
Research Article

Volume 8 • Issue 1 59 

Same-species Contamination Detection with Variant Calling Information 
from Next-generation Sequencing
Tao Jiang1 and Alison A. Motsinger-Reif2

Affiliation:
1Department of Statistics, North Carolina State 
University, Raleigh, NC, USA Bioinformatics 
Research Center, North Carolina State University, 
Raleigh, NC, USA
2Biostatistics and Computational Biology Branch, 
National Institute of Environmental Health Sciences, 
Research Triangle Park, NC, USA

*Corresponding author:  
Alison A. Motsinger-Reif, Biostatistics and 
Computational Biology Branch, National Institute of 
Environmental Health Sciences, Research Triangle 
Park, NC, USA

Citation: Tao Jiang, and Alison A. Motsinger-
Reif. Same-species Contamination Detection with 
Variant Calling Information from Next-generation 
Sequencing. Journal of Cancer Science and Clinical 
Therapeutics. 8 (2024): 59-69.

Received: December 13, 2023 
Accepted: December 20, 2024 
Published: January 12, 2024

Abstract
Background: Same-species contamination detection is an important 
quality control step in genetic data analysis. Due to a scarcity of methods to 
detect and correct for this quality control issue, same-species contamination 
is more difficult to detect than cross-species contamination. We introduce 
a novel machine learning algorithm to detect same-species contamination 
in next-generation sequencing data using a support vector machine (SVM) 
model.

Methods: In the first stage, a change-point detection method is used to 
identify copy number variations (CNVs) and copy number aberrations 
(CNAs) for filtering. Next, single nucleotide polymorphism (SNP) data is 
used to test for same-species contamination using an SVM model. Based 
on the assumption that alternative allele frequencies in next-generation 
sequencing follow the beta-binomial distribution, the deviation parameter 
ρ is estimated by the maximum likelihood method. All features of a radial 
basis function (RBF) kernel SVM are generated using publicly available 
or private training data.

Results: We provide an R software implementation of the approach, which 
we used to conduct simulation experiments with real data to evaluate 
our approach. The datasets combine, in silico, exome sequencing data 
of DNA from two lymphoblastoid cell lines (NA12878 and NA10855). 
We generated variant call format (VCF) files using variants identified in 
these data and then evaluated the power and false-positive rate. In these 
real data, the approach detected contamination levels as low as 5% with 
a reasonable false-positive rate. The results had sensitivity above 99.99% 
and specificity of 90.24%, even in the presence of degraded samples with 
similar features as contaminated samples.

Conclusions: Our approach uniquely detects contamination using variant 
calling information stored in VCF files for DNA or RNA. Importantly, 
it can differentiate between same-species contamination and mixtures of 
tumor and normal cells. Accordingly, it represents an important tool that 
can be applied within the quality control process..

Keywords: Same-species contamination; Variant call format; Support 
vector machine; Machine learning: Beta-binomial distribution.

Introduction
High-throughput next-generation sequencing (NGS) has advantages over 

traditional Sanger sequencing and microarrays in terms of accuracy, cost, and 
speed [1, 2]. As NGS technologies have matured, best practices for quality 
control and data processing procedures have been developed [3]. Detecting 
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sample contamination is a necessary quality control step for 
the NGS data analysis pipeline because contamination can 
occur during sample preparation and sequencing analysis. 
Sample contamination affects downstream sample analysis 
and may even generate misleading results, leading to false-
positive associations and genotype misclassification [4]. 

Contamination happens when a sample contains tissues 
from more than one source and can occur in NGS samples 
for various reasons. Despite best practices, the use of unclean 
lab devices can introduce unexpected materials such as 
mycoplasma [5]. This occurs in projects of all scales, including 
the large-scale 1000 Genomes Project [6]. Contamination can 
also arise from sample handling, sample extraction, library 
preparation and amplification, sample multiplexing, and 
inaccurate barcode sequencing [7]. Existing contamination 
detection methods are mainly based on sequencing and allele 
frequency information for samples and can be categorized 
into two groups based on the source of contamination: cross-
species contamination and same-species contamination. 

