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Abstract 

Pathological complete response (pCR) to neoadjuvant 

chemotherapy (NAC) is correlated with better 

outcomes for breast cancer, especially for triple 

negative breast cancer (TNBC). We developed RNA 

expression classifiers from a model of breast 

epithelial cell organization to predict which patients 

will achieve pCR to NAC, and which will have 

residual disease (RD). An exclusive collection of 

retrospective formalin-fixed, paraffin-embedded 

(FFPE) pretreatment biopsies from 222 multi-

institutional breast cancer patients treated with NAC, 

including 90 TNBC patients, were processed using 

standard procedures. A novel strategy using machine 

learning algorithms and statistical cross-validation 

were used to develop predictive classifiers based on 

AmpliSeq differential gene expression analysis of 

patient samples. Two RNA expression classifiers of 

18 genes and 15 genes applied sequentially to the 

total cohort, classified patients into three distinct 

classes which accurately identified 83.75% of pCR 

and 86.62% of RD patients in the total population, 

and 92.10% of pCR and 80.77% of RD patients in the 

TNBC subset. This new approach identified a subset 

of TNBC patients predicted to have RD showing 

significantly higher levels of Ki-67 expression and 

having significantly poorer survival rates than the 

other TNBC patients. Stratification of patients may 

allow identification of TNBC patients with the worst 

prognosis prior to NAC, allowing for personalized 

treatments with the potential to improve patient 

outcomes. 

 

Keywords: pCR; RD; NAC; BRGLM 

 

1. Introduction 

Breast cancer incidence has not changed significantly 

over the last few decades.  Mortality trends have 

significantly improved with 79% survival from 1984 

through 1986 and 91% survival in 2008-2014 in 

accord to the American Cancer Society annual report. 

This improvement in survival is primarily seen in 

hormone receptor positive and HER-2 positive 

subtypes.  The triple negative subtype has lagged 

behind the others and until recently was limited to 

non-targeted treatments [1]. A seminal meta-analysis 

of multiple trials published in 2014 confirmed that 

patients who have achieved a pathological complete 

response (pCR) to chemotherapy given prior to 

surgery, neoadjuvant chemotherapy (NAC), have 

improved survival [2]. They demonstrated that the 

more aggressive subtypes, triple negative and HER-

2/neu positive, had increased frequencies of 

pathological complete response with improvement in 

event free and overall survival. Outside of a clinical 

trial setting, this was confirmed in a real-world 

setting showing that pCR can be applied as a 

surrogate endpoint for survival especially in triple 

negative breast cancer (TNBC) [3].  

 

Unfortunately, TNBC which represents about 15-

20% of all breast cancer, is a heterogeneous disease 

with distinct molecular subtypes.  In 2013 an initial 

publication looked at the differential response 

retrospectively to NAC in 130 patients stratified by 

the 7 molecular subtypes defined for TNBC at that 
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time. The basal-like 1 subtype had the highest pCR of 

52% and the lowest was seen in the basal-like 2 at 

0% [4].  A revised classification defined 4 TNBC 

subtypes [5] with significant differences in 

presentation, response to treatment, sites of 

metastatic disease and prognosis [6]. There have been 

innumerable publications looking into revised 

molecular classifications of TNBC and response to 

NAC therapy which is summarized by Garrido-

Castro in 2019 [7]. In unselected patients with 

TNBC, BRCA mutations were found in 

approximately 20% of patients. Due to deficiencies in 

BRCA-associated DNA repair mechanisms, DNA 

damaging agents play a role in TNBC. This is 

demonstrated in studies utilizing platinum-based 

regimens as well as poly (ADP-ribose) polymerase 

PARP inhibitors in both sporadic patients with TNBC 

and those with germline mutations in BRCA 1 and 2 

[8, 9].  

