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Abstract
Background: Low levels of renalase, a flavoprotein released by kidneys, 
has been linked with cytokine release syndrome and disease severity of 
viral infections. We sought to, 1) identify traditional and novel predictors 
of mortality for patients hospitalized with COVID-19 using traditional 
and machine learning methods; and 2) investigate whether renalase 
independently predicts mortality using these techniques.

Methods: In a retrospective cohort study, clinicopathologic data and 
blood samples were collected from COVID-19 patients hospitalized 
between March 1 and June 30, 2020. Patients were excluded if <18 years 
or opted out of research. Novel research markers – renalase, kidney injury 
molecule-1, interferon (α,δ,ι), interleukin (IL-1, IL6), and tumor necrosis 
factor were measured. The primary outcome was mortality within 180 
days of index visit. 

Results: Among 437 patients who provided 897 blood samples, mean 
age was 64 years (SD±17), 233 (53%) were males, and 48% were non-
whites. Seventy-one patients (16%) died. Area under the curve (AUC) 
for mortality prediction was as follows: using logistic regression with a 
priori feature selection (AUC=0.72; CI 0.62, 0.82), logistic regression with 
backward feature selection (0.70; CI 0.55, 0.77), and XGBoost (0.87; CI 
0.77, 0.93)]. PR-AUC and calibration plots also showed best performance 
with XGBoost model. Elevated BNP, advanced age, oxygen saturation 
deviation, and low renalase were the leading predictors of mortality in 
XGBoost. Renalase emerged as an independent predictor of mortality for 
COVID-19 across all statistical models.

Conclusion: Machine learning methods augment traditional statistical 
methods in identifying novel predictors of mortality such as renalase in 
patients with COVID-19.

Keywords: COVID-19; Mortality; Biomarker; Inflammation; Cardiac; 
Renalase; Prediction; Machine learning
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health records; CRP: C-reactive protein; IL-1: Interleukin 1; IL-6: Interleukin 
6; TNF⍺: Tumor necrosis factor alpha; ARDS: Acute respiratory distress 
syndrome; ML: Machine learning; SARS-CoV-2: Severe acute respiratory 
syndrome coronavirus 2; RT-PCR: Reverse transcription-polymerase chain 
reaction; ELISA: Enzyme-linked immunosorbent assay; INF: Interferon; 
KIM-1: Kidney injury molecule 1; BNP: Beta natriuretic peptide; SD: 
Standard deviation; AUC: Area under the curve; PR-AUC: Precision recall 
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area under the curve; RNLS: Renalase; ACE-2: Angiotensin-
converting enzyme 2; RAAS: Renin-angiotensin-aldosterone; 
HIF 1-alpha: Hypoxia inducible factor; STAT3: Signal 
transducer and activator of transcription 3; MAPK: Mitogen 
activated protein kinase; AT1R: Angiotensin 1 receptor; NF-
kb: Apoptosis nuclear factor

Introduction
COVID-19 has caused devastating morbidity and 

mortality. As of 2023, there were over 659 million reported 
cases and 6.6 million deaths [1]. Since the advent of the 
pandemic, clinicians and researchers have searched for 
predictors of mortality to help health systems better identify 
COVID-19 patients at high-risk, to guide treatment, and to 
efficiently allocate resources. Prior results have utilized 
data typically available within the electronic health records 
(EHR), such as clinical observations that outline a higher-risk 
phenotype (e.g., elderly male, obese, with coronary artery 
disease or hypoxia on presentation) and blood markers (such 
as cardiac markers, inflammatory markers, and coagulation 
markers). Given the novelty of COVID-19, the relative weight 
of these predictors seems to change with each cycle of the 
infection. Significant knowledge gaps remain, and there is a 
pressing need for further biomarker risk assessment that might 
uniquely contribute to pathogenesis, prognosis and treatment 
response. Several biomarker studies point to a unique immune 
response to COVID-19. Patients who die appear to have a 
pathophysiology characterized by an aggressively disordered 
inflammatory response distinct from those with milder 
symptoms. COVID-19 mortality is associated with increased 
hematological [e.g. leukocytes], inflammatory [e.g. ferritin, 
C-reactive protein (CRP), procalcitonin] markers, cytokines 
[e.g. interleukins (IL-1 and IL-6), and tumor necrosis factor 
(TNF-alpha) [2]. The immune response, however, appears 
to be much more muted in COVID-19 compared to disease 
states such as acute respiratory distress syndrome (ARDS) 
from sepsis or in cancer patients [3]. This observation 
questions the role of cytokine storm alone playing a primary 
role in the pathogenesis. Autopsy reports of COVID-19 
patients indicate extensive vascular injury and consumption 
pathology (e.g., platelets), highlighting a need to look further 
for novel therapeutic targets. Changes in some markers, such 
as that of renal injury, appear to be transient [4].There is also 
scant information on markers that are depleted in COVID-19 
or the dynamic course of these markers.