Cross-species contamination has been well-studied, and 
modern metagenomics approaches are extensions of cross-
species contamination detection approaches. There are 
several methods for detecting cross-species contamination 
[8-11]. For example, [10] developed DeconSeq, a framework 
for identifying and removing human contamination from 
microbial metagenomes during sequencing alignment. [1] 
scanned samples from Bos taurus, the domestic cow, using 
microbiome analysis software and found small contigs 
from microbial contaminants. In these approaches, data 
are generally assembled from available Sanger reads for 
known species, and then the unmapped contigs within the 
assembly are classified by k- mer matching to a RefSeq 
database containing all bacteria, archaea, and viruses. The 
presence of contigs that align with other genomes is a sign of 
contamination. 

In contrast, detecting same-species or within-species 
contamination is more challenging, and there are few valid, 
robust approaches. The most commonly implemented 
approach and the earliest developed is ContEst [12], a 
module in the Genome Analysis ToolKit (GATK) software 
[13]. ContEst uses a Bayesian method to calculate the 
posterior probability of a specific contamination level and 
find the maximum a posteriori probability (MAP) estimate 
of the contamination level at homozygous loci. Assuming a 
uniform prior distribution, Uni f (0, 1), on the contamination 
level, the posterior distribution of the contamination level is 
proportional to the joint distribution of observed alleles, given 
the base-calling qualities and the probability of observing 
true alleles in a contaminated sample. Thus, ContEst requires 
variant call format (VCF) and binary alignment map (BAM) 
input and general population frequency information such as 
base identities and quality scores from sequencing data.

Another approach, the VerifyBamID package, detects 
same-species contamination of human DNA samples in 
both sequence- and array-based data [4]. VerifyBamID 
implements likelihood- and regression-based approaches 
that assume a tested DNA sample contains no more than 
one contaminant. The probability of a sample having a 
particular contamination level is maximized through a grid 
search over each contamination level. While VerifyBamID 
has demonstrated good sensitivity in real-data experiments, 
copy number alterations (CNAs) in tumor samples shift 
allele frequencies away from those outside CNA regions, 
resulting in the misinterpretation of copy number-driven shift 
as contamination [14]. To address this, the Conpair method 
builds on the statistical model introduced in VerifyBamID 
and focuses on homozygous loci to detect additional sources 
of same-species contamination in samples containing a 
mixture of tumor and normal cells from the same individual 
[14]. Given that homozygous markers are invariant to 
copy number changes, Conpair uses pre-selected, highly 
informative genomic homozygous markers to perform 
contamination detection. 

More recently developed methods use haplotype structure 
for contamination detection in NGS data [15]. In one 
approach, closely spaced single nucleotide polymorphism 
(SNP) pairs within a sequencing region are identified from 
the 1000 Genomes database [16], and read haplotypes 
are inferred for the selected SNP pairs. A human-human 
admixture is suggested if more than two read haplotypes are 
observed at a given locus in a sample. The estimated level of 
contamination for each sample is twice the mean frequency 
of the minor haplotype. 

Current approaches for same-species contamination 
detection have been successful in a broad range of applications, 
but there are major limitations. We address these limitations 
with our approach, which provides substantial improvements 
in both the practical implementation of quality control 
procedures and the statistical model used. While existing 
approaches rely on sizeable human reference genome data 
as well as at least two large, memory-intensive files, either 
tumor and normal BAM files (Conpair), or VCF files and 
BAM files (VerifyBamID and ContEst), our method directly 
uses information in VCF files through a combination of beta-
binomial assumption and support vector machines (SVMs) 
to detect same-species contamination. Even for tumor-
normal paired samples, which are common for individuals 
with cancer, no additional information is required. The 
change points of B-allele frequencies (from the VCF file) 
are detected and then all chromosomes are separated into 
shorter sequences. Sequences overlapping any copy number 
variations (CNVs) or aberration regions are detected and 
filtered. We applied this method in both real and simulated 
data and found that it has excellent sensitivity and specificity 
for both types of data. To assist in real-data applications, we 
developed an R package implementation of the method.
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Materials and Methods
Features in the support vector machine (SVM)

All SNPs distributed across chromosomes are classified 
as either homozygous (1/1) or heterozygous (0/1). The loss of 
heterozygosity (LOH) value is the ratio of heterozygous SNP 
loci to homozygous SNP loci. A large LOH value means a 
sample has more heterozygous SNP loci.

