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Abstract

A phase Il trial is to evaluate an experimental therapy using an early efficacy outcome, such as tumor shrinkage, before
proceeding to a large-scale phase 111 trial. Traditionally, a typical phase 1l trial has been conducted using a single-arm design
recruiting patients only to the experimental therapy to be compared with a historical control. Due to a small sample size and
heterogeneity of patient population, the characteristics of the patients in a new phase |1 trial is often different from that of the
selected historical control, so that the single-arm phase Il trial results in false positive or false negative conclusions. A
randomized phase Il trial can resolve such problems by randomizing patients between an experimental arm and a control
arm. In this paper, we propose randomized phase Il trial designs based on 2-stage Fisher’s exact tests allowing for both
superiority and futility early stopping options, so that we can save number of patients when experimental therapy is definitely
efficacious as well as when it is futile. We propose a weighted expected sample size as a new criterion to define optimal two-

stage designs.

Keywords: Admissible design; Futility stopping; Minimax design; Optimal design; Superiority stopping; Weighted average

sample size

1. Introduction
Phase Il clinical cancer trials are to evaluate the short-term efficacy, such as tumor response, of experimental therapies and

to determine to continue to a randomized phase I11 trial with a long-term outcome, such as overall survival. The most popular
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primary outcome is the overall response, meaning partial response and complete response. Traditionally, the single-arm phase
Il trial was the principal mechanism to recruit a small number of patients only to the experimental arm to be compared to a
historical control as proposed by Simon [1]. A single-arm trial is not appropriate if no reliable historical control exists. Even
when a historical control exists, its patient population may be somewhat different from that of a new phase Il trial or
assessment of tumor size may different between the historical control and a new trial. In this case, an experimental therapy
and the chosen historical control may not be comparable. This happens especially when a historical control is taken from a
previous phase Il trial with a small number of patients. Raising various pitfalls of single-arm phase Il trials, Cannistra [2]

recommends randomized phase Il trials as a viable alternative.

We consider randomized phase Il trials with a parallel control arm. Let py, py denote the response probabilities of an
experimental arm (arm x) and a control arm (arm y), respectively. We want to test the null hypothesis Ho: px < py against the
alternative hypothesis Hi: px > py. Sample sizes of phase 1l trials are not large enough to apply asymptotic theories, so that
usually exact methods are used in designing and analyzing phase 11 trials. Jung [3] proposes a design method for randomized
phase 1 trials, called MaxTest design, based on a binomial test. In the binomial test, the null distribution of the test statistic
depends on the nuisance parameter py. Therefore, if py is mis-specified, the test may not control the type | error rate accurately.
Jung [3] addresses this problem by controlling the type | error rate at py = 0.5. However, this will result in too a conservative

type | error control if the py is different from 0.5.

Jung et al. [4] propose to use Fisher’s exact test [5] as an alternative to the binomial test. In a Fisher’s exact test, the null
distribution of the test statistic is free of py by conditioning on the total number of responders which is a sufficient statistic
for the nuisance parameter. Jung et al. [4] show that the design method based on Fisher’s exact test has a higher power than
the binomial design method in a wide range of py values. These randomized phase 1l designs consider two-stage designs with
futility early stopping only. One may also want to stop early if the experimental arm is more efficacious than the control arm.
In this paper, extending Jung et al. [4], we investigate two-stage randomized phase II trial designs based on Fisher’s exact
tests allowing for both superiority and futility early stopping. We propose weighted expected sample size as a new criterion
to define optimal and admissible two-stage designs [6]. We briefly review Jung et al. [4] method in Section 2 and extend it
to two-stage design with both futility and superiority interim tests in Section 3. In Section 4, we conclude this paper with

some discussions.
2. Two-Stage Design with A Futility Interim Test: Review

Jung et al. [4] consider a two-stage phase Il clinical trial with an early stopping rule if the experimental arm has a low efficacy.

Suppose that n; patients are randomized to each arm during stage | (= 1, 2). Let n = n; + n, denote the maximal sample size
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per arm, so that the maximal number of patients required for the randomized trial is 2n. Also, let X, and Y denote the number

of responders observed from the experimental arm and the control arm, respectively, during stage I.

Let gx=1—px, Gy = 1 — py, then the odds ratio is defined as 6 = pxQy/(pydx). Fisher’s exact test is conditioning on Z; = X; +
Y\, which is the total number of responders during stage I. A two-stage randomized phase 11 trial for testing Ho : 6 = 1 against

Hi : 6 > 1 using a futility interim test is conducted as follows:

Stage 1: Randomize nl patients to each arm, and observe number of responders Xz and Y.