Renalase is one such peptide endogenously produced by the 
kidney, heart, and endothelium, with pro-survival properties 
such as reducing cytokine release in viral infections, including 
COVID-19 in mouse models (our unpublished data). We 
have previously shown low serum renalase to be associated 
with higher mortality in hospitalized patients with severe 
COVID-19 [5]. In a different cohort, renalase levels appear to 
rise in hospitalized patients with COVID-19 who survive and 

are ultimately discharged [6]. Renalase has also been linked 
to mitochondrial function and ATP production, suggesting 
that renalase is involved in the metabolic repair mechanisms 
of renal injury in mouse models [7]. However, it remains 
unclear how dynamic changes in endogenous renalase levels 
may influence survival in patients with severe COVID-19.  
To examine these issues, we leveraged traditional statistical 
approaches, newer machine learning (ML) models, [8] and a 
comprehensive prospective COVID-19 registry tracking the 
entire hospitalization, enhanced by testing of novel markers 
using serial serum samples. Traditional models of identifying 
predictors of mortality for COVID-19 have some predictable 
biases, are dependent on known literature, and tend not to 
perform as well when externally validated. ML approaches, 
while potentially less interpretable, have previously 
been demonstrated to offer performance advantages and 
generalizability over traditional methods, while also better 
factoring in variable interactions. For this study our goals were 
to, 1) identify and compare traditional and novel predictors 
of mortality for patients hospitalized with COVID-19 using 
traditional and ML techniques; and 2) assess if renalase 
independently predicts mortality using these methods.

Methods
Patient population

We conducted this study in hospitalized adult patients 
in a large, urban academic center between March 1 and 
June 30, 2020. All patients had confirmed severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) by RT-
PCR of nasopharyngeal swab samples.  All specimens and 
imaging were collected as part of routine medical care. A 
standard clinical protocol for treatments was implemented 
during the study period. Exclusions included patients <18 
years, those who opted out of research on admission, or had 
insufficient data. The protocol was approved by the Yale 
Institutional Review Board (HIC 2000027792, 2000028383 
and 2000027690).

Clinical and laboratory data abstraction
We used Department of Medicine COVID Explorer 

(DOM-CovX), a cohort of patients hospitalized with COVID, 
to extract the clinical data from EPIC (electronic medical 
record system), including socio-demographics, comorbidities, 
vital signs, laboratory measurements, procedures, and 
disposition over the course of entire hospital stay [9]. Manual 
chart reviews were conducted to abstract admission date, 
presenting symptoms, smoking history, immunocompromised 
status, cardiopulmonary resuscitation and dates of intubation, 
death and last follow-up completed. Available serum or 
plasma samples were assayed from this cohort as follows: 
a) renalase levels were measured using denaturation (acid)-
sensitive pool by ELISA; [10] and b) inflammatory markers, 
including IFNγ, IFNλ, IFNα, IL-1β, IL-6, and TNFα, as well 
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as c) kidney injury molecule (KIM-1) were also measured 
using MSD V plex assays (Meso Scale Diagnostics, LLC, 
Rockville, MD), according to manufacturer’s instruction.

Variable definitions
Primary outcome was defined as death within 180 days of 

index visit. Hypoxia was defined as <90% oxygen saturation. 
We labeled cardiac markers as (high sensitivity troponin, 
beta natriuretic peptide [BNP]), markers of inflammation as 
(interleukin IL-6 and IL-1), and markers of thromboembolism 
as (D-dimer and platelets). 

Statistical analysis
The data were presented as percentages for categorical 

variables and means and standard deviations (SD) for 
continuous variables. For univariate analyses, categorical 
variables between groups were compared using Fisher's exact 
test. Renalase trajectories (low to low, low to high, etc.,) were 
compared with other biomarker trajectories using the Chi-
Square test.

