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Abstract
Intracellular parasites of the genus Leishmania have coevolved to 

regulate host macrophage cell biology, enabling them to survive. It has 
become clear that small noncoding RNAs are involved in shaping innate 
and acquired immunity against pathogens. In most situations, small 
noncoding RNAs exert their functions via RNA interference (RNAi) 
pathway. It is known that proteins of the Argonaute (AGO) family play a 
critical role in RNAi as a part of the RNA-induced silencing complex. It 
is unsurprising that pathogens, including Leishmania regulate the RNAi 
pathway. Herein, we review evidence supporting the potential regulation 
of host macrophage RNAi machinery by Leishmania via targeting AGO 
proteins and associated proteins to create a pro-parasitic environment. 
A model is emerging that Leishmania performs de-facto cross-kingdom 
RNAi to regulate host gene expression and create a pro-parasitic climate 
leading to the development of chronic infection.
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Introduction
Leishmaniasis is a spectrum of neglected tropical/sub-tropical diseases 

greatly affecting human health. Despite the devastating effects of leishmaniasis 
on human health, these diseases are on the rise due to drug resistance, lack 
of prophylactic vaccine against human leishmaniasis, increase in tourism 
and global warming. An intracellular pathogen of the genus Leishmania 
is responsible for causing leishmaniasis in humans. Macrophages are the 
primary resident host cells for Leishmania. Paradoxically, macrophages also 
are the main cells responsible for the destruction of Leishmania. Despite 
tough macrophage microbicidal arsenals and restrictive barriers, Leishmania 
has evolved strategies to evade host macrophage defense to establish infection 
successfully [1-3]. Regardless of the significant research progress in the area 
of Leishmania-macrophage interactions, this subject is not fully understood. 
A detailed understanding of Leishmania-macrophage coevolving interaction 
will greatly help control and treat these devastating human diseases. In this 
context, several accumulating studies have implicated small noncoding RNAs 
(sncRNAs) in microbial infections, including protozoan parasites [4]. In most 
situations, sncRNAs perform their gene regulatory functions with the help of 
the Argonaute (AGO) family of proteins [5].

Role of sncRNAs during Leishmania infection
Noncoding RNAs (ncRNAs): 

Recent studies have clearly shown over 90% of the eukaryotic genome is 



Nandan D, et al., Arch Microbiol Immunology 2024
DOI:10.26502/ami.936500195

Citation:	Devki Nandan. Harsimran Kaur Brar, Atieh Moradimotlagh. Neil Reiner1. Regulation of RNA-induced silencing complex by Leishmania: 
Targeting of host Argonaute-interactome. Archives of Microbiology and Immunology. 8 (2024): 480-486.

Volume 8 • Issue 4 481 

transcribed, but only a small percentage (1-2%) of the genome 
is transcribed to code for proteins. It is now abundantly 
clear that this non protein-coding portion of the genome is 
involved in a diverse array of biological processes such as 
proliferation, differentiation and apoptosis [6-7]. With the 
advancement in sequencing technology, bioinformatics, and 
high throughput analysis, a large number of ncRNA species 
have been discovered. Broadly, ncRNAs are classified based 
on their size into small ncRNAs, less than 200 nt (including 
microRNAs (miRNAs), small interfering RNAs (siRNAs), 
PIWI RNAs and small RNAs derived from tRNAs), and 
large ncRNAs over 200 nt (such as long ncRNAs and 
circular RNAs) [8]. MiRNAs are the best characterized small 
noncoding RNAs (sncRNAs) [9].

sncRNAs in macrophage-Leishmania interaction:
It has come to light that miRNAs have role to play in 

macrophage infection biology such as macrophage activation, 
cytokine polarization, and resolution of inflammation [10]. 
Thus, it is unsurprising that Leishmania regulates host 
macrophage miRNAs to survive. Various reports have shown 
modulation of macrophage sncRNAs in infection biology 
[11-13]. A recent review has highlighted the modulation of 
miRNAs in both Leishmania and infected host, focusing on 
their roles in parasite survival and infection [14]. Regulation 
of host miRNAs by Leishmania is now considered very 
important in the Leishmania infection process.

