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Abstract
The analysis of the bacterial strains is important for understanding 

drug resistance. Despite the existence of dozens of computational tools 
for bacterial strain studies, most of them are for known bacterial strains. 
Almost all remaining tools are designed to analyze individual samples 
or local strain regions. With multiple shotgun metagenomic samples 
routinely generated in a project, it is necessary to create methods to 
infer novel bacterial strain genomes in multiple samples. To fill this gap, 
we developed a novel computational approach called SMS to de novo 
reconstruct bacterial Strain genomes in Multiple Samples. Tested on 702 
simulated and 195 experimental datasets, SMS reliably identified the strain 
number, abundance, and polymorphisms. Compared with two existing 
approaches, SMS showed superior performance.

Keywords: Bacterial strains; Shotgun metagenomics; Zero-inflated 
Poisson; Strain genome reconstruction

Introduction
Bacteria are ubiquitous and play crucial roles in disease progression and 

human health [1-8]. Multiple strains of a bacterial species usually coexist 
in an environmental niche. These strain genomes of the same species are 
different from each other, with small variations such as single nucleotide 
polymorphisms (SNPs), different gene contents, and/or different plasmid 
genes [9]. Such a difference results in different fitness to survive or react to 
stimuli, which is often the cause of different host responses, drug resistance, 
mixed infection, etc. [10, 11]. It is thus important to study and reconstruct 
bacterial strain genomes. Shotgun metagenomic sequencing is routinely 
employed to study microbes and reconstruct bacterial genomes [1, 6, 8, 
12-14]. In shotgun metagenomics, the DNA of all species and strains in a 
clinical or environmental sample is randomly fragmented and sequenced. 
These sequenced DNA fragments called reads are then applied to infer the 
present species, their abundance, functionality, etc. Because reads are short 
and mixed from different species, it is still challenging to study low-abudnant 
species and strains in shotgun metagenomics [15-18]. Moreover, current 
assembly methods usually cannot distinguish different strains of the same 
species, which leaves most studies on taxons no lower than the species level 
and the strain analysis still at its infancy [18, 19]. On the other hand, with 
the sequencing cost dramatically decreasing, multiple shotgun metagenomic 
samples are often available from the same type of environments or clinical 
setups [20-22]. The multiple samples from the same or similar environmental 
niche are likely to share bacterial strains and thus provide an unprecedented 
opportunity to study and reconstruct bacterial strain genomes [20-22]. Dozens 
of computational methods are available to infer bacterial strains from shotgun 
metagenomic reads [16, 23-37]. Most of them rely on prior knowledge of 
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known strains, and they have successfully identified known 
strains while cannot be applied to study new strains that 
commonly exist. A handful of methods that do not depend on 
known strains are thus developed, which can be divided into 
two groups [27, 29, 31-33, 38, 39]. One group defines strain 
variations and strains based on species-specific marker genes, 
which can significantly speed up the process of analyzing a 
large number of species in a microbiome while depending 
on the quality and quantity of the marker genes [32, 38]. The 
other group considers the SNPs across the entire reference 
genomes of a species instead of only the marker gene regions, 
which can delineate the strain genomes in detail and are 
important for studying individual pathogen species [16, 26, 
28, 29]. These methods have shed new light on bacterial 
strains in environmental samples. However, their performance 
is still suboptimal in terms of the predicted strain number 
and abundance. For instance, a recent method, StrainFinder, 
did not have good accuracy in predicting strain SNPs and 
strain abundance, even provided with the correct strain 
number [26, 40]. To accurately identify strains in shotgun 
metagenomic samples, we developed a novel method called 
SMS (Strains in Multiple Samples). Starting from a species 
genome, SMS de novo reconstructs its strain genomes from 
shtogun reads in multiple shotgun metagenomic samples. It 
models the coverage of every strain in individual samples by 
zero-inflated Poisson (ZIP) distributions and classifies SNPs 
with adaptively inferred centers, which enables it to identify 
low-coverage strains and predict strains with high accuracy. 
Tested on 702 simulated and 195 experimental datasets, 
SMS accurately predicted the strain number, abundance, and 
SNPs. Compared with two recent approaches, SMS showed 
much better performance. 