Data Preprocessing
Categorical variables were one-hot encoded. Continuous 

variables with multiple values (e.g., oxygen saturation) 
were aggregated into maximum, minimum, and median 
values. Cutoffs between low and high values of biomarkers 
were determined by introspection of quantiles and clinical 
significance: BNP (100 ng/L), high sensitivity troponin (18 
ng/ml), platelets (170 k/ul), IL-1 (0.02 pg/ml), IL-6 (8.66 
pg/ml) and renalase (6000 ng/ml). Features with more than 
30% of values missing were removed from the analysis 
(Supplement Table S5) [11]. To impute missing data, we 
utilized OptImpute, ML approach that has outperformed 
other related extant methods [12].

Model Development
A combination of traditional and newer ML methods 

was used. For traditional models, we used logistic regression 
and for newer methods, we used XGBoost. The latter is an 
aggregation of multiple decision tree models, which partition 
covariates in a hierarchical manner, dividing the input data 
points into disjoint sets [13].  XGBoost trains different trees 
against each other and then makes a final prediction by 
aggregating the results from all the different trees. In a study 
which compared 13 different algorithms on 165 bioinformatics 
to identify which algorithm performed the best in general, the 
authors found that gradient boosted trees outperformed all 
other algorithms significantly [14]. XGBoost model results 
can be exported to more easily interpretable SHAP values 
that allow readers to better understand the role of different 
covariates play in the model [15]. They are calculated by 
analyzing how much a feature impacts the final prediction 
of the model, and how the prediction itself is affected by 

the feature. This results in an ordered list of features, with 
information about whether higher values for a feature result 
in a positive or negative prediction.

A traditional logistic regression model and an XGBoost 
model were trained on all available features after applying 
exclusions due to missingness. An additional traditional 
logistic regression model was created using clinically relevant 
confounders that were selected a-priori based on univariate 
analysis findings, front line clinical experience and review 
of published data to serve as a baseline. These included age, 
sex, race, disease severity, BMI, smoking status, history of 
hypertension, chronic pulmonary disease, coronary artery 
disease, immunocompromised status, CRP, IL-6, renalase, 
creatinine, time from admission and time for initial symptom 
to blood sample [16]. 

Model Evaluation
The main metric used to assess the quality of the models 

was Area under the curve (AUC) and precision recall curve 
(PR-AUC). The AUC values of the model measure its ability 
to differentiate patients who would die of COVID-19 from 
patients who would not, where randomly guessing would 
result in an AUC of 0.5. Fifty percent of observations were 
randomly assigned to the training set, 20% to the validation set 
and 30% to the testing set. The models were fit on the training 
set and then the out-of-sample AUC value for the validation 
set was computed for different choices of parameters. The 
parameters of the model that yielded the highest AUC for 
the validation set were selected, and these parameters were 
used to train a model on the combined training and validation 
sets. The final out-of-sample AUC scores we present were 
calculated on the test data set. To generate confidence intervals 
for the AUCs, models were trained using 200 splits of the data, 
and mean values and confidence intervals were calculated 
empirically. Calibration plots were generated for example 
models for logistic regressions and XGBoost to analyze the 
different relationships between their predictions and the true 
outcomes. Backwards step regression was utilized in logistic 
regression models, using AIC for elimination. For XGBoost, 
we tuned the depth hyperparameter from 3 to 10, and the eta 
hyperparameter from 0.1 to 0.9.  Logistic regression models 
were trained in R (v. 2014; http://www.R-project.org/), and 
XGBoost was trained in Python3 using the package created 
by the authors of the paper.

Results
Between March 2020 and June 30, 2020, 3450 patients 

with COVID-19 were admitted. Of these, 473 patients opted 
in for research, were >18 years and provided sufficient blood 
samples. Compared to the hospitalized patients not enrolled 
(n=2977), patients in our cohort were similar in age (mean age 
63 vs. 63.8 years) and sex distribution (51% vs. 53% males) 

https://www.r-project.org/


Safdar B, et al., J Biotechnol Biomed 2024
DOI:10.26502/jbb.2642-91280139

Citation:	Basmah Safdar, Matthew Sobiesk, Dimitris Bertsimas, Armin Nowroozpoor, Yanhong Deng, Gail D’Onofrio, James Dziura, Joe El-
Khoury, Xiaojia Guo, Michael Simonov, R Andrew Taylor, Melinda Wang, Gary Desir. Renalase Identified by Machine Learning Methods 
as A Novel Independent Predictor of Mortality in Hospitalized Patients with COVID-19. Journal of Biotechnology and Biomedicine 7 
(2024): 175-185.