 

Additional studies also implicate the tumor 

microenvironment, in particular tumor infiltrating 

lymphocytes and PD-L1 status, in outcomes and 

responses to chemotherapy [10, 11]. Multiple studies 

in patients with TNBC in the metastatic and 

neoadjuvant setting have demonstrated impressive 

increases in pCR [12, 13], The development of new 

strategies for the treatment of TNBC holds promise 

for patients and expression biomarkers can help guide 

which patients may benefit the most of these new 

approaches with a goal of escalating or deescalating 

treatment as appropriate. The unresolved question 

remains, is there a biomarker or biomarker panel that 

can assist in determining response to standard and 

still currently recommended (NCCN Guidelines May 

2020; NCCN.org) anthracycline/taxane based 

chemotherapy? Can we do better with our choices in 

the neoadjuvant setting, with greater certainty in 

response and reduction in utilization of increased 

numbers of drugs which result in both financial and 

personal toxicity?. We have previously described a 

novel strategy to develop RNA expression classifiers 

using published Affymetrix microarray breast cancer 

datasets to predict which patients are likely to 

achieve pCR or residual disease (RD) to standard 

NAC [14]. The analyses focused on 325 biomarkers 

derived from an experimental model of non-

malignant breast epithelial cell organization in three-

dimensional laminin-rich extracellular matrix that 

correlated with breast cancer clinical outcomes [15-

17], 23 TNBC-related genes [18], and a unique 

strategy using a sequential application of machine 

learning algorithms and statistical analyses to select 

and rank informative genes. The results showed that 

in addition to stratifying patients into pCR and RD 

classes, the rational for sequential application of 

RNA expression classifiers identified a subset of RD 

patients with the worst survival rates.   

 

In the current study, we validated the same 

methodology on a new validation cohort of 

retrospective breast cancer samples collected from 

four different medical centers and hospitals. Using 

next generation sequencing, which can be utilized in 

the clinical setting, the results showed that the 

sequential application of 2 RNA expression 

classifiers stratified responders from non-responders 

to standard of care NAC with high sensitivity and 

specificity. These classifiers could maximize 

utilization of the standard regimen in those that 

respond, reserving more novel and intensive therapy 

for those who are predicted non- responders. 

Additionally, this study confirmed the existence of 

extremely poor prognosis class of TNBC patients 

with RD, who have the worst relapse free survival, 

highest initial stage, express high levels of the 
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proliferation marker Ki67 mRNA, and lower 

androgen receptor (AR) mRNA. More intensive and 

experimental therapies could be reserved for this 

predefined TNBC patients with worse prognosis. 

 

2. Materials and Methods 

2.1 Patients and samples 

Two hundred and eighty-seven breast cancer patient 

samples were obtained from multiple clinical sites via 

the MT Group, UConn Health, Hartford Hospital and 

the FIOCRUZ institute (Brazil). All samples were 

obtained under IRB review and were waived from 

consent. UConn Health, Hartford Hospital and 

FIOCRUZ institute sample collection was approved 

under UConn IRB #17-013-6.1. Patient inclusion 

criteria: female patients between 21 to 90 years of 

age; patients with a biopsy-proven breast cancer 

diagnosis; patients received chemotherapy in a 

neoadjuvant setting; patient samples contained 

sufficient breast cancer cells in pathology tissue 

block; patients were diagnosed with breast cancer 

between the year 2004 and 2019. Patient exclusion 

criteria: patient samples lacking sufficient tumor 

tissue (<30%) upon pathology review. Sample 

specifications: Breast tumor biopsy and lymph node 

biopsy (when available) collected prior to patient 

receiving neoadjuvant taxane-based chemotherapy 

per their physician’s discretion and provided as 

formalin fixed, paraffin embedded (FFPE) tissues. 

Upon pathological examination, the samples 

belonged to Stages I-IV and T1-T4, N1-N3, M0-M1 

breast cancer.  

 

Relevant pathologic, clinical, and demographic 

parameters were extracted from de-identified patient 

pathology reports for use in model development. 

Pathologic Complete Response and Residual Disease 

were defined by the block’s Institution of origin in 

the pathology report, and the annotation was used for 

the study. Relevant pathologic, clinical, and 

demographic parameters were extracted from de-

identified patient pathology reports for use in model 

development.  

 

2.2 RNA and library preparation for NGS 

Total RNA was extracted from FFPE samples and 

quantified using Qubit4 system. AmpliSeq library 

preparation was performed according to the 

AmpliSeq for Illumina Transcriptome Human Gene 

Expression Panel workflow. Library quality control 

analysis was performed on the Agilent TapeStation 

System. Sample libraries passing TapeStation QC 

were quantified using the Qubit 4 and then 

normalized, pooled, and loaded into the Illumina 

NextSeq 500/550 High output 300 cycle v2.5 kit for 

sequencing of 2x150 paired-end AmpliSeq.  