Materials and Methods
SMS reconstructs bacterial strain genomes with a 

reference genome and raw reads in multiple shotgun 
metagenomic samples (Fig. 1). The basic assumption is that 
different SNPs from the same strain follow a common ZIP 
distribution in a sample, and SNPs from different strains 
follow different ZIP distributions in individual samples. 
Assume there are R strains of a species of interest in m 
samples. Starting from the cleaned raw reads, SMS defines 
SNPs based on the reads mapped to the reference. Because of 
the species reference genome, SMS considers only the mixed 
reads in shotgun metagenomic samples that are mapped to 
the reference genome. In other words, SMS considers only 
the reads from one species in the m samples, as most reads 
mapped to the reference genome are likely from the reference 
species. Considering only one species makes sense because 
we often have a pathogen of interest and want to study its 
strains in clinical or environmental samples in practice. With 
the mapped reads, SMS then determines the initial strains 
and their abundance with the pooled sample, the combined 
m samples. Next, SMS refines the initial strains and their 
abundance based on the SNP coverage patterns across 
samples. The rationale is that SNPs from the same strain 
will have more similar coverage patterns across samples 
than SNPs from different strains. Finally, SMS outputs the 
predicted strains and their abundance. The details are in the 
following sections.

Identification of potential SNPs
With reads from the m samples, SMS trims reads, and 

filters low-quality reads with the tool trimmomatic [41]. 

Figure 1: The SMS workflow.
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SMS then maps the cleaned reads to the reference genome by 
bowtie2 [42]. In every sample, SMS obtains a 4 by n sample-
specific matrix composed of the frequencies of A, C, G, and 
T in the mapped reads at each of the n reference genome 
positions. Similarly, SMS acquires a pooled matrix of 4 by 
n for the pooled sample, the sum of the m sample-specific 
matrices. SMS then determines the n' potential polymorphic 
positions based on these m+1 matrices. A reference genome 
position is potentially polymorphic if the following criteria 
are satisfied: 1). It has a coverage larger than 10% of the 
pooled coverage. The coverage of a genome (position or SNP) 
is calculated as the average number of reads mapped to this 
genome (position or SNP); 2). It has at least two nucleotides, 
each with no smaller than 5% of the pooled coverage. Note 
that when the reference nucleotide at a position has fewer 
than 5% of the pooled coverage, the reference nucleotide is 
replaced with the most frequent nucleotide at this position; 
3). Each of its two most frequent nucleotides must occur 
in at least 5% of the m samples. Finally, SMS considers 
all n1 nucleotides with coverage larger than 5% of the 
genome coverage at these positions as potential SNPs, where 
n'≤n1≤3n'. Note that despite the default requirement of at 
least 5% of the pooled coverage for any strain to be identified, 
SMS can identify low-abundance strains in multiple samples. 
A low-abundance strain may account for fewer than 0.01% 
of a metagenome. However, with a few dozen samples, its 
species may already have a reasonable coverage in the pooled 
sample, and SMS will identify each of its strains with at least 
5% of the pooled species coverage in the pooled sample. As 
demonstrated in the following simulated studies, with the 
pooled species coverage 100X, SMS identified strains with a 
pooled coverage of 10X in 214 out of 216 datasets for three 
randomly chosen bacterial species.

Prediction of the strain number and abundance
With the n1 potential SNPs, SMS infers the strain number 

and abundance in four steps. 

First, SMS obtains an initial number of strains and their 
SNPs. SMS applies mixtureS to the above n1 SNPs with 
the pooled sample and outputs the predicted strains and 
their abundance. MixtureS reconstructs the strain genomes 
instead of local strain regions corresponding to marker genes 
from shotgun reads in one sample and has shown good 
performance previously [26, 40]. In this way, the strains with 
different pooled coverage are separated into R strains. R is 
automatically inferred. 

Second, SMS refines the predicted strains so that almost 
all SNPs in an actual strain are assigned to one predicted 
strain. Since the coverage of SNPs from the same strain is 
expected to follow the same ZIP distributions in individual 
samples, the coverage vectors of two SNPs from the same 
strain are more similar than those of two SNPs from different 
strains. Here the coverage vector of an SNP is a vector 

composed of its coverage in the m samples. The similarity 
measurement of two vectors is described in the next section. 
Based on this observation, SMS iteratively regroups the n1 
SNPs into R groups so that SNPs from the same group have 
more similar vectors. Starting from the predicted R strains by 
mixtureS, the majority of SNPs in each of which are likely 
from the same strain, SMS represents each strain by an m by 
1 coverage vector, the average of the coverage vectors of the 
SNPs currently assigned to this strain. SMS then reassigns 
each of the n1 SNPs to the strain with the most similar 
coverage vector to the coverage vector of this SNP. With 
the reassigned SNPs, the coverage vectors of the strains are 
recalculated. This process is repeated a given number of times 
or until the assigned SNPs to each strain do not change. In 
this way, the coverage vector of each predicted strain and the 
assignment of the n1 SNPs become more and more accurate, 
with almost all SNPs from an actual strain grouped together.