Volume 7 • Issue 1 178 

[5]. Additionally, 36 patients were excluded for having a 
missing date for index visit, negative follow-up time, or not 
having Covid-19, providing 437 patients for analysis.

Table 1 describes the demographic profile of the full 
cohort with 366 patients who survived, and 71 patients who 
died. Patients who died were older and more often males 
with mean hospitalization for 17 days. They also had more 
comorbidities, and higher BNP, troponins, creatinine, ferritin, 
procalcitonin, d-dimer, and low platelets as compared to 
patients who survived.

Measurement of novel markers in hospitalized 
COVID-19 patients

Novel serum markers were measured from hospitalized 
patients with COVID-19. Patients who died had lower 
renalase values on average, and a trend for higher IL-1, KIM-
1, and IFNs compared to patients who survived (Table 2).

Predictors of mortality for hospitalized COVID-19

Combining traditional EHR abstracted data with novel 
serum markers, we used traditional and ML methods to 
identify predictors of mortality in the hospitalized patients. 
The results, shown in Table 3, indicate better performance 
when using the XGBoost models over traditional models.

Using the traditional logistic regression model with 
variables selected a-priori based on clinical observations 
(Supplemental Table S1), we identified age, patient sex and 
mean renalase to be significant predictors of mortality. 

A backward step logistic regression identified clinical 
parameters (oxygen saturation) and several traditional 
laboratory parameters (hemoglobin, chloride, glomerular 
filtration rate, blood urea nitrogen, platelet count, BNP, 
troponins) in addition to renalase as predictors of mortality 
(Supplemental Table S2).

Demographics Total (n=437) Survived (n=366) Died (n=71)
Age; mean (SD) 63.8 (17.0) 61.8 (16.8) 74.3 (14.6)

Male; n (%) 233 (53.3%) 191 (52.2%) 42 (59.2%)

Hispanic; n (%) 82 (18.8%) 74 (20.2%) 8 (11.3%)

Race; n (%)      

White 228 (52.2%) 182 (49.7%) 46 (68.4%)

Black 132 (30.2%) 114 (31.4%) 18 (25.4%)

Other 77 (17.6%) 70 (19.1%) 7 (9.9%)

Past Medical History      

Hypertension; n (%) 308 (70.5%) 247 (67.5%) 61 (85.9%)

Diabetes; n (%) 176 (40.3%) 144 (39.3%) 32 (45.1%)

Hyperlipidemia; n (%) 176 (40.3%) 147 (40.2%) 29 (40.8%)

Myocardial Infarction; n (%) 47 (10.8%) 35 (9.6%) 12 (16.9%)

Congestive Heart Failure; n (%) 101 (23.1%) 72 (19.7%) 29 (40.8%)

Chronic Pulmonary Disease 158 (36.2%) 129 (35.2%) 29 (40.8%)

Chronic Kidney Disease; n (%) 99 (22.7%) 77 (21.0%) 22 (31.0%)

Immunocompromised; a n (%) 72 (16.5%) 57 (15.6%) 15 (21.1%)

Pregnancy; n (%) 7 (1.6%) 7 (1.9%) 0 (0.0%)

Smoking; n (%) 182 (41.6%) 147 (40.2%) 35 (49.3%)

Symptoms at Presentation      

Chest pain; n (%) 54 (12.4%) 49 (13.4%) 5 (7.0%)

Cough; n (%) 293 (67.0%) 255 (69.7%) 38 (53.5%)

Fever; n (%) 321 (73.5%) 274 (74.9%) 47 (66.2%)

Dyspnea; n (%) 264 (60.4%) 226 (61.7%) 38 (53.5%)

Gastrointestinal symptoms; n (%) 133 (30.4%) 122 (33.3%) 11 (15.5%)

Admission      

BMI; mean (SD) 30.1 (7.6) 30.5 (7.6) 27.7 (6.8)

Pulse; mean (SD) 82.5 (16.1) 81.5 (15.3) 87.5 (18.9)

Table 1: Clinical profile of patients hospitalized for COVID-19 by mortality status based on EHR data.
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Systolic blood pressure; mean (SD) 126.5 (19.0) 126.5 (19.3) 126.9 (17.4)

Diastolic blood pressure; mean (SD) 72.0 (11.3) 73.3 (10.5) 65.0 (13.0)

O2 saturation; mean (SD) 95.4 (2.8) 95.6 (2.2) 94.7 (4.6)

O2 saturation SD; mean (SD) 2.6 (1.6) 2.3 (1.0) 4.1 (2.9)