 

2.3 Data set for predictive model development 

A total of 291 clinical samples, from 279 unique 

patients were sequenced using AmpliSeq of the 

Illumina NGS platform. 4 patients were sequenced 

twice, which led to 287 unique samples in total. 

Among the 287 sample which have been sequenced, 

23 of them did not pass the QC criteria (based on 

total number of output reads obtained from each 

sample, percentage of mapping rates, as well as 

percentage of pairing from paired-end reads), thus 

were excluded from subsequent analysis, leading to 

264 samples, which could be used for further 

analysis. These 264 samples corresponded to 253 

unique patients, since there were 11 patients who 

contained two biopsy samples. The two biopsies were 

taken either from two separate breast tissue sites, or 

one from breast tissue and one from lymph nodes, 

resulting in 22 unique clinical samples. Two hundred 

and twenty two out of 264 sequenced samples had the 
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clinical data available, which were obtained from 

various clinical sites or hospitals, including the MT 

group, UConn Health, Hartford Hospital, and 

FIOCRUZ Institute (Brazil). The RNA expression 

data from these 222 samples was used to further 

analyses. 

 

2.4 AmpliSeq data processing 

Raw fastq files from sequencing runs were processed 

as follows: Atropos was used to remove the adapter 

sequences from all the reads; STAR aligner was used 

to map the reads to the human hg38 genome; RSEM 

was used to quantitate the reads for each individual 

gene. Finally, the TPM values were used to represent 

the mRNA expression of each individual genes. In 

our first AmpliSeq experiment, we did an 

experimental study on breast cancer samples at 3 

dilutions, and analyzed the results using different 

aligners, gene quantitation methods, and read count 

normalizations.  The combination that gave the most 

reproducible results was STAR/RSEM/TPM.   

 

2.5 Development of RNA-biomarker classifiers 

RNA classifiers of 18-genes and 15-genes were 

developed following methods previously described 

[14]. Briefly, the initial 222-patient cohort was 

divided into a training and a testing set with the 

80%/20% regimen, and each set contains similar 

fractions of pCR and RD patients, as well as having 

the similar representations of ER, HER2 and PGR 

statuses. The BRGLM algorithm was used to select 

the genes having the most pCR predictive power, 

which resulted in the 18-gene and 15-gene classifiers. 

The first classifier (18-gene) stratified the patient 

cohort into predicted pCR and predicted RD groups 

respectively. The second classifier (15-gene) was 

sequentially applied to the predicted pCR patients 

only and further stratified a second group of 

predicted of RD patients (Figure 1). Therefore the 

two classifiers applied in rational sequence stratified 

two biologically distinct classes of RD patients (RD1 

and RD2) while decreasing false positive rates. The 

genes comprising the classifiers are shown in 

Supplemental Table 1 along with their coefficients, 

intercepts, and threshold values above which pCR is 

predicted.  

2.6 Kaplan–meier survival analysis 

The survival data were collected for 109 patients that 

had information for first visit, last visit, and date of 

relapse annotated. The relapse-free survival (RFS) 

was calculated as the total number of days between 

the first visit and last visit for patients that did not 

relapse, or as the total number of days between the 

first visit and the date when relapse occurred, for 

patients with disease recurrence. 

 

3. Results 

3.1 Description of our patient population 

Two hundred and eighty-seven breast cancer patient 

samples were obtained from multiple clinical sites 

including the University of Connecticut Health 

Center (UConn Health), Hartford Hospital, Fernandes 

Figueira Institute/FIOCRUZ (Brazil) and the MT 

Group.  All samples were obtained under IRB-

approval and waived from consent. Breast tumor 

biopsy and lymph node biopsy (when available) were 

collected prior to patients receiving neoadjuvant 

anthracycline-taxane-based chemotherapy and RNA 

was extracted from the resulting Formalin-Fixed 

Paraffin-Embedded (FFPE) biopsy sections. A total 

of 222 clinical samples which passed all quality 

control checkpoints were included in the subsequent 

analysis (Table 1). The 222 samples cohort are 

composed of stage I-IV newly diagnosed invasive 

breast cancer treated with standard NAC 

incorporating a taxane, an anthracycline, and 
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cyclophosphamide (AC-T). Based on the IHC reports 