In the context of the potential role of sncRNAs other than 
miRNAs in leishmaniasis, Lambertz et al. have shown the 
enrichment of sncRNAs derived from tRNAs and rRNAs in 
exosomes isolated from both old and new-world Leishmania 
[15]. In a previous study from the same group, Silverman et 
al. showed Leishmania exosomes mediated modulation of 
host innate and adaptive immune response via their effects 
on human monocytes and dendritic cells [16]. Together, 
the emerging role of sncRNAs during Leishmania infection 
seems to represent a novel virulence paradigm that invites 
further examination.

In most cases, sncRNAs, including miRNAs carry out 
their function of gene regulation by RNA interference 
(RNAi). RNAi is a phenomenon by which gene expression 
is regulated by either degrading target mRNA or blocking 
its translation. The core of RNAi is RNA induced silencing 
complex (RISC) which comprises of AGO proteins loaded 
with sncRNAs like miRNA, siRNA, etc. To perform RNAi, 
one of the strands of mature double stranded miRNA (guide 
RNA) is loaded onto a member of the AGO protein family to 
form RISC, which participates in gene silencing by multiple 
mechanisms [17]. The following section briefly introduces 
AGO proteins and their functions.

Argonaute (AGO) proteins: 
AGO proteins, specialized RNA binding proteins, are 

key effector proteins in RNAi. These proteins are found in 
almost all archaea, bacteria and eukaryotes [18]. Humans 
have four highly conserved AGO family members (AGO1, 
AGO2, AGO3 and AGO4). All four AGO proteins share 
signature domains N, MID, PAZ and PIWI [19]. In humans, 
only AGO2 seems to have slicer endonuclease activity [20]. 
Additionally, recent accumulating evidence has shown 
a close association of AGO proteins with diverse human 
diseases, including cancer [21-23]. In addition to AGO 
proteins, some other proteins also form part of RISC by direct 
or indirect binding, including GW182/TNRC6 protein, heat 
shock protein70/90 (HSP70/90), etc. [24-26]. After binding 
to sncRNA, AGO protein serves as a scaffold for glycine/
tryptophan (GW) repeats containing 182 protein (GW182) 
and CCR4-NOT deadenylase complex that facilitate mRNA 
degradation [27]. Recent studies have shown that loading 
of sncRNAs onto AGO protein requires HSP70, HSP90 
and co-chaperones [28-31]. These proteins seem to use the 
energy of ATP hydrolysis to induce conformational change 
in AGO protein so that free AGO protein loads sncRNAs. 
The emerging role of AGO proteins in human cell pathology 
has been highlighted in a recent review article [32]. These 
findings are expanding our understanding of the role of AGO 
proteins beyond gene silencing.

Regulation of macrophage AGO1 protein during 
Leishmania infection: 

In light of the close association of AGO proteins in 
various human diseases, it is reasonable to ask whether 
macrophage AGO proteins are associated with Leishmania 
infection. Recently, our group explored this possibility 
by investigating the potential role of AGO proteins in 
Leishmania pathogenesis [33]. This investigation showed 
a clear increase in the level of AGO1 protein compared to 
AGO2 in Leishmania-infected macrophages. Strikingly, this 
increase in abundance of AGO1 positively correlated with 
higher levels of AGO1 as a part of active AGO- complexes, 
suggesting Leishmania's preference for AGO1 protein in 
RNAi machinery in infected cells. Dysregulation of AGO1 
protein is not uniquely associated with Leishmania infection. 
For example, increased expression of AGO1 protein has been 
reported in bumblebees in response to slow bee paralysis 
virus [34].

 The preferential use of AGO1 protein during Leishmania 
infection is striking. In this context, it has been shown that 
in Epstein-Barr virus-infected mammalian cells, sncRNAs 
other than miRNAs were loaded on AGO1 protein, but not 
AGO2 [35]. Indeed, differences in the affinity of sncRNAs 
for members of AGO protein family have been observed 
in both lower organisms and mammals [36-39]. In another 
study, based on RNA sequencing of sncRNAs associated with 
AGO1, AGO2, and AGO3, some biasness towards particular 
AGO proteins were revealed [40]. Taken together, perfectly 



Nandan D, et al., Arch Microbiol Immunology 2024
DOI:10.26502/ami.936500195

Citation:	Devki Nandan. Harsimran Kaur Brar, Atieh Moradimotlagh. Neil Reiner1. Regulation of RNA-induced silencing complex by Leishmania: 
Targeting of host Argonaute-interactome. Archives of Microbiology and Immunology. 8 (2024): 480-486.