Initial Hypoxia; n (%) 50 (11.4%) 39 (10.7%) 11 (15.5%)

Respiratory rate; mean (SD) 20.2 (4.5) 20.0 (4.4) 21.1 (4.7)

Temperature; mean (SD) 98.9 (1.2) 98.8 (1.1) 99.0 (1.2)

 Laboratory Findings*      

WBC; mean (SD) [k/ul] 7.4 (4.5) 7.1 (4.1) 9.0 (6.0)

Hemoglobin; mean (SD) [g/dl] 12.1 (2.1) 12.2 (2.0) 11.5 (2.6)

Platelet; mean (SD) [k/ul] 242.1 (103.4) 253.7 (102.4) 182.5 (87.4)

Creatinine; mean (SD) [mg/dl] 1.5 (2.0) 1.4 (1.7) 2.2 (2.8)

Sodium mean (SD) [mmol/L] 139.1 (4.4) 138.9 (3.7) 140.3 (7.0)

Chloride mean (SD) [mmol/L] 102.0 (5.1) 101.9 (4.5) 102.7 (7.5)

Potassium mean (SD) [mmol/L] 4.1 (0.6) 4.1 (0.5) 4.1 (0.7)

eGFR; mean (SD) [ml/min] 50.4 (16.0) 51.9 (14.8) 42.9 (19.3)

Troponin T; mean (SD) [ng/mL] 0.0 (0.1) 0.0 (0.1) 0.1 (0.1)

High sensitivity troponin mean [ng/L] 40.9 (114.0) 36.9 (119.1) 61.4 (80.5)

BNP mean (SD) [pg/ml] 2434.1 (8662.7) 1881.2 (7863.9) 5284.6 (11623.5)

INR; mean (SD) 1.0 (0.4) 1.0 (0.3) 1.1 (0.5)

D-dimer; mean (SD) [mg/L FEU] 3.1 (5.3) 2.6 (4.0) 5.7 (9.2)

Ferritin; mean (SD) [ng/ml] 994.6 (1236.2) 915.1 (955.3) 1404.1 (2134.5)

Fibrinogen; mean (SD) [mg/dl] 459.2 (123.9) 461.9 (124.3) 445.1 (121.5)

Procalcitonin; mean (SD) [ng/ml] 0.7 (4.5) 0.4 (1.5) 2.5 (10.5)

Magnesium; mean (SD) [mg/dl] 2.1 (0.3) 2.1 (0.3) 2.1 (0.3)

Clinical Course      

Hospital length of stay; mean (SD) 16.2 (13.7) 16.1 (14.1) 17.0 (11.7)

ICU Admission; n (%) 167 (38.2%) 122 (33.3%) 45 (63.4%)

Use of vasopressors; n (%) 92 (21.1%) 62 (16.9%) 30 (42.3%)

Hemodialysis; n (%) 32 (7.3%) 24 (6.6%) 8 (11.3%)

CPR; n (%) 20 (4.6%) 1 (0.3%) 19 (26.8%)

Discharge; n (%)      

Home 265 (61.3%) 260 (71.4%) 5 (7.4%)

Nursing Facility 105 (24.3%) 100 (27.5%) 5 (7.4%)

Expired in hospital 55 (12.7%) 0 (0.0%) 55 (80.9%)

Rehabilitation 7 (1.6%) 4 (1.1%) 3 (4.4%)

Other/Missing 3 (0.007%) 1 (0.002%) 2 (0.03%)
*Mean values for continuous variables indicate aggregate mean values for multiple values for the encounter.  
a Immunocompromised = active cancer, HIV, liver disease, transplant (solid organ / bone marrow), leukemia, lymphoma, systemic lupus 
erythematous, and pregnancy 
b hsCRP = high sensitivity CRP, BNP= beta natriuretic peptide, CPR=cardiopulmonary resuscitation, ICU=intensive care unit, 
INR=international normalized ratio, eGFR=estimated glomerular filtration rate, BMI=body mass in
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XGBoost model had the strongest performance based 
on AUC 0.85 (0.77,0.93) when tested. It identified similar 
variables as above with their relative importance as listed in 
(Figure 1), and showed high BNP being the most important 
predictor of mortality, followed by large standard deviation 
of oxygen saturation, renalase and advanced age.  