the cohort included 31.1% of patients with ER-

positive/HER2-negative tumors and 40.5% with 

TNBC. Table 1 shows patient demographics and 

histopathological information. 73.3% of TNBC 

patients were grade 3, with 45% of grade 3 patients 

achieving a pCR. Cluster analysis of all 222 samples 

with a previously described panel of 348 biomarkers, 

which includes 325 novel RNA markers [16] and 23 

TNBC markers [18] revealed while clustering gives a 

visual graphics of patient distribution trends based on 

gene expression patterns, it did not provide enough 

resolution to provide significant class predictions 

(Figure S1).  

 

3.2 Generation of the two pCR prediction 

classifiers 

We used a previously described methodology to 

develop and apply RNA expression classifiers 

sequentially to the patient cohort to stratify patients 

based on clinical outcomes [14]. Figure 1 shows 

diagram of model development and sequential 

application of classifiers to the patient population. 

We combined bias-reduction generalized linear 

model (brglm) and bootstrapping of samples and 

genes to identify genes that have the most predictive 

values. It was found that the occurrences of genes 

after large number of iterations varied quite 

significantly (Figure S2). Genes occurred at higher 

frequencies after 10,000 iterations of selection are 

assumed to have better prediction of the clinical 

outcome than the genes with lower frequencies. Five-

fold cross-validation analysis with various number of 

top-ranked genes and bootstrapped training samples 

showed that the Area Under the Curve (AUC) values, 

a metric used to evaluate model performance, kept 

improving when more genes were incorporated into 

the prediction models (Figure 2A). However, it was 

not seen when the bootstrapped testing samples were 

used. The earliest AUC peak (first plateau) was 

identified around the 18 genes (Figure 2B), 

suggesting that the combination of the 18 genes yield 

as good as it gets pCR predictive models. High 

performing models were further validated using ROC 

curve with the 46 testing samples which were set 

aside and were not used during the model 

development (Figure 2C). Once again, after 

comparing among several ROC curves with similar 

overall AUC values, the 18-gene model appears to 

yield the best combination of sensitivity and 

specificity.  

 

To reduce the numbers of false positives detected 

among the 222 patients, we repeated the modeling 

process with the genes from the 348 biomarkers, but 

excluding the 18 genes in the first classifier, and only 

using the samples that were predicted as pCR by the 

first classifier, to develop a second 15-gene classifier 

(Figure 2D).  The use of two sequential classifiers 

containing different genes allowed us to combine a 

general predictor for all disease subtypes with a 

second predictor that improves the classification of 

TNB patients. Genes from the two classifiers (Table 

S1) are involved in various biological processes 

including transcriptional regulation, cell signaling, 

and mRNA and protein transport. For example, genes 

including CAPRIN2, DVL1, EHF, LRP8, and 

NOC2L are involved in the transcriptional regulation 

of gene expression; and genes including BCAR3, 

DVL1, LRP8, PGK1, STK17A and TTK are 

involved in protein phosphorylation and cell 

signaling pathways. DVL1 gene encodes a 

cytoplasmic phosphoprotein that regulates cell 

proliferation, and has elevated expression in glioma, 

hepatocellular carcinoma, as well as in sensitizing 

paclitaxel-resistant human ovarian cancer cells via 
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AKT/GSK-3β/β-catenin signaling [19, 20]. BCAR3 

is a protein that is associated with a number of 

tumors. It encodes a protein with a putative Src 

homology 2 (SH2) domain and participates in the 

EGF mitogenic signaling pathway which leads to 

estrogen-independent cell cycle progression and cell 

proliferation of breast cancer cells [21].  

 

In addition, it has been shown that BCAR3 can be 

used as a potential biomarker, and is an independent 

prognostic factor for Multiple myeloma [22]. Genes 

involved in the extracellular matrix, such as MFAP4, 

were also identified in the classifiers. The 

extracellular matrix (ECM) protein microfibrillar-

associated protein 4 (MFAP4) is has been shown to 

bind to ECM fibers including collagen, tropoelastin, 

and fibrillin in vitro, and is involved in cell adhesion 

or intercellular interactions and in disease-related 

tissue remodeling [23]. MFAP4 has been shown 

recently as a novel biomarker in human cancers [24], 

as well as in hepatic fibrosis to identify high-risk 

patients with severe fibrosis stages in hepatitis C 

[25]. These findings were consistent with the original 

selection of the 325 biomarkers based on an 

experimental model of breast epithelial cells [16]. 