Volume 8 • Issue 4 482 

Comprehensive capture of AGO-interactomes of 
Leishmania-infected and non-infected macrophages: 

It is known that the majority of RNAi, independent of 
AGO-mediated RNA slicing, involves the GW182/TNRC6 
family of proteins [27]. These proteins act as scaffold proteins 
and interact with the AGO proteins once they are loaded with 
the guide RNA strand. In addition, GW182 also recruits 
essential components of repressor complexes responsible for 
decapping, deadenylation and ultimately degradation of target 
mRNA [43-44]. It has been shown that the GW (glycine-
tryptophan) repeats on GW182 protein’s N-terminal domain 
are involved in AGO protein binding [25, 45-46]. A recent 
structure-function study identified a short peptide (T6B) in 
the AGO binding domain of TNRC6B that is sufficient to bind 
all human AGO proteins efficiently [25,47]. Interestingly, 
T6B peptide binds all four AGO proteins with equal affinity 
[48]. Based on the affinity of T6B for all the AGO proteins, 
Huptmann, J et al. developed a protocol to quantitatively 
isolate AGO proteins from many different cell types, tissues 
and species [48]. This T6B peptide-based affinity purification 
of AGO proteins is termed “AGO protein Affinity Purification 
by Peptide” (AGO-APP) [48]. This procedure offers 
three major advantages compared to other AGO isolating 
procedures, such as immunoprecipitation. First, this method 
isolates all human AGO proteins simultaneously. Second, 
isolated AGO proteins are functional. Third, it specifically 
isolates AGO and interacting proteins involved in the process 
of RNAi, reducing chances of isolating AGO interacting 
proteins with other potential functions. This procedure 
will also exclude proteins interacting with other domains 
of GW182 protein like silencing domain. Additionally, 
this procedure can also be used to isolate AGO-associated 
sncRNAs. Thus, AGO-APP has potential to isolate mature 
active AGO proteins and their interactome.

To test the hypothesis that Leishmania targets AGO 
protein complexes, AGO-APP was used to isolate AGO 
protein complexes from the cytosolic and nuclear fractions 
from non-infected and Leishmania-infected macrophages. 
Surprisingly, but interestingly, AGO proteins could not 
be detected in the nuclear fraction of human macrophages. 
Contrary to this, in several recent studies, AGO proteins 
could be detected in the nucleus, suggesting multi-functional 
role of AGO proteins in the nucleus [49]. From this study, it 
seems AGO proteins are mainly restricted to the cytoplasm 
of macrophages. Furthermore, AGO-APP could isolate 
bound sncRNAs. After confirming the validity of AGO-APP 
for the isolation of active AGO proteins and presumably 
associated proteins, cytosolic fractions from non-infected 
and Leishmania-infected macrophages were used to pull 
down AGO protein complexes followed by their detection 
using liquid- chromatography-tandem-mass spectrometry 
(LC-MS/MS). Stable isotope labelling using amino acids in 

matched sncRNA duplexes seem to be loaded onto AGO2 
protein, whereas non-perfectly matched sncRNAs are loaded 
onto AGO1 protein. The biological relevance of AGO1 
protein was investigated by assessing intracellular survival 
of Leishmania donovani in infected cells, where AGO1 was 
downregulated using AGO1 mRNA targeting siRNAs. The 
results presented in this study strongly suggested that AGO1 
confers a pathogen survival advantage, suggesting AGO1 role 
in pathogenesis and could be a novel and essential virulence 
factor by proxy that promotes pathogen survival [33].