 Each SNP locus has a respective B-allele frequency 
(BAF), which is the percentage of the depth alternative 
allele from the total depth at each SNP locus. For example, 
BAF ∈ [0, 1] and three cut-off values could be applied to 
separate the support set of BAF, [0, 1], into four sub-regions: 
HomRate [0.99, 1], HighRate [0.7, 0.99], HetRate [0.3, 
0.7], and LowRate [0, 0.3]. A pure sample would then be 
expected to have higher HomeRate and HetRate values than 
a contaminated sample.

1. 	 HomRate is the number of loci with BAF [0.99, 1] over 
the total number of SNP loci in a sample.

2. 	 HighRate is the number of loci with BAF [0.7, 0.99] over 
the total number of SNP loci in a sample.

3. 	 HetRate is the number of loci with BAF [0.3, 0.7] over the 
total number of SNP loci in a sample.

4. 	 LowRate is the number of loci with BAF [0, 0.3] over the 
total number of SNP loci in a sample.

For SNP loci distributed within the HomRate region 
as defined above, the variance of BAF values is defined as 
HomVar. HetVar is calculated using a similar procedure. A 
pure sample is expected to have lower HomeVar and HetVar 
values than a contaminated sample. 

The BAF of an SNP locus is assumed to follow the beta-
binomial distribution. A reference sample assumed to be 
pure is used to calculate the maximum likelihood estimators 
for parameters 𝑝 and 𝜌 in the beta-binomial distribution. 
Subsequently, the log-likelihood values of all SNP loci in 
the sample are summed. For comparability purposes, the log-
likelihood sum is then divided by the number of loci in each 
sample, so that the final outcome is the average log- likelihood 
across all loci in a sample. A pure sample is expected to have 
a higher average log-likelihood value than a contaminated 
sample.

Tunable hyper-parameters
Two hyper-parameters—the soft margin constant 𝐶 

and the inverse-width parameter of Gaussian kernel 𝛾—are 
optimized using grid search and cross-validation. Grid search 
is used to explore the two-dimensional space (𝐶, 𝛾). The 
grid points of 𝐶 are chosen on an exponential scale of (2−4, 
212), and the grid points of 𝛾 are chosen between (2−4, 24). 
Sensitivity and specificity are estimated for each point on the 
grid.

Simulation and real application studies
Change-point analysis for approximate copy number 

region detection: If the copy number information of a sample 
is not provided, change-point analysis can be conducted to 
find its copy number regions. The rmChangePoint() function 
included in the vanquish package imports cpt.var() from a 
change-point package [17]. The pruned exact linear time 
(PELT) method [17] and the Changepoints for a Range of 
PenaltieS (CROPS) algorithm [18] are employed to search 
for variance changepoints. Figure 1A plots the B-allele 
frequencies between 0.05 and 0.95 of corresponding loci in 
the input VCF files. In the CNV patterns, the red vertical lines 
indicate where variance changes were detected. The plot is 
separated into sections by these change points. If more than 
10% of loci have a B-allele frequency between 0.45 and 0.55 
and the skewness is higher than 0.5, the section is included in 
further analysis. Figure 1B shows the result after filtering. See 
the documentation of the vanquish package for more details.

Beta-binomial parameter estimation for reference 
samples: To calculate likelihood-based features for further 
analysis, maximum likelihood estimators of ρ for beta-
binomial distribution of heterozygous and homozygous 
models are estimated. For the B- allele frequency, the 
theoretical value of parameter 𝑝 is 0.5 in the heterozygous 
model and 1 in the homozygous model. 𝑝 is fixed at 0.5 and 

Figure 1: Change-point analysis for copy number region detection. 
The Y-axis shows the B- allele frequency, and the X-axis shows the 
location number of each variant from chromosomes 1 to 22. (A) is 
before copy number region filtering. Red lines indicate the variance 
change based on detection results. (B) is after copy number region 
filtering when most copy number patterns have been removed.
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0.999 to search for ρ in the corresponding model. L-BFGS-B 
[19] is applied for maximum value searching. For instance, 
NA10855 was chosen as a reference sample, and five 
replicates were sequenced by Q2 Solutions. The maximum 
likelihood estimator of ρ in each sample was estimated by the 
ρ estimating function in the vanquish package (Table 1). The 
sample averages were used for further analysis. The value of 
the estimator highly depends on the variant caller, so using 
the same variant caller for the reference sample, training 
sample, and test samples is recommended.