 

3.3 Model performance and description of a 

subset of TNBC with worse prognosis 

The predictive scores obtained from the 18-gene and 

15-gene models were plot on the 2-dimentional 

scatter plots for the total 222-patient population, as 

well as for the 90-patient TNBC population. As 

shown in Figure 3, the predicted pCR samples are 

concentrated in the upper right quadrant. On the other 

hand, patients predicted RD are distributed over the 

other three quadrants. The population of RD patients 

was further stratified by the second 15-gene classifier 

resulting in 2 predicted RD populations (RD1 and 

RD2) representing a distinct biology as defined by 

the 2 classifiers. Table 2 shows the results of 

applying the 18-gene model and 15-gene model to 

stratify our 222 patients into pCR, and RD (RD1 and 

RD2 combined). The pCR rates of each population 

are shown to range from 18.84% for ER+/HER2- to 

46.03% in HER2+ patients. The test correctly 

stratified 83.75% (67/80) of pCR and 86.62% 

(123/142) of RD patients in the total population, and 

92.10% (35/38) of pCR and 80.77% (42/52) of RD 

patients in the TNBC subset.The overall accuracy 

was 85.58% in the total cohort and 85.56% in the  

TNBC subset.  

 

3.4 Gene expression, and clinical data analysis 

among the two RD subsets 

We applied Kaplan-Meier (KM) curves to investigate 

the differences in recurrence-free survival (RFS) 

among the patients who have achieved pCR or RD 

after NAC (Figure 4A), and with predicted pCR, 

RD1 and RD2 classification (Figure 4B). Concordant 

with prior reports, patients achieving pCR have better 

survival chances than patients with RD (NpCR = 42, 

NRD = 67, hazard ratio = 3.8, p = 0.06). RD2 patients 

show a significant worse prognosis in comparison 

with RD1 patients (NpCR = 43; NRD1 = 46; NRD2 = 20, 

hazard ratio = 3.035, p = 0.098) (Figure 4B) 

suggesting that the rationale application of the 2 

classifiers stratified RD patients into two groups with 

different biology and risk profiles. 

Next, we investigated the expression of the 

proliferation marker Ki-67 and Androgen Receptor 

(AR) in triple negative breast cancer samples 

predicted pCR or RD (RD1 and RD2) (Figure 5). 

Figure 5A shows that while box plots did not show 

statistical difference in Ki-67 expression between 

TNBC predicted pCR and RD2, each with median 

expression equals to 5.2 and 4.6, respectively, RD1 
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samples are found to have significantly lower levels 

than the other classes with a median expression of 

4.13 and an interquartile range of 2.79 to 4.76 (pCR 

vs ClRD1 p= 5.019e-05). We have also assessed AR 

expression, and as shown in Figure 5B, results RD1 

had a statistically significant higher median 

expression of AR, with a median expression of 1.08 

and an interquartile range of -0.444 to 2.433 in 

comparison to RD2 (RD1 vs RD2 p= 0.008403). 

Hence RD1 subgroup has the lowest KI67 and 

highest AR expression. 

 

Since RD2 patients had the worst survival rate, we 

tested the correlation between our classifications and 

tumor stages and tumor grades obtained from the 

pathology reports (Figure 6). It was observed that 

TNBC patients predicted pCR contained over 60% 

stage 2 patients and about 30% stage 3 patients. 

TNBC patients predicted RD (RD1 and RD2) 

contained a decreased number of stage 2 (50%) and 

increased stage 3 (40%) cases respectively compared 

to the pCR group. There were more stage IV patients 

in RD2 in comparison with RD1 (1.05% in RD1, and 

6.67% in
 
RD2) (Figure 6A).  In regard to tumor 

grade, as expected from the Ki-67 and AR data, pCR 

patients contained the highest percentage of grade 3 

patients (83.5% in pCR, 38.7% in RD1, and 63.3% in
 

RD2), confirming that higher grade predicts for 

enhanced response to NAC (Figure 6B). The majority 

of the grade 1 patients (14 out of 16) were found in 

RD1, while RD2 contained no grade 1 patients. 