Novel serum markers Total (n=437) Survived (n=366)
Died

 (n=71)

Renalase mean (SD) [ng/ml] 14046.5 (7960.5) 14666.2 (8136.0) 10852.0 (6098.2)

Kidney injury molecule -1 (KIM-1) mean (SD) [ng/ml] 122.8 (258.3) 108.4 (221.0) 197.1 (392.4)

Interferon gamma (IFN-g) mean (SD) [pg/ml] 302.3 (949.1) 237.9 (617.0) 634.4 (1868.6)

Interferon alpha (IFN-a) mean (SD) [pg/ml] 47.0 (147.4) 41.3 (144.4) 76.5 (159.6)

Interferon lambda (IFN-l) mean (SD) [pg/ml] 47.0 (147.4) 41.3 (144.4) 76.5 (159.6)

Interleukin 1 (IL-1) mean (SD) [pg/ml] 0.2 (0.9) 0.2 (0.4) 0.6 (2.0)

Interleukin 6 (IL-6) mean (SD) [pg/ml] 1614.7 (7312.1) 1730.5 (7857.9) 1017.9 (3259.5)

Tumor necrosis factor alpha (TNF-a) mean (SD) [pg/ml] 1614.7 (7312.1) 1730.5 (7857.9) 1017.9 (3259.5)

Table 2: Profile of patients hospitalized with COVID-19 by mortality status and novel serum markers.

Analytical Method Train AUC Validation AUC Test AUC
A Priori Logistic Regression 0.81 (0.75,0.87) 0.81 (0.69,0.92) 0.72 (0.62,0.82)

Backwards Step Logistic Regression 1 (1,1) 1 (1,1) 0.70 (0.55,0.77)

XGBoost 1 (0.98, 1) 1 (0.98, 1) 0.85 (0.77,0.93)

Table 3: Comparison of AUC results using traditional and machine learning models to predict mortality in hospitalized patients with COVID-19. 
Confidence intervals for AUCs are in the parentheses.

Additional comparisons based on AUC-PR and calibration 
plots also indicate that the XG-Boost model has the best 
performance (see Supplemental Figure S2). Bootstrapping 
methods were used to generate different sample sets to test 
the models and generate confidence intervals. Summary data 
(Supplemental Table S4) shows lower for AUC for all models 
with XGBoost still performing the best.

Figure 1: SHAP value graph using XGBoost model identifies predictors of mortality in decreasing importance. 
Color indicates value (red=high or blue=low) and x-axis indicates survival (0) and death (1). For example, the blue 
dots on the left for BNP values indicate lower values are associated with survival (0), and on the left for renalase 
indicate association with death (1).
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Prognostic value of Renalase as a predictor of 
COVID-19 mortality: 

While the set of features are not identical in all the models 
due to the different ways they are trained, there is a large 
overlap in biomarkers and demographic features providing 
useful information about predicting mortality in hospitalized 
COVID-19 patients. Oxygen standard deviation, advanced 
age, elevated BNP, and low renalase appear to be significant 
predictors in at least two models. Low renalase emerged as a 
consistent predictor of mortality across all the tested models.

Profile of COVID-19 patients with serial samples 
available

We next assessed the dynamic changes in renalase in 
relation to outcomes in COVID-19 patients. At baseline 
renalase levels vary from 4 to 100 mg/L among in healthy 
non-hospitalized individuals. Based on in-vivo data, we 
hypothesized that changes in renalase level in response to 
COVID-19 from baseline within the same individual would 
predict outcomes. To assess this hypothesis, we tested serial 
renalase in our study sub-cohort (n=124) who had at least 
3 serial samples available. Supplemental Table S3 notes the 
profile of these patients. Twenty-one patients died and were 
similar in age, sex, and race distribution as the overall cohort.

Serial course of renalase over hospital course in 
COVID-19

Figure 2 provides visualization of serial renalase values 
in patients who survived versus died. Patients who had 
low renalase levels and remained low tended to do poorly 
compared to those patients whose renalase values stayed high 
over their hospitalization (P-value of <0.001), indicating that 
different trajectories experienced different levels of mortality.

We then visualized comparisons between the baseline and 
final renalase for patients depending on survival status.

Figure 3 shows patients who died had lower baseline 
and final renalase values on average compared to those who 
survived.