Third, SMS investigates whether there are more or 
fewer than R strains. SMS divides each strain into two 
strains, one strain at a time. To determine whether a strain 
should be divided, SMS models each strain in a sample 
by a ZIP distribution, estimates the parameters of the ZIP 
distributions, and calculates the likelihood ratio of observing 
the SNPs in this strain across the m samples to that in two 
divided strains. The details of the ZIP parameter estimation 
and the likelihood testing are in the following sections. A 
strain is divided only when its division significantly increases 
the likelihood (Chi-square test p-value<0.001). If a strain is 
divided, SMS considers whether the two new divided strains 
can be further divided similarly. This process is repeated until 
no strain can be further divided. With all possible divisions 
that significantly increase the likelihood, SMS obtains the 
updated R strains and repeats Step two to reassign the n1 
SNPs to these R strains again. SMS then considers removing 
each strain, one strain at a time. The process is similar to 
dividing a strain based on the ZIP parameter estimation and 
the likelihood test. 

Finally, SMS removes the predicted strains that are 
majorly composed of shared SNPs by multiple strains and 
reassigns their SNPs to the corresponding strains. To remove 
a strain, SMS identifies its consistent strains. Strain one is a 
consistent strain of strain two if every entry in the coverage 
vector of strain one is no large than the corresponding entry 
in the coverage vector of strain two plus a small cutoff. 
Similarly, multiple strains together are consistent with strain 
two if the sum of the corresponding entries in their coverage 
vectors is no large than the corresponding entry in the 
coverage vector of strain two plus the same cutoff. With the 
consistent strains of a strain, SMS constructs a graph, with 
each consistent strain as a node and edges connecting pairs 
of strains that are together still consistent with this strain. 
SMS then identifies the largest cliques in this graph with the 
corresponding groups of strains together consistent with this 
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strain. With a clique identified, SMS removes this strain and 
reassigns its SNPs to all consistent strains in this clique. In 
this way, SMS finalizes the predicted strains and their SNPs. 
The abundance of every strain is calculated as the average 
coverage of the SNPs unique to this strain.

The similarity of two coverage vectors
SMS calculates the similarity of two coverage vectors 

(a_1,a_2,…,a_m) and (b_1,b_2,…,b_m) by a pre-defined 
regression formula: 79.25d+ 43.06(c+c3)-0.04/(0.0025+d), 
where d is the distance between the two vectors, and c is 
their Kendall rank correlation. This formula was constructed 
based on a set of 18 pre-simulated training datasets. SMS 
chooses this similarity measurement, because it shows better 
performance than others, including correlation, Euclendian 
distance, relative entropy, etc. 

ZIP model of a strain in a sample
SMS models the coverage of the SNPs from the p-th strain 

in the q-th sample by a ZIP distribution ZIP(x, πpq, λpq ) when 
the p-th strain occurs in the q-th sample, where	

Assume we have an n1 by m matrix, X=(x_ij ), which 
store the coverage of the above n1 SNPs in the m samples. 
Assume Z=(z_ir ) is the indicator to tell whether the i-th 
SNP belongs to the r-th strain, where  for all i 
from 1 to n1 and zir can be only 0 or 1. Assume Y=(y_jr ) 
is the indicator to show whether the r-th strain occurs in the 
j-th sample, where y_jr can be only 0 or 1. If at least one 
SNP from a strain has a non-zero coverage in a sample, we 
tentatively claim that this strain occurs in this sample. When 
yjr=1, we also define ,  and 

.
To estimate the parameters in the ZIP, for a given strain 

that occurs in a given sample, say the r-th strain in the j-th 
sample (i.e., yjr=1), SMS initializes   
with.  SMS  then uses the following iteration 
method to obtain the maximal likelihood estimation of π_jr and  
λ_jr: first replaces πjr  by  in the 
equation  to obtain an equation of λjr, 
then solves this equation by the Newton’s iteration method. 
Everywhere in this process, if πjr=0, you will directly estimate 
λjr= ajr.