Grade distribution of RD2 patients was intermediate 

between the pCR and RD groups but had worse 

prognosis, confirming the difficulty in predicting 

outcomes by clinical/pathologic data like grade or 

mitotic index. 

 

 Total Population 
Patients 

  

Age Staging Grade 

Median Range 1 2 3 4 1 2 3 

pCR 80 52 23-76 8 47 19   2 18 60 

RD 142 56 28-82 14 64 54 2 14 56 71 

TNBC  

pCR 38 52 23-71 4 26 6     8 30 

RD 52 57 30-74 8 28 16   1 15 36 

ER+Her2-  

pCR 13 49 27-65 1 7 5   1 3 9 

RD 56 56.5 28-78 1 25 24   10 27 18 

Her2+  

pCR 29 50 28-76 3 14 8   1 7 21 

RD 34 54.5 34-82 5 11 14 2 3 14 17 

 

Table 1: Demographics of patients and tumor characteristics in the study.  
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Figure 1: A) diagram showing the flow of the machine-learning algorithms to build pCR-predictive models using a 

two-step process: 1) Select the best genes for the model and 2) successively eliminate genes that are least useful to 

the classifier performance. B) Diagram showing sequential application of 18-gene and 15-gene classifiers to the 

dataset. 
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Figure 2A 

 

Figure 2B 

 

Figure 2C 

 

Figure 2D 

 

 

 

Figure 2: Outputs of the machine-learning algorithm run. A) Boxplot of the AUC values with the given numbers of 

top-ranked genes in the models from five-fold cross-validation for 10,000 time using the 80% of the training data. 

B) Boxplot of the AUC values with the given numbers of top-ranked genes in the models from five-fold cross-

validation for 10,000 time using the 20% of the testing data. C) ROC showing the sensitivity and specificity of the 

predictive model with the 1st 18-gene classifier. D) C) ROC showing the sensitivity and specificity of the predictive 

model with the 2nd 15-gene classifier. 
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2d) 
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Figure 3A 

 

Figure 3B 

 

 

Figure 3: Output of the prediction scores for the total population of total 222 patients (A) and the 90 TNBC patients 

(B).  The red squares represent patients achieving pCR, the grey squares are those with RD, and the dashed lines 

refer to the cutoff values above which pCR is predicted.  Scores from Classifier 1 (18-gene) are on Y axis and 

Classifier 2 (15-gene) on the X axis. Patients predicted pCR by both classifiers are in the upper right quadrant. 

Patients predicted RD by the Classifier 1 are in the bottom half and patients predicted RD by Classifier 2 are in 

upper left quadrant. RD1 and RD2 represent patients with different biology based on the gene classifier used to 

stratify them. 

 

 

222 Member Data Set  

Actual popul-

ation statistics 

Stratification by 2 classifiers performance metrics 

 

pCR PPV NPV Sensitivity Specificity TP FP TN FN Total 

ER+HER2- 18.84% 58.8% 94.2% 76.9% 87.5% 10 7 49 3 69 

TNBC 42.22% 77.8% 93.3% 92.1% 80.8% 35 10 42 3 90 

HER2+ 46.03% 91.7% 82.1% 75.9% 94.1% 22 2 32 7 63 

Total Population 36.04% 77.9% 90.4% 83.8% 86.6% 67 19 123 13 222 

PPV: positive predictive values 

NPV: negative predictive values 

TP: true positives 

FP: false positives 

TN: true negatives 

FN: false negatives 

Table 2: Test performance metrics. 
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Figure 4A 

 

Figure 4B 

 

 

Figure 4: Kaplan-Meier curves showing RFS for 109 patients over a maximum of 4 years of follow up. (A) RFS 

separated by actual pCR (black line) and RD (red line) prior to stratification by the two classifiers in a subset of 109 

patients (pCR=42, RD=67) for which data was available. The 95% confidence intervals are indicated by the dashed 

lines. (B) RFS for each of the three Classes following stratification by the two classifiers (pCR, RD1, and RD2). 