Next, we visualized the relationship of renalase trajectory 
relative to that of other biomarkers consistently identified as 
predictors of mortality in our models:

a)	 Relationship between renalase and markers of cardiac 
injury

In the XGBoost model, a high BNP, a marker of cardiac 
strain, appeared to be the most important predictor of 
mortality. Supplemental Figure S1A compares them by 
quartiles. Patients with lowest (Q1) RNLS-highest (Q4) 
BNP quartile had significantly higher mortality than patients 
with high (Q4) RNLS- low (Q1) BNP quartile (P-value of 
0.003) (Supplemental Figure S1A). This was true even when 
comparing the trajectory of these markers - patients with 
low renalase and high BNP at the end of their hospitalization 
had worse mortality compared to patients with high renalase 
and low BNP at the end of their hospitalization (P-value 
<0.0001).

Renalase showed a similar relationship with high-
sensitivity troponin, a marker of cardiac injury. Although not 
significant in the XGBoost model, troponins were found to 
predict mortality in traditional models. Supplemental Figure 
S1B heatmap showed that in serial samples, patients with 
Q1RNLS-Q4Troponin had higher mortality than patients 
with high renalase and lower troponin (Q4RNLS-Q1troponin) 
quartile (P-value of 0.002).

 
Figure 2: Figure 2: ‘2a’ (left):Trajectory of serial renalase over time in patients who died and ‘2b’ (right): Trajectory of serial renalase over 
time in patients who survived (n=124)



Safdar B, et al., J Biotechnol Biomed 2024
DOI:10.26502/jbb.2642-91280139

Citation:	Basmah Safdar, Matthew Sobiesk, Dimitris Bertsimas, Armin Nowroozpoor, Yanhong Deng, Gail D’Onofrio, James Dziura, Joe El-
Khoury, Xiaojia Guo, Michael Simonov, R Andrew Taylor, Melinda Wang, Gary Desir. Renalase Identified by Machine Learning Methods 
as A Novel Independent Predictor of Mortality in Hospitalized Patients with COVID-19. Journal of Biotechnology and Biomedicine 7 
(2024): 175-185.

Volume 7 • Issue 1 182 

b)	 Relationship between renalase and inflammatory 
markers

The relationship is also less clear when comparing 
renalase with inflammatory markers such as IL-1, IL-6 
and IFN. Supplemental Figure S1C shows comparison of 
mortality in patients with low (Q1) RNLS- high (Q4) IL-6 
to be significantly different than in patients with high (Q4) 
RNLS-low (Q1) IL-6 (p value=0.02). However, no difference 
was found for comparison of similar cohorts for IL-1  
(p value=0.58) and IFN (p value=0.07) Supplemental Figure 
S1D and S1E.

Relationship between renalase and platelets
Finally, in the XGBoost model, platelet count also appeared 

to be an important predictor of mortality. Supplemental Figure 
S1F compares different pairs of trajectories for renalase 
and platelet count values indicate patients with lower (Q1) 
renalase values and lower platelet counts (Q1) had the highest 
rates of death compared to those with high (Q4) renalase-high 
(Q4) platelets (p =0.005).

Discussion
In this single site study evaluating predictors of mortality in 

patients hospitalized with COVID-19, renalase was identified 
as a novel independent predictor of mortality - consistently 
implicated using both traditional statistical methods based 

on a priori knowledge, as well as when applying more 
agnostic ML methods. The XGBoost model was identified 
as the best performing model with AUC of 0.87 in predicting 
mortality from COVID-19. Using this model, elevated BNP, 
greater change in oxygen saturation, low renalase, and 
advanced age were found to be the strongest predictors of 
mortality in order among hospitalized patients. A significant 
relationship between the trajectory of renalase and markers 
of thromboembolism and cardiac strain sheds light on the 
pathophysiology of renalase in host response to COVID-19.

Advanced age and hypoxia are known hallmark predictors 
of COVID-19 severity [17, 18]. Similarly, cardiac markers 
such as elevated BNP and troponin have been associated 
with adverse outcomes in severe COVID-19 [19,20]. The 
reasons appear multifactorial - SARS-COV2 virus invades 
cardiac myocytes via the angiotensin-converting enzyme 
2 (ACE-2) receptor, abundantly present through heart and 
blood vessels [21]. The injury degrades both the cardiac 
myocytes as well as the ACE-2 receptor in the coronary 
microvasculature. The resultant overactivation of the renin-
angiotensin-aldosterone (RAAS) pathway causes widespread 
coronary microvascular dysfunction, inflammation-induced 
endothelial apoptosis, vascular permeability, prothrombosis, 
and an excess catecholamine state implicated in severe 
COVID-19 [22-24]. There is also evidence that systemic 
microvascular dysfunction and tissue hypoxemia causes acute 