Features in the classification and regression models
To train the classification and regression model, 238 

samples were sequenced by Q2 Solutions as a training data set. 
Of the 238 samples, 124 were pure and 114 were contaminated. 
Briefly, genomic DNA was sheared to an average fragment 
size of 200 bp or 300 bp on Covaris S220 (Covaris). Ten 
nanograms of fragmented DNA was used as input for the 
library preparation. Samples were sequentially end-repaired, 
A-tailed, and adapter-ligated. Aliquots were analyzed for 
quality control on a 0.4% agarose gel containing ErBr, which 
was subjected to an electric potential of 58 V for a duration 
of 1.75 hours. The libraries for each sample were synthesized 
using the 10X Genomics Chromium Genome kit following the 
manufacturer's protocol. Each library underwent sequencing 
on a single lane of an Illumina HiSeqX platform. The raw 
sequence data underwent demultiplexing and conversion into 
barcode and read data FASTQ files using the 10X Genomics 
Long Ranger mkfastq version 2.2.1. Using the TruSeq DNA 
PCR-Free sample preparation kit (Illumina Inc., San Diego, 
CA, USA), sequencing libraries were generated following the 
recommendations of the manufacturer, and index codes were 
added. The library quality was evaluated with the Qubit@ 
2.0 fluorometer (Thermo Scientific, CA, USA) and Agilent 
Bioanalyzer 2100 device. Finally, the Illumina NovaSeq 
6000 platform was used to sequence the library. 

Some samples were purposely contaminated in a wet lab, 
and others were simulated in silico by two pure FASTQ format 
files [20]. The B-allele frequency patterns differ between 
pure and contaminated samples. Only the heterozygous loci 

detected in samples are plotted in Figure 2. Pure samples 
(Figure 2A) have a narrow horizontal band, and contaminated 
samples (Figure 2B) have a relatively uniform distribution 
for B-allele frequency. Eight boxplots, along with t-tests (null 
hypothesis of no differences), show the difference between 
pure and contaminated samples for each feature (Figure 3). 
Among the eight features, HomVar, HetVar, and HighRate 
had significant P-values of 1.786−9, 1.750−6, and 4.540−20, 
respectively.

Tuning cost and gamma parameters in the radial 
kernel SVM

We used the Monte Carlo method (1000 times) and tune () 
from R package e1071 to tune the cost and gamma parameters 
in the SVM. The 238 samples were split into training (70%, 
167 samples) and test (30%, 71 samples) sets. For the training 
set, we used grid search to tune the cost parameter in the 
range of (2−4, 212) and the gamma parameter in the range 
of (2−4, 24). We then calculated sensitivity and specificity 
from the test set using tuned cost and gamma. Table 2 shows 
the results of the Monte Carlo simulation, including median 

  Heterozygous ρˆ Homozygous ρˆ
NA10855-1 0.154 0.0269

NA10855-2 0.223 0.0253

NA10855-3 0.177 0.021

NA10855-4 0.187 0.031

NA10855-5 0.169 0.0274

Sample mean 0.182 0.0263

Table 1: Maximum likelihood estimator ρˆ of NA10855 samples. 
ρˆ of heterozygous and homozygous models was estimated for each 
sequencing replicate. The sample mean can be used for generating 
features from the training data set.

Figure 2: Difference in allele frequency between pure and 
contaminated curves. A) Example of a pure sample of exome 
sequencing data of DNA from NA24143, a lymphoblastoid cell line. 
B) Example of a contaminated sample of exome sequencing data 
from a multiplex reference.
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values of cost (16) and gamma (0.25) and mean values of 
sensitivity (97.65%) and specificity (96.27%). We used the 
tuned cost and gamma parameter in a radial kernel SVM 
model for contamination prediction.