Log likelihood test
Given R strains, the full likelihood of observation the 

frequencies of these n1 SNPs in the m samples is

When SMS splits one strain into two or removes one 
strain, the likelihood can be similarly calculated. To assess the 
significance of changing the current R strains, we calculate 
the ratio of the likelihood after changing (split or remove) 
to the likelihood before changing. The ratio approximately 
follows a Chi-square distribution with the degree of freedom 
equal to the difference of the parameters in the two models. 
If the Chi-square test p-value is smaller than a pre-defined 
cutoff, SMS correspondingly modifies the current R strains.

Simulated and experimental datasets
We simulated 702 datasets (Supplementary Table S1). 

As mentioned above, because SMS uses a species reference 
genome, we only need to consider reads from one species 
in a dataset. We thus simulated data with only one species 
in each dataset. In every dataset, a species reference genome 
was randomly chosen, 2 to 4 strains were simulated, and 5 to 
35 samples were generated. For each reference genome, their 
four strains were generated by randomly choosing 0.01% 
of the genome positions and then randomly substituting the 
reference nucleotide with another nucleotide. This 0.01% 
mutation rate was from previous studies [16, 28], representing 
relatively more similar strains of a species (99.99% sequence 
identities) that are thus more challenging to distinguish 
from each other. The read coverage of a reference genome 
in a dataset was one of the following four coverage, 100x, 
150x, 200x, and 300x. The number of strains and their 
relative abundance in a dataset were specified by one of the 
following five configurations: 10:20:30:40, 10:25:25:40, 
10:30:60, 15:30:55, and 30:70. For a dataset, with the chosen 
configuration and the number of samples, a subset of samples 
were randomly chosen for each strain and the coverage of this 
strain in one of the samples was then randomly determined 
so that the pooled coverage of this strain was the same as 
what was specified in the configuration. With the coverage 
of strains in a sample, paired reads of 100 base pairs long 
were randomly generated using dwgsim. We tested SMS on 
195 experimental datasets [11]. Each dataset is known to 
have two Mycobacterium tuberculosis strains with predicted 
abundance. The abundance is inferred from two different 
computational methods. The actual SNPs in each strain are 
unknown.

Comparison with existing methods
We compared SMS with mixtureS and StrainFinder in 

a desktop computer with the Intel Core i9-9900KF CPU  
(16 cores@3.6GHz) and 32 gigabytes memory. We used the 
following commands to run the three tools respectively:

SMS: python SMS/running.py --output_name %s  
--genome_len %s --genome_name %s --genome_file_loc %s 
--bam_loc_file %s --res_dir %s

MixtureS: python mixtureS/mixture_model.py --sample_
name %s  --genome_len %s --genome_name %s --genome_
file_loc %s --bam_file %s --res_dir %s
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StrainFinder: python StrainFinder/StrainFinder.py --aln 
%s -N %s --max_reps 10 --dtol 1 --ntol 2 --max_time 3600 
--coverage --em_out %s --out_out %s --log %s --n_keep %s 
--force_update --merge_out –msg

Results 
SMS correctly predicted the strain numbers

We studied the number of strains predicted in 702 
simulated datasets (Supplementary Table S1). There were 5 to 
35 samples and 2 to 4 strains in every dataset, with the pooled 
coverage of strains from 100X to 300X. The pooled coverage 
was the sum of the coverage of all strains of a species in all 
samples. The number of strains and their relative abundance 
are specified by one of the following five configurations in 
each dataset: 10:20:30:40, 10:25:25:40; 10:30:60, 15:30:55, 
and 30:70. For instance,  for a dataset with the configuration 
10:20:30:40, the proportion of reads from the four strains was 
10%, 20%, 30% and 40%, respectively.

Overall, SMS predicted the correct strain numbers in all 
but five datasets (Supplementary Tables S2-S5). Interestingly, 
SMS did not predict the correct strain number in at least 
one dataset for each of the three randomly selected species, 
implying that its performance was not species-specific. In 
each of the five datasets, a pair of strains shared 30% of 
their SNPs. In four of the five datasets, three strains shared 
20% of their SNPs. These shared SNPs may have confused 
SMS when the coverage was 100X. When the coverage was 
increased, SMS predicted the correct strain number in each 

of the five corresponding datasets. These analyses suggested 
that SMS can accurately predict the strain number, even when 
the pooled coverage was 100X, and there were only five 
samples in a dataset. Moreover, the predicted strain number 
was even more accurate with a larger pooled coverage (200X 
coverage for perfect prediction here). 

