nothing unreasonable at all with the 
formalisms of reality. The only thing unreasonable is their 
exclusion form scientific investigation because o f bankrupt 
naturalistic philosophy. Directed polymorphisms such as 
tandem repeat unit and number variation, micro and mini 
satellites, highly tailored transcription factor binding sites 
that control the DNA that produced them, programmable 
epigenetic configurable switch-settings, p romotors and 
widely dispersed enhancers are all used by these reserve 
programming modules when called up into upper memory 
in life’s nanocomputers and mind-boggling molecular 
machinery. Down the line of genomic controls from DNA, 
lncRNA alternate splicing and its regulatory function become 
central [138-141]. Life becomes about RNA and riboprotein 
machinery executing cybernetic choice commands: highly 
coordinated alternate splicing [142-148], changing the 
number of tandem repeats to provide immediate adaptation 
[133,149-155], formal organization, structure, development, 
growth, reproduction, and integration of hundreds of disparate 
subcellular formal functions [156-159].

“Beneficial pointless mutations” are almost 
always Prescribed Polymorphisms 

The paucity of beneficial purposeless mutations is severe 
[160]. Even in those extremely rare instances of supposed 
beneficial purposeless mutations, h ow w as i t determined 
that they were not actually prescribed polymorphisms? 
If accompanied by even more deleterious effects than 
the supposed benefit, we c an b e r easonably s ure t hat the 
polymorphism really was a “purposeless mutation.” It is not 
likely to have been commanded by Prescribed Polymorphic 
Adaptation (PPA). But when adaptive new function is 
produced by a polymorphism and its accompanying 
regulation is obviously ingenious, genomic programming is 
highly likely. Failure to recognize this severely skews the 
percentage of purposeless mutations given credit for being 
beneficial.

Conclusions
Prescribed Polymorphic Adaptation (PPA) is the only 

reason bacteria can develop resistance to new antibiotics 
in way too few generation times for such adaptation to be 
attributable to evolution. The Prescriptive Information was 
already there waiting to be called up when needed to adapt. 
In these cases, mutation as we have always conceived of 
mutation is not applicable. The alterations in nucleic acid 
sequences were ultimately prescribed in the same fashion 

as the genome was programmed in the first place, prior to 
any mutations. Active selections at bona fide decision nodes 
alone account for rapid Prescribed Polymorphic Adaptation 
(PPA). Such polymorphisms are directed, not pointless 
mutations. As with many other undeniable formal controls of 
subcellular metabolism attest, a third fundamental category 
of reality exists in addition to Chance and Necessity: Choice 
Causation, not just Physicodynamic Causation. No Choice 
Causation—No programming or cybernetic processing by 
sophisticated molecular machines—No life. “Chance and 
Necessity” is a grossly inadequate view of scientifically 
observable, searchable and discoverable reality. We just 
presuppose genomic programming and its regulation without 
any justification from naturalistic presuppositions. We just 
take initial Prescriptive Information (PI) [13,15] for granted, 
as though it “spontaneously generated” out of thin air. Worse 
yet, we try to attribute it to nothing but typographical errors. 
We only want to talk about PI’s alteration, never about its 
origin. No question is more germane to abiogenesis research 
than PI’s origin [161]. The fittest phenotypes are the fittest 
cybernetically executed programs. The fittest phenotypes are 
integrated symphonies of halted computations. Computations 
are formal, not physical.  Programming choices are formal. 
They have to be made prior to the realization of any 
phenotypic function. Not even evolution selects for function. 
Evolution selects only for fittest already-programmed, 
already-cybernetically processed, already-living organisms. 

How did inanimate nature assign meaning to symbols 
that represent coded instructions? Biosemiotic coding is vast. 
More than 200 biological codes have now been discovered 
[162]. Coding is fundamental to most of life’s processes. 
Life is inherently semiotic [163-165]. Life uses and interprets 
signs and symbols extensively. Barbieri’s Code Biology 
uses standard scientific methods to treat life as a form of 
information processing [166]. The vast findings of medical 
genomics are fast becoming a total embarrassment to old-time 
disingenuous evolutionary biologist arguments. No serious 
geneticist or molecular biologist can any longer sustain the 
gospel of pointless mutations. This is why interest has been so 
great in the reality of nonrandom mutations. But “nonrandom” 
is not synonymous with “directed.” What we empirically 
observe in every area of the cell is formal orchestration of 
a symphony. We observe control, not mere constraint. We 
observe highly integrated circuitry, metabolic intent and goal. 
If directed polymorphisms rather than pointless mutations 
are finally to be acknowledged, the question only becomes 
“What directs those efficacious controlled polymorphisms?” 
The religion of physicalism must be retired if genomics and 
molecular biology are to be included in scientific endeavor. A 
new naturalism is in order that includes nature’s formalisms.
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