Results
Beta-binomial model of allele frequency in next-
generation sequencing (NGS)

Our method is designed for human applications and 
assumes a diploid genome. For each locus that contains 

a single nucleotide variant (SNV) called from NGS data, 
we define the allele frequency as the number of counts for 
the alternative (non-reference genome) allele over the total 
number of depth. For any diploid genome, if an individual is 
homozygous for the alternative allele (denoted as alternative/
alternative, 1/1), the expected allele frequency is 1; if an 
individual is heterozygous (denoted as reference/alternative, 
0/1) at a locus, 0.5 is the expected allele frequency. These 
theoretical expectations motivated our use of the binomial 
distribution for the number of reads at each locus,

Figure 3: Boxplots of all features for pure samples (n=124) vs. contaminated samples (n=114). Among the eight t-tests (null hypothesis of no 
difference), HomVar, HetVar, and HighRate had significant P-values of 1.786−9, 1.750−6, and 4.540−20, respectively.

Median cost Median gamma Average sensitivity Average specificity
16 0.25 97.65% 96.27%

Table 2: Monte Carlo test results for parameter tuning and performance testing.
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where 𝑛 is the total number of depth at the locus, 𝑝 is the 
theoretical allele frequency, and 𝑥 is the number of counts for 
the alternative allele.

While a simple model is intuitively appealing, previous 
studies have discovered extra binomial dispersion, 
specifically, overdispersion of allele frequency distributions 
[21-24]. This overdispersion results in higher variability than 
binomial distribution, so a distribution that models such large 
variance is needed. Previous studies have demonstrated the 
beta-binomial distribution as an appropriate model for allele 
frequencies at a particular locus in a subpopulation [25, 26]. 
The beta-binomial distribution is a discrete hierarchical model 
containing the beta distribution and binomial distribution, 
where the probability follows the beta distribution and the 
response follows the binomial distribution. Hence, the 
probability mass function of the beta-binomial distribution is

where 𝑛 is the total number of reads at the locus; 𝐵  
(𝑎,𝑏) is the beta function theoretical allele frequency; and 𝑥 
is the number of counts for the alternative allele. This model 
has been applied in several studies, and the advantages of 
beta-binomial distribution compared to binomial distribution 
when dealing with overdispersion have been repeatedly 
demonstrated [25, 26]. Prior work using this model motivates 
our use of the beta-binomial distribution.

Quality control of variant call format (VCF) files

The input format for our method is the well-established 
VCF format [27]. To our knowledge, ours is the first 
method to detect same-species contamination using VCF. 
VCF files contain all the SNV information required in the 
subsequent steps, but quality control is needed to filter noise 
and unnecessary information. Because they use various 
algorithms, different variant calling tools generate different 
allele frequency patterns. It is strongly suggested that the 
same software is used for training and testing data to ensure 
that the features in models are consistent and the classification 
or regression results are accurate. The recommended quality 
control and processing steps are outlined below and represent 
additional quality control steps beyond the processing 
conducted to produce the VCF files.

Step 1: Insertion/deletion (indel) filtering 

SNVs (not CNVs such as indels) are used as substitution 
variants. Only substitution mutations result in heterozygous 
and homozygous genotypes that can be appropriately 
modeled by the beta-binomial distribution. Indels, identified 
as any mutation segments with a length of more than one base 
pair, are thus filtered/dropped in this step.

Step 2: Homozygous and heterozygous genotype calling 

The genotypes for modeling are then called, generating 
new information that summarizes the genotype in reference 
to the alternative allele. For any SNV, there is a homozygous 
and heterozygous genotype for an alternative allele. Suggested 
genotypes are listed in the GT (genotype) field of the VCF file, 
where 0/0 is a homozygous reference, 0/1 is a heterozygous 
reference (“Het”), and 1/1 is a homozygous alternative 
(“Hom”). This results in two categories of called variants, 
each of which corresponds with its own beta-binomial model. 
Homozygous references (0/0) and heterozygous genotypes 
(1/2, 2/3, and so on) are labeled as “Complex” and are not 
included in further calculations.