SMS reliably estimated the strain abundance
We investigated how well SMS predicted the strain 

abundance. No matter whether the strain number was 
correctly predicted, the predicted strain abundance agreed 
well with the known strain abundance (Fig. 2, Supplementary 
Tables S2-S5). This agreement did not depend on the sample 
number, the pooled coverage, the strain number, etc.

MAE is the average Maximal Absolute Difference 
between the predicted abundance and the corresponding true 
abundance across datasets.

In the 697 datasets SMS correctly predicted the strain 
number, the predicted strain abundance was within 97.31% 
of the true abundance. The mean and median ratio of the 
predicted abundance to the true abundance were 0.99 
and 1.00, respectively. Even in the five datasets with the 
incorrectly predicted strain number, the predicted strain 
abundance was similar to the true abundance. For instance, 
SMS predicted four strains in three datasets with three strains 
(Supplementary Table S5). In two datasets, two strains had 
a predicted abundance of about 0.08 and 0.29, respectively, 
which were close to the corresponding true abundance of 

 
Figure 2: The predicted strain abundance. A) Unshared datasets; B) Shared datasets; and C) All datasets.

MAE is the average Maximal Absolute Difference between the predicted abundance and the corresponding true abundance across datasets.

http://


Wang S, et al., J Bioinform Syst Biol 2023
DOI:10.26502/jbsb.5107065

Citation: Saidi Wang, Minerva Fatimae Ventolero, Haiyan Hu, Xiaoman Li. SMS: A Novel Approach for Bacterial Strain Analysis in Multiple 
Samples. Journal of Bioinformatics and Systems Biology. 6 (2023): 289-297.

Volume 6 • Issue 4 294 

0.10 and 0.30. The two remaining predicted abundance 
were about 0.42 and 0.21, which differed from the third true 
abundance, 0.60. In the third dataset, one strain was predicted 
with an abundance of 0.31, close to the true abundance of 
0.30. The wrong prediction of the strain number and strain 
abundance was likely due to the third strain’s uneven and 
relatively limited coverage. After increasing the coverage, 
SMS predicted the correct strain number and more similar 
abundance (Supplementary Table S5). 

The accuracy was in general improved with more samples 
and a larger pooled coverage in a dataset (Fig. 2). For 
instance,  when the sample number was larger, the median 
of the predicted abundance was closer to the true abundance, 
and the variation of the maximal absolute difference (MAE) 
between the predicted abundance and the true abundance was 
smaller. The accuracy was not affected much by different 
species or the number of strains in a dataset (Fig. 2). For 
instance, the MAE was within a similar range and with a 
similar mean/median when there were different numbers of 
strains. The small variations suggested that the predicted 
abundance by SMS was robust to different bacterial genomes, 
different numbers of strains, etc.  

 SMS faithfully determined the SNPs
Existing methods mainly focus on the predicted strain 

number and only occasionally consider their abundance. 
Rarely do they mention the accuracy of the predicted strain 
SNPs. With the simulated datasets, we systematically 
evaluated the predicted SNPs. We found that SMS has a 
precision of 0.97 and a recall of 0.96 to predict strain SNPs. 

We studied the datasets without shared SNPs among 
strains (Supplementary Table S6). In all 216 datasets, on 
average, SMS had a precision of 0.98 and a recall of 0.98. 
For a given species with a specified pooled coverage, the 
precision and recall were higher on datasets with more 
samples in general. Similarly, they were generally higher on 
datasets with a larger pooled coverage when the species and 
the sample number were fixed. For instance, for the reference 
species genome NC_009515.1 and the sample number 20, the 
precison increased from 0.98 to 0.99 and the recall increased 
from 0.97 to 0.99 when the pooled coverage  increased from 
100X to 300X.

We also studied the predicted strains on datasets with 
shared SNPs among strains (Supplementary Tables S7-S9). 
We again focused on the two most challenging configurations: 
10:20:30:40 and 10:25:25:40. They were challenging 
because the shared SNPs among strains may have similar 
coverage across samples with SNPs unique to other strains. 
For instance, the shared SNPs between the first two strains 
in the configuration 10:20:30:40 had a relative abundance of 
30%, the same as the relative abundance of the third strain. 
Even with such complexity, SMS on average had a precision 
of 0.97 and a recall of 0.96 on all datasets (Supplementary 

Tables S7 and S8). The performance suggested that SMS 
could reconstruct the complicated evolutionary trajectories of 
strains with shotgun sequencing reads.