This study further investigated the role of AGO1 protein 
during Leishmania infection. For this investigation, a whole 
quantitative proteomic analysis was performed on Leishmania-
infected macrophages in normal and AGO1-downregulated 
conditions. Of the 1778 high-confidence human proteins 
identified, 331 were significantly altered by Leishmania. Out 
of 331 modulated proteins, 212 were downregulated, while 
119 were upregulated in infected cells. Most interestingly, 
out of the 71 Leishmania-modulated AGO1-dependent 
proteins, 20 have previously been implicated in Leishmania 
infection-related studies [33]. Together, this study suggested 
that Leishmania-mediated upregulation of AGO1 protein is 
a clever strategy to regulate host cell RNAi-mediated gene 
expression to promote its survival. It is known that unloaded 
AGO proteins are unstable and degraded by proteosome [41]. 
Thus, it is reasonable to presume that an increased abundance 
of functional AGO1 protein is complemented by increased 
loading of sncRNAs into AGO1. Based on these findings, 
it hypothesized that Leishmania uses selective AGO sorting 
mechanism that directs distinct sncRNAs loading onto 
specific AGO-containing RISCs, and that AGO1 seems to be 
a preferred AGO for the loading of non-perfectly matching 
sncRNAs, including sncRNAs from the pathogen.

 The following section review the evidence suggesting 
regulation of host RISC by modulating proteome of AGO-
associated complex.

Characterization of proteome of AGO-complexes 
from Leishmania-infected macrophages: 

As described above, AGO proteins are a central component 
of RISC, an ultimate component of RNAi machinery. Our 
recent result discussed above showed significant upregulation 
of AGO1 protein in Leishmania-infected cells [33]. This 
result led to the assumption that Leishmania also affects host 
RNAi effector RISC complexes components other than AGO 
proteins to promote its survival. This attractive hypothesis 
was investigated in a more recent study [42]. For this study, 
AGO-associated proteins were isolated to characterize their 
proteome using mass spectrometry. The following section 
reviews characterization of AGO interactome in non-infected 
and Leishmania-infected macrophages [42].
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cell culture (SILAC) was used for mass spectrometry-based 
comprehensive quantitation of AGO protein complexes from 
control and Leishmania-infected macrophages. The major 
advantage of this straightforward procedure of SILAC is 
that multiple samples can be mixed at the early stages of the 
procedure, digested simultaneously, and then identified, thus 
minimizing variations due to technical error and offering the 
comparison of multiple investigational conditions in a single 
run. This technology has been extensively used for high-
throughput, whole proteome analysis [33, 42, 50, 51].

Proteomic analysis of host AGO-containing com-
plexes:

Proteomic analysis of AGO- interactomes identified 
51 proteins. Gene Ontology (GO) analysis of 51 proteins 
suggested a diverse range of molecular functions associated 
with AGO-complexes in both non-infected and Leishmania-
infected macrophages. The majority of identified proteins’ 
molecular functions include catalytic activity, hydrolase 
activity, RNA binding, ATP-dependent activity, regulator 
activity, DNA binding, catalytic activity, cytoskeletal protein 
binding, and protein folding chaperone. Further, this study 
showed that the level of 17 proteins was differentially 
expressed between AGO-complexes obtained from non-
infected and those from Leishmania-infected cells. Amongst 
these differentially expressed AGO-associated proteins, 11 
were downregulated, and 6 were upregulated in Leishmania-
infected cells compared to non-infected controls. Strikingly, 
interacting proteins most significantly modulated by 
Leishmania were predominantly heat shock proteins (HSPs), 
and the majority were downregulated (five out of six HSPs). 
In addition, macrophage proteins involved in RNAi, protein 
translation, ATP binding, transferases, oxidases, and host-
virus interaction were also found to be altered in response 
to Leishmania infection. The most striking part of this 
analysis was the identification of ten L. donovani proteins as 
constituents of AGO-complexes in infected cells. Out of these 
ten Leishmania proteins, two were HSP70 and HSP70-related 
proteins. In this context, it is known that Leishmania HSP70 
is upregulated in infected macrophages [52]. Moreover, as 
discussed above, the Hsp70/Hsp90 multi-chaperone systems 
are involved in the ATP-dependent conformation change of 
AGO proteins to an open and active state to accommodate the 
RNA duplex and thus is an integral part of the RISC-loading 
mechanism [29]. Interestingly, the presence of Leishmania 
HSPs as the constituents of AGO-complex raises the 
possibility that Leishmania HSP70 competes with host HSP70 
for binding to the host AGO-complexes. In this context, it 
is worth noting that sncRNAs and HSPs are enriched in the 
exosomes of L. donovani [15, 53] and can be secreted in the 
cytosol of infected cell [15, 54]. Taken together, this study 
hypothesizes that Leishmania delivers its HSPs and sncRNAs 
to the host cell through exosomes, to regulate the host RNAi 