 

Figure 5A Ki-67  

 

Figure 5B AR 

 

 

Figure 5: Gene expression and tumor grade comparisons with TNBC classes. A. The expression levels of Ki-67 are 

shown as a box plot for pCR (red), RD1 (green), and RD2 (blue), with each box representing the interquartile range 

of gene expression, and a horizontal line inside showing the median expression. Y-axis shows the Log2-transformed 

TPM values from RNA-seq expression. B. Expression of androgen receptor in TNBC tumors for each class is shown 

as in A.  
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Figure 6A 

 

Figure 6B 

 

 

Figure 6: Tumor stage and tumor grade comparisons in TNBC classes. A. Bar plots showing the distribution of 

different stages of TNBC patients among the 3 classes (pCR, RD1, and RD2).  Y-axis shows the percentages of 

patients at a given stage of breast cancer within each class. B. Bar plots showing the distribution of different grades 

of TNBC patients among the 3 classes as described in A.  
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4. Discussion 

We described here the development of a predictive 

test for pCR to NAC based on mRNA expression of 

genes analyzed using the clinically accessible 

technology of AmpliSeq. With the TNBC population, 

it is well-known that achieving a pCR is an accepted 

surrogate marker for survival, while RD is indicative 

of a likelihood for patient poor outcome [2, 6].  Since 

some patients will achieve pCR following standard 

therapy while others will require more intensive 

regimens, the ability to predict pCR, and as 

importantly RD, will impact physician choice and 

personalize treatment approaches for the individual 

patient. Incorporation of biomarker-based classifiers 

for outcome prediction is needed to improve overall 

patient outcomes by allowing tailoring of treatments 

in advance and improving outcomes with a reduction 

in the therapeutic toxicity and financial burden 

incurred by patients [26, 27]. TNBC patients with RD 

after NAC are six times more likely to have 

recurrence and twelve times more likely to die of 

metastatic disease [7]. Thus, accurate prediction of 

patients who are likely to have RD before standard 

NAC will allow the selection of therapeutic 

approaches based on patient biology.  

 

We have previously reported RNA expression 

profiling using the publicly available microarray data 

sets collected from initial biopsy samples of breast 

cancer patients, to predict pCR or RD in response to 

NAC [14]. Due to the rapidly increasing application 

of next generation sequencing (NGS) technology for 

cancer diagnostic testing, we have used AmpliSeq to 

profile the biopsy samples of a validation 

unpublished cohort of stage I-IV breast cancer patient 

FFPE samples. The AmpliSeq data were then 

analyzed using a rationale sequential application of 

RNA classifiers to predict pCR and RD with 90% 

negative predictive and 78% positive predictive value 

in the overall cohort, and an even higher negative 

predictive value of 93%, and 78% positive predictive 

value for the TNBC patients. In our previous work, 

we have shown that achieving pCR was associated 

with significantly improved DRFS in TNBC patients 

[14].  

In the current work, we have further demonstrated 

that patients achieving pCR displayed significantly 

better relapse-free survival compared to the predicted 

RD patients (Figure 4) which is consistent with our 

prior work and extensive literature. Our classifiers 

have further stratified patients with residual disease 

into 2 classes (RD1 and RD2) with distinct biological 

features and significant differences in RFS (Figures 

4). We have observed that RD1(lower risk RD) 

exhibits significantly lower expression of Ki-67 and 

higher androgen receptor expression than the higher-

risk RD2 or predicted pCR classes. The breakdown 

of RD patients into a high and lower risk group of 

relapse and death is important not only in scientific 

investigation of the drivers of lack of response and 

progression but also the management of these 

patients in terms of therapeutic choices. 

 

As shown in our prior study, [14] the rationale 

sequential application of 2 classifiers allowed the 

discovery of a subset of patients predicted to have 

RD with distinct biology and clinical profiles. While 

the 2 RD groups showed differences in biology and 

outcome they could not be distinguished based on 

any single factor such as tumor stage, tumor grade or 

Ki-67 and AR expression levels indicating the 

importance of incorporation of additional parameters 

to evaluate patient prognosis and response to 

treatments. Lehmann et al [18] has previously shown 

that TNBC is a highly diverse type of breast cancers 

and defined four TNBC subtypes based on a 

retrospective analysis of gene expression datasets 

from five clinical trials [5].  
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In combination with TCGA genomic and clinical 

data, the authors showed that TNBC subtypes 

significantly differ in response to similar NAC 

achieving pCR in 41% of the Basal-like BL1-subtype 

(low AR but elevated cell cycle and DNA damage 

response) compared to 18% for Basal-likeBL2-

subtype and 29% for Luminal Androgen Receptor 

LAR-subtype (highest expression of AR).  A new 

three-subtype classification of TNBC has recently 

been published in Breast Cancer Research [28]. In 

their study identification of 3 molecular clusters; C1 

with apocrine features, luminal and PIK3A-mutated. 