SMS performed well on experimental datasets
We tested SMS on 195 experimental datasets 

(Supplementary Table S10). We chose these datasets because 
their strain numbers were known. The strain abundance was 
also predicted previously [11]. Note that the datasets from the 
Critical Assessment of Metagenome Interpretation challenge 
did not provide the strain number, strain abundance and SNPs 
unique to strains, thus not suitable for the strain genome 
reconstruction here [18]. 

SMS identified two strains in each of these 195 datasets, 
which agreed well with the previous study [11]. This study 
showed that there were at least 11 heterozygous sites in 
each of these 195 datasets. Interestingly, SMS showed that 
the two strains in different datasets were the same, which 
was consistent with the fact that these datasets were from 
clinical samples collected from the same region. Moreover, 
SMS distinguished strains with similar abundance in these 
datasets. For instance, in the dataset ERR323056, there were 
69 heterozygous sites observed in reads [11]. SMS predicted 
two strains with a relative abundance of 0.52 and 0.48. The 
previous study based on the SNP frequency identified only 
one strain, likely due to their similar abundance. Since the 
strain abundance was unknown, we compared the predicted 
abundance by SMS and the previous study. The difference 
between the predicted strain abundance to the predicted 
abundance previously had a mean and median of 0.16 and 
0.12, respectively, if we considered only the 186 datasets 
where the previous study correctly predicted the strain 
number.  

SMS reconstructed strain genomes better than 
existing methods

We compared SMS with mixtureS [26] and StrainFinder 
[29]. We did not compare other tools because mixtureS and 
StrainFinder showed better performance previously, and 
other tools may only work for marker gene regions instead 
of on the genome-scale [26]. Since mixtureS works on one 
sample, we ran it on the pooled sample in each dataset. 
Because StrainFinder cannot determine the strain numbers, 
we specified the known strain numbers in the corresponding 
datasets. 

We compared the strain number, abundance and SNPs 
predicted by the three methods. SMS performed much better 
than others (Table 1). For instance, for simulated datasets with 
no shared SNPs among strains, SMS predicted the correct 
strain number in all 216 datasets while mixtureS correctly 
predicted the strain number in 98 datasets. On average, the 
predicted SNPs by SMS had a precision of 0.97 and a recall 
of 0.98, larger than those of mixtureS and SStrainFinder. 
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Moreover, the predicted strain abundance by SMS had an 
average MAE of 0.004, compared with 0.08 by mixtureS and 
0.07 by StrainFinder.

The three columns for each tool are the number 
(percentage) of datasets where the tool predicted the correct 
strain number; the precision, recall and F1 score of the 
predicted strain SNPs; and the average MAE of the predicted 
strain abundance.

We also studied the running time of different methods 
(Supplementary Table S11). SMS took a little more time 
to run than mixtureS. However, the difference was not so 
evident. For all tools, the time cost mainly depended on the 
number of strains and SNPs, instead of the dataset sizes.

Discussion
SMS reconstructs bacterial strain genomes with multiple 

shotgun metagenomic samples. It considers the coverage 
variation of individual strains across samples to distinguish 
strains of the same bacterial species. As demonstrated in 
simulated and experimental datasets, SMS is able to separate 
strains with similar abundance. The capability to separate 
strains with similar abundance is in general improved with 
more samples and larger pooled coverage.

SMS reconstructs bacterial strain genomes with a species 
reference genome and the raw sequencing reads. The 
reference is employed to map the cleaned reads. The chosen 
reference thus does not affect the predicted strain number and 
abundance, as they are inferred from the SNPs in strains that 
come from the mapped reads. SMS defines SNPs with an in-
house procedure, which may affect the quality of individual 
SNPs. However, we do not think that the potential false SNPs 
will affect the predicted strain number and abundance, as 
they are determined by the coverage of the majority of SNPs 
in individual strains. Users may choose existing tools like 
SAMtools [43] to define SNPs in samples. Moreover, since 

reads are mapped to the reference genomes in advance, SMS 
can be applied to general metagenomic datasets instead of the 
simulated shotgun samples for individual species illustrated 
here.   

SMS is not designed for the strain analysis of novel 
species. With more and more sequenced bacterial genomes, 
this issue may not be of concern in the future. Moreover, SMS 
considers only the reference genomic regions to reconstruct 
bacterial strain genomes. It thus does not consider accessory 
genes that are not represented in the chosen reference 
genomes. In this sense, what SMS reconstructs is similar to 
the strain core genomes but may include additional reference-
specific regions. In the future, one may apply other machine 
learning and data mining methods [44-48] to further discover 
accessory genes in strains, with the inferred strain number 
and abundance in samples.  
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