Step 3: Low- and high-depth filtering 

This step identifies whether a sequence is a true call or a 
sequencing error by setting thresholds for coverage depth. A 
reasonable read-depth threshold should be chosen according 
to the average read depths of a testing sample. Read depths 
>50 provide acceptable sensitivity and specificity for mutation 
detection [28].

Step 4: Change-point detection for CNVs

The features of a pure sample with a CNV region are 
similar to those of a region with more than one contributor (i.e., 
same-species contamination). Hence, the CNV region must 
be filtered before generating features. If CNVs have already 
been generated, the function vanquish::defcon() can directly 
filter the CNV region. Otherwise, a change-point detection 
method is used to detect the CNV region. Variances of BAF 
(alternative allele frequency) at heterozygous loci have been 
reported to differ among normal, duplication, deletion, and 
LOH [29]. Therefore, change-point analysis can be employed 
to detect the change point of variance (i.e., the border of a 
copy number region). The change-point package is applied 
only for heterozygous positions to search for multiple change 
points of variance [17].

Distribution and likelihood-based features
The next step of our approach generates variables/features 

used in a model to predict same-species contamination in 
a sample. Two types of features are generated and used in 
model building: distribution-based features and likelihood-
based features.

Distribution-based features are generated using allele 
frequency, which is a real number between 0 and 1. Allele 
frequency is categorized into four regions, as shown in Figure 
4: low alternative allele frequency (LowRate), heterozygous 
alternative allele frequency (HetRate), high alternative allele 
frequency (HighRate), and homozygous alternative allele 
frequency (HomRate). Figure 2 shows the difference between 
pure and contaminated curves. 

The model-building steps generate eight distribution-
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based features, which are shown in Table 3. These features 
reflect the distribution of allele frequencies in an entire file, 
instead of at each variant calling position. Therefore, each 
input sample/VCF file is represented by one set of features.

 The likelihood-based feature is the average likelihood of 
all loci in a VCF file, calculated by applying the beta-binomial 
distribution. Using a reference genome, the maximum 
likelihood estimator is calculated for parameters 𝑝 and 𝜌 in 
the beta-binomial distribution. The log-likelihood of all loci 
is calculated with 𝑝ˆ and 𝜌ˆ, generating their average value.

Support vector machine model
After generating features, a classification method 

determines whether a sample is from a single or multiple 
contributors. Utilizing the e1071 R package [30], an SVM 
model is applied because of the complexity of pattern 
recognition within the feature space [31]. The SVM method 
fits a hyperplane between single and multiple contributor 
regions for optimal classification determination. Since a linear 
model is not guaranteed, the Gaussian radial basis function 
(RBF) kernel is used to avoid parametric assumptions. As 

part of the SVM analysis, the cost and gamma parameters 
are tuned using the parallel searching method. A grid search 
is conducted on an exponentially growing sequence of cost 
and gamma parameters to find optimized paired values. The 
estimated parameters may differ depending on the training 
data set.

R package: Variant Quality Investigation Helper
Our novel approach detects same-species or within-

species contamination using BAF from only variant call 
information. The contamination detection procedure 
comprises the following steps, also outlined in Figure 5:

Step 1: The VCF generated by a variant caller is read into R 
using the vanquish:: read_vcf function. The supported variant 
callers are GATK, VarDict, and strelka2.

Step 2: CNV regions in the VCF file are detected and filtered 
using the vanquish:: update_vcf function.

Step 3: Features for the radial kernel SVM model are 
extracted from each sample using the vanquish::generate_
feature function.

Step 4: Parameter cost and gamma for kernel SVM are tuned.

Step 5: Contamination of a test sample is predicted.

The ability of our approach to determine contamination 
can be affected by two scenarios. First, normal-tumor samples 
comprising a mixture of tumor and normal cells from the same 
individual may be misclassified as contaminated. Second, 
for test samples of very low quality, it may be impossible to 
determine a clear BAF pattern, so they will not be considered 
contaminated.