C2 and C3 with basal-like features. These classes 

show remarkable similarities in terms of androgen 

receptor and Ki-67 expression/cell cycle processes, to 

our classifier. Their classifier looked at links between 

neurogenesis, tertiary lymphoid structures, plasma 

cells, B lymphocytes, and triple negative breast 

cancer subtypes. Ours on the other hand was 

developed utilizing markers of non-malignant breast 

epithelial cell organization. How our biomarker array 

and their classification might overlap in terms of gene 

expression and response to NAC is unclear.  

 

Our RNA-profiling strategy in pretreatment TNBC 

allows identification of TNBC patients that will 

likely respond and to those who will not respond to 

standard of care NAC utilizing anthracyclines and 

taxanes. It therefore allows reasonable utilization of 

more experimental and or toxic treatment regimens in 

patients predicted to not respond.  The identification 

of RD2 high risk patients will have significant impact 

on the TNBC diagnosis and treatment. However, the 

genetic/immunologicfactors underlining the worst 

survival rates of the RD2 patients are still not clear. 

Obtaining the genomic data including mutation, copy 

number loss or amplification, as well as gene fusion 

for the 222 patients might help explain why RD2 

patients have the worst survival compared to the RD1 

and pCR patients.  Additionally, driving down to 

immune response markers utilized in the Jezequel 

study [28] would be of great interest and may define 

the place for immunotherapy in these patients. 

 

Statement of Significance 

Stratification of TNBC patients by prognosis prior to 

NAC, may allow for more personalized treatment 

approaches with the potential to improve patient 

outcomes and reduce toxicity. 
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Supplymentary Information 

 

 

 

Suppl. Figure 1: Heatmap view of the cluster analysis of 348 RNA expression biomarkers across 222 breast cancer FFPE 

biopsy samples. Log2-transformed TPM values were used in the cluster analysis. Red, higher expression; blue, lower expression. 

Rows represent genes and columns represent samples. 
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Suppl. Figure S2: Results of the BRGLM runs. A) Bar plot shows the occurrence of the 348 genes following 10,000 BRGLM 

runs with bootstrapped of samples and genes. Each bar represents the occurrence from one individual gene. B) Dot plot of the top 

138 genes with the highest occurrence, sorted from the highest to the lowest. 

 

18-gene model 18gene$coef 

(Intercept) 0.60068646 

TPRKB 0.04122403 

FEN1 0.09650187 

ELN -0.05829091 

STK17A 0.07627754 

DVL1 -0.07539091 

CENPN -0.02195906 

NOC2L 0.11499943 

TTK 0.04609686 

NUP153 0.12210722 

LRP8 0.03412527 

MRPL35 -0.08945316 

NUP205 0.0613218 

MFAP4 0.05556132 

CAPRIN2 -0.10383583 

HPCAL1 -0.01683015 

NDC1 -0.0079133 

NUSAP1 -0.05668388 

RCC1 -0.08360381 

a) Classifier 1 (cutoff  = 0.34328915) 
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15-gene model 15gene$coef 

(Intercept) 0.761853 

EHF -0.08809 

PGK1 -0.18156 

DUSP6 0.129921 

BCAR3 -0.12955 

CYP51A1 -0.14268 

TPRKB 0.008704 

SCD 0.126011 

CENPN -0.00293 

FEN1 0.063584 

NIF3L1 0.031227 

ALG8 -0.0189 

IMPDH1 -0.09656 

RANBP1 0.231282 

PRDX3 -0.14077 

HAT1 0.114986 

 

b) Classifier 2 (cutoff = 0.43332966) 

 

Suppl Table 1: The gene symbols, coefficients, intercepts, and threshold values are shown for Classifiers 1 and 2.  Positive 

coefficients predict pCR and negative coefficients RD. 