by loading exogenous sncRNAs onto RISC and alter the host 
gene expression in favor of parasite survival. Nevertheless, 
the role of parasite proteins identified in AGO-complexes 
isolated from infected cells needs to be investigated, as well 
as their subsequent potential role in Leishmania pathogenesis. 
This study also compared AGO-associated proteome with the 
results obtained from a previous recent study investigating 
AGO1-dependent Leishmania-modulated proteins [33]. 
Strikingly, HSPA5, PRDX1, and EEF1G proteins of AGO- 
complexes that were AGO1-dependent were found to be 
downregulated in Leishmania-infected cells in both studies, 
thus further emphasizing the importance of the results from 
the AGO- complexes proteomic study. Although this study 
indicates that AGO-associated proteins predominantly 
contribute to the process of RISC in normal and infected 
cells, there are several limitations—the detailed biological 
functions and how these identified proteins contribute to 
RISC biogenesis. Hence, there should be further investigation 
of potential mechanisms in the future.

Cross-kingdom RNAi: 
The data from two recent studies discussed in this 

review strongly point towards cross-kingdom RNAi during 
Leishmania infection. This emerging phenomenon involves 
the bidirectional trafficking of sncRNAs between the host 
and corresponding pathogen as shown in multiple studies [4, 
55-57]. This evolving trend has been shown as both a host’s
defence mechanism and a strategy employed by pathogens to
target the host RNAi machinery to their advantage [56,58].
The possibility of cross-kingdom RNAi during Leishmania
infection is presented as a hypothetical model in Fig. 1

Figure 1: Cross-kingdom RNAi during macrophage-Leishmania 
(Ld) interactions.

Leishmania globally downregulated host miRNAs during in-
fection. It also hijacks macrophage AGO1 to target host tran-
scription. Leishmania secretory exosome-derived sncRNAs 
compete with host sncRNAs to load on AGO1 to target suf-ficient 
complementary host transcriptome/transcription. In addition, 
Leishmania also targets host AGO-interactome by providing its 
own proteins such as HSP70s. The correspond-ing reference 
literature for this model is shown in the grey boxes.
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Concluding Remarks
It is well established that Leishmania is an expert 

manipulator of host macrophage cell biology, and it comes 
with no surprise that it targets AGO proteins and associated 
protein complexes in infected cells. Since AGO proteins are 
the central component of RISC, the ultimate effector complex 
of RNAi, modulation of AGO proteins and associated 
proteins will have an impact on host RNAi involved in 
gene regulation. Moreover, based on emerging evidence, it 
is becoming increasingly clear that targeting host ncRNAs 
is high on the agenda for pathogens, including Leishmania. 
Two recent published articles [33, 42] and a previous finding 
showing the presence of sncRNAs in Leishmania exosomes 
[15], provide foundation to explore the role of sncRNAs/
RISC composition in an emerging area of host-pathogen 
interaction. The striking observation is that Leishmania 
selectively upregulates macrophage AGO1 and recruits its 
own proteins to AGO-complexes, perhaps manipulating 
host RISC to regulate gene expression to its advantage. 
Since AGO1 directly binds sncRNAs, possibly Leishmania 
skews host RNAi by selectively uploading sncRNAs onto 
AGO1, including its own sncRNAs. Identifying ncRNAs 
loaded onto infected host RISC has the potential to answer 
this interesting question. It is evident that all the identified 
proteins of AGO-complexes in infected cells will not have 
an impact on Leishmania survival; however, it raises an 
important question as to whether the manipulation of host 
RISC can be exploited in a general way by Leishmania 
proteins directly or indirectly. A more detailed study of 
how Leishmania achieves manipulation of host AGO- and 
associated proteins, we will undoubtedly gain knowledge of 
the regulation of RNAi in infected cells and may unveil new 
avenues for therapeutic intervention to fight leishmaniasis 
and may also have implications for other intracellular 
pathogens. In addition, we note that the prior understanding 
of the role of RNAi mechanisms in infection is mainly based 
on plants and insects. The findings discussed in this review 
provide a foundation for further study of the role of RNAi in 
Leishmania pathogenesis in humans.
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