Figure 3: Baseline vs final renalase measurements for patients used in the training data set for the XGBoost model whose SHAP value 
appears in Figure 1.
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pulmonary hypertension, right ventricular stress as evident 
by echocardiogram and on autopsies findings leading to BNP 
release [25,26]. The XGBoost model supports this theory with 
higher mortality prediction linked with mean BNP values, as 
a marker of cardiac strain as compared to troponin, a marker 
of myocardial injury. A novel contribution from our study is 
identifying low plasma renalase level as the most consistent 
independent predictor of mortality in all our tested models, 
and the second most important laboratory predictor using the 
XGBoost method. Renalase was originally discovered as a 
protein to explain the high cardiovascular burden observed 
in persons with chronic kidney disease [27]. We noted low 
renalase to be a predictor of mortality in COVID-19 as well, 
both when assessed at baseline as well as serially. Patients 
whose trajectory for renalase remained low had significantly 
higher mortality as opposed to patients who produced high 
renalase levels during their hospitalization. Similar trajectories 
were observed in relation to renalase and other peptides – most 
significantly in relation to markers of cardiac strain (BNP, 
troponin) and thromboembolism (platelets). Interestingly, 
renalase levels did not correlate with inflammatory cytokines 
such as IL-1 and IL-6, highlighting additional protective 
pathways. A high BNP and low renalase were linked with 
worse prognosis than the inverse. In non-COVID heart failure 
patients, renalase has been shown to add discriminatory 
and prognostic value for ischemia protection to BNP, both 
thought to be released in response to an overstimulated 
catecholamine state as well as RAAS activation [28-30]. In 
addition, low-tissue oxygenation state in heart failure, which 
is also seen in COVID-19, triggers the release of hypoxia 
inducible factor (HIF 1-alpha), a known activator of renalase 
secretion and transcription. Renalase initiates protective 
receptor signal transduction mechanisms (STAT3), mitogen 
activated protein kinase (MAPK) and protein kinase B, [31] 
and inhibits profibrotic gene expression playing an important 
role in cardiac remodeling [32, 33]. Addition of recombinant 
renalase in mice models of heart failure has been shown to 
decrease myocardial necrosis and improve ejection fraction 
[34]. Conversely, low renalase production has been shown to 
worsen heart failure, indicated by rising BNP, and confirmed 
by increased myocardial apoptosis [34]. We also observed 
an association between renalase, platelets and mortality. 
Thrombo-inflammation and micro-embolization seen in 
severe COVID-19 has been linked with endothelial injury 
resulting in widespread platelet consumption [35]. Renalase 
appears to impart endothelial protection by activating 
the PMCA4B, stabilizing cell membrane, metabolizing 
catecholamines, and reducing cytokine production [36]. 
Renalase also appears to show cell protection systemically 
in animal models [34, 37, 38]. Second, the RAAS imbalance 
in COVID-19 causing angiotensin II activation of AT1R also 
triggers apoptosis nuclear factor (NF-kb) that induces release 

of inflammatory cytokines (IL-1, IL-6) and thrombotic factors 
(platelet derived growth factor) [39]. This pathway triggers 
compensatory activation of renalase peptide, potentially 
explaining the link between renalase and platelets [40].

Our study highlights the role of ML methods, particularly 
XGBoost, by showing strong predictive results. With a high 
AUC of 0.85, the XGBoost model effectively differentiated 
patients who would experience a mortality event from those 
who would not, augmenting the knowledge we have gained 
with traditional models.

Our results should be interpreted considering certain 
limitations. This was a single site retrospective study in the 
first wave of COVID-19; hence the generalizability of our 
findings should be tested in larger varied cohorts and with 
COVID-19 infections with newer strains. Testing of novel 
serum markers in a national cohort however is logistically 
more difficult and our data adds strength to traditional 
electronic data. Second, serial samples were available only 
in a small number of patients. Serial sampling itself may 
indicate more severe illness, and therefore may not represent 
the overall population. However, we believe a minimal effect 
of this bias as excluded patients were similar in profile. Third, 
since our data was pre-vaccination era it is unclear how 
immunization would influence our results.

Conclusion
Machine learning methods augment traditional statistical 

methods in identifying novel predictors of mortality with 
COVID-19. Renalase was identified as a consistent and 
independent predictor of mortality in patients hospitalized 
with COVID-19. The trajectory of renalase, especially in 
conjunction with other markers of cardiac and endothelial 
injury, should be explored in prospective studies.
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