Results of tests with simulated data
To apply our method in real data, we used two reference 

samples from the 1000 Genomes Project [32], NA12878 and 
NA10855, sequenced at Q2 Solutions. We obtained two pairs 
of FASTQ format files from sequencing results and resampled 
and mixed them to different proportions using seqtk [33], 

Name Description

LOH Het/Hom, the ratio of heterozygous and homozygous 
markers within a sample

HomRate The percentage of the loci in the HomRate region

HighRate The percentage of the loci in the HighRate region

HetRate The percentage of the loci in the HetRate region

LowRate The percentage of the loci in the LowRate region

HomVar The variance of allele frequencies in the HomRate 
region

HetVar The variance of allele frequencies in the HetRate 
region

Table 3: Classification model features and their descriptions

Figure 4: Allele frequency categorization. Allele frequency is 
categorized into four regions: low alternative allele frequency 
(LowRate), heterozygous alternative allele frequency (HetRate), 
high alternative allele frequency (HighRate), and homozygous 
alternative allele frequency (HomRate). Figure 5: Contamination detection procedure steps.



Jiang T and Motsinger-Reif AA., J Cancer Sci Clin Ther 2024
DOI:10.26502/jcsct.5079225

Citation:	Tao Jiang, and Alison A. Motsinger-Reif. Same-species Contamination Detection with Variant Calling Information from Next-generation 
Sequencing. Journal of Cancer Science and Clinical Therapeutics. 8 (2024): 59-69.

Volume 8 • Issue 1 66 

as shown in Table 4. For this simulated test, we treated 
NA12878 as the sample and assumed that NA10855 was 
mixed into the NA12878 sample at percentages ranging from 
0.5% to 20%. We calculated the detection rate for various 
levels of contamination. There was a total of 50 million reads 
for the six mixture samples. Contamination percentages 
above 5% were readily detected while lower percentages 
were not (Table 2). Accordingly, the detection analysis has 
sensitivity above 5% contamination. For contaminants with 
less similarity to the sample with which they are mixed, the 
detection sensitivity will be lower; on the other hand, for 
contaminants with greater similarity, contamination detection 
will be more challenging.

Results of tests with real data
After quantitative simulation testing, we applied the 

trained model in a set of real data comprising 22 samples. 
Table 5 displays the range of cell types and samples used, and 
the results. The samples are ranked by regression values from 
e1071::svm(). While predictions for 20 of the 22 samples 
were correct according to prior identification, two human-T-
lymphoblast samples (see bold text in Table 5) were predicted 
as pure but were contaminated. In response, we checked the 
B-allele frequency distribution for these two samples (Figure 
6). The middle area of the CNV pattern was shifted lower 
from 0.5 to 0.3, indicating the samples were tumor-normal 

Sample Component Reads (NA12878) Reads (NA10855) Test Results

NA12878 (80%) + NA10855 (20%) 40M 10M Contaminated

NA12878 (90%) + NA10855 (10%) 45M 5M Contaminated

NA12878 (95%) + NA10855 (5%) 47.5M 2.5M Contaminated

NA12878 (97.5%) + NA10855 (2.5%) 48.75M 1.25M Pure

NA12878 (99%) + NA10855 (1%) 49.5M 0.5M Pure

NA12878 (99.5%) + NA10855 (0.5%) 49.75M 0.25M Pure

Table 4: Contamination detection for a simulated data series (M: million).

Sample Name Classification Regression Prior Identification

Human B-Lymphocyte L8 1 1.9243094 1

Human B-Lymphocyte 2 L20 1 1.9209875 1

Human Breast 2 L16 0 1.483925 0

Human Breast L4 0 1.463376 0

Human T-Lymphoblast 2 L21∗ 0 1.3622305 1

Human T-Lymphoblast L9 0 1.3472358 1

Human Brain L3 0 1.3147938 0

Human Brain 2 L15 0 1.303287 0

Human Testis L12 0 1.245767 0

Human Cervix 2 L17 0 1.2429423 0

Human Testis 2 L24 0 1.2424441 0

Human Cervix L5 0 1.203943 0

Human Macrophage L10 0 1.158416 0

Human Macrophage 2 L22 0 1.1582528 0

Human Liver 2 L18 0 1.1442246 0

Human Liposarcoma L7 0 1.1406007 0

Human Liposarcoma 2 L19 0 1.132044 0

Human Skin 2 L23 0 1.1209464 0

Human Skin L11 0 1.1194772 0

Human Liver L6 0 1.1170909 0

Human Reference DNA Male L1 0 1.0945151 0

Human Reference DNA Male 2 L13 0 1.0906951 0
∗This is a mixture of tumor and normal cells. See Figure 4 for the B-allele frequency distribution of this sample.

Table 5: Contamination detection for a real-data series. Predictions for 20 of the 22 samples were correct according to prior identification. Two 
human T- lymphoblast samples (bold text) were predicted as pure but were contaminated.
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Figure 6: A sample that was incorrectly classified as pure by 
vanquish::defcon() but was contaminated. The CNV pattern is 
shifted lower from 0.5 to 0.3 because the sample was a mixture of 
tumor-normal cells from the same individual.

Figure 7: Degraded formalin-fixed paraffin-embedded (FFPE) 
tissue. This sample produced a false-positive prediction result 
because of the similarity of its features with those of contaminants.

Figure 8: Run time of CNA region removal and feature generation 
with Dell R820 (512GB of RAM). A) Average run time for change-
point detection. B) Average runtime for feature generation.

cells from the same individual. The distance of the shift in 
the CNV pattern reflects the percentage of tumor and normal 
cells in a sample. 

We tested the model with a second data set comprising 
53 samples. Twelve samples were purposely mixed with 
a contaminant, and 41 samples were pure. The test results 
showed sensitivity > 99.99% and specificity of 90.24%. 
Four false-positive samples were detected by our method. 
These false positives were all in formalin-fixed paraffin-
embedded (FFPE) tissue samples that were likely degraded 
(Figure 7). The false positives may be because the features 
generated from a degraded sample are similar to those from a 
contaminated sample.

Discussion
In this study, we introduce a novel strategy to detect 

same-species contamination using BAF from only variant 
call information. We produced an R package, vanquish: 

Variant Quality Investigation Helper, for real-data 
applications. Results on simulated data with a range of 
contamination levels indicate that our method is sensitive 
to even low levels of contamination, with an extremely low 
false-positive rate. We followed up with additional analyses 
using real data on a range of tissue types, with different 
sample preparations. The results again indicate our method 
has excellent performance, with outstanding sensitivity and 
few false positives. Upon further inspection, the few false 
positives were from FFPE samples and likely occurred due 
to degradation of the samples. 

The user-friendly R package enables rapid detection of 
same-species contamination. Uniquely, our tool performs 
this important quality control step from VCF files, resulting 
in improvements to performance and memory requirements. 
Figure 8 summarizes the run time of CNA region removal 
and feature generation (Hardware: Dell R820, 512GB of 
RAM). We ran five samples without a known change point 10 
times each, with a uniform maximum number of runs of the 
algorithm, to determine the average run time. Following our 
expectation, larger samples require more run time for change-
point detection and feature generation. Samples with more 
change points also require a longer run time. 
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As demonstrated in our data analysis, for samples with 
both tumor and normal cells, a shift in the CNV distribution 
reflects the proportion of the cell types. Estimating the 
percentage of tumor cells within a sample is an active area 
of bioinformatics research [34]. In ongoing work, we are 
extending the method to produce quantitative estimates.

Conclusions
While cross-species contamination in NGS is well-

studied, few approaches have been proposed for detecting 
same-species contamination. In the current study, we 
demonstrate a machine learning approach that uses reference 
samples to build an SVM that classifies samples as either 
pure or contaminated. The growing number of available 
reference genomes available through initiatives such as the 
1000 Genomes Project allows end-users to readily access 
and download reference samples. We demonstrate the 
utility of our approach with both samples mixed in silico 
and samples mixed at the bench. Our method has excellent 
sensitivity, with controlled false positives across a range of 
contamination levels and tissue and cell types. One of the 
major advantages of our approach is that it can be performed 
after variant calling, allowing the user to interact efficiently 
with the VCF file only.
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