1. If X1 — Y1 <ay, then reject the experimental arm and stop the trial.

2. Otherwise, proceed to stage 2.
Stage 2: Randomize n; patients to each arm and observe number of responders Xz and Y. Let X = X3 + Xoand Y = Y1 + Y3
denote the cumulative number of patient for experimental and control arms, respectively.

1. Reject the experimental arm if X —Y < a.

2. Otherwise, accept the experimental arm for further investigation.

For two-stage Fisher’s exact tests, both a; and a may change depending on the total number of responders Z, = X; + Y and
Z>=X2+ Y.

2.1 Conditional Test:
Given Z,, X has a hypergeometric distribution whose probability mass function is given as:
Y (g
Sz, 0) = M
RIS
for mi- <x; < my, where mi- = max(0, zi — ny) and m;+ = min(z;, n;). Note that the conditional distribution is free of px or py
under Ho : px = py (or 6 = 1). Hence, a test conditioning on the values of z; and z, can control the type | error rate without
specifying px and py. At the design of a 2-stage randomized phase 1l trial, we specify the expected response rates py and py
for the experimental arm and the control arm, respectively, together with type I error rate a*, and power 1 — *. Given input
parameters (px, py, a*, 1 — B*), a two-stage design, defined by (n1, n) and {ai(z1), a(z1, z2), 0 < z3 < 2n3, 0 < 22 < 2ny}, iS

identified as follows.
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2.2 How to choose a1 and a given (N1, n):
Suppose that sample sizes (n, n1) are given and (z1, z») are observed from the trial. For a two-stage design defined by (ny,

n2) and {ai(z1), a(zz, z2) : 0 z<2n, | =1, 2}, the conditional type | error rate and the conditional power function are calculated

as:
a(z1.22)=P(X1—Y1>a1. X1+ Xo— Y] = Yo > alz, 2.0 =1)
mi4 may
= Z Z filx1]=1. 1) fa(wo|zo. 1) I{xy > (21 4+ a1) /2. 21 + 22 > (21 + 22 + a) /2}
ri=mi_ ro=mao_
and

1 - f_ﬁ)(-l L’g) = P(‘Xl —Yi>a. X+ Xo=-Y—Y; >a

miy Moy

= > > filan

r1=mi— ra=1mg_

z1, 22, 0)

21, 0) fa(xs

2o, ) w1 > (21 4+ a1)/2, 01+ 20 > (21 + 20+ a)/2}

respectively, where | (-) is the indicator function. From X1 + y1 = z; and x| — yi = a1, we have 2x; = z; + a;. So, in the

indicator above functions, z; + a; is an even number and (z1 + a1)/2 is an integer. Similarly, (z1 + z; + a)/2 is an integer.

We would like to choose a reasonable combination of (ai, a) depending on the values of z; and z, by controlling the
type I error rate below a specified a* level while maintaining the power as high as possible. Jung et al. [4] choose a;
= -1 to stop the trial early when the number of responders in the experimental arm is smaller than the number of
responders in the control arm. This rule is motivated by the single-arm two-stage designs stopping early when the
number of responders from the experimental therapy is smaller than the expected number of responders under the null
hypothesis [1, 7]. Note that, with a; fixed at —1, the type | error rate o (z1, z2) decreases in a. Hence, we choose the
smallest integer a = a (z1, z2) for which the type I error rate is controlled below a*, i.e.

a=min{a: a(z1,22) <o} Q)

for each combination of z; € [0, 2n1] and z; € [0, 2n,].

2.3 How to choose n and n1:

Now, given (n1, n), we have a rule to choose rejection values (ai, a) conditioning on (z1, z2), so that, by selecting (ns,
n), we completely define a two-stage design. At first, we choose a value of n large enough for a reasonable power, say
n > 20. Then, the stage 1 sample size n; is selected in [1, n1]. Given (n1, n), we choose a; = -1 and a = a (z1, Z2) so that
the conditional type I error rate is controlled below a* for any z; € [0, 2n1] and z; € [0, 2n;] as in (1). Hence, the
marginal type I error rate is controlled below a* as well.

Given nj, Z has a probability distribution function:

ﬂlH_
e LA N n 21—T) M —Z]+T)
E}'l( 2P, py) = Z (TE)I)JJ Iy 5 — 1 ]J.y qy

Ty=m;_

Archives of Clinical and Biomedical Research Vol. 5 No.2 — April 2021. [ISSN 2572-9292]. 217



Arch Clin Biomed Res 2021; 5 (2): 214-229 DOI: 10.26502/acbr.50170161

forz =0, ..., 2n,. By taking expectations over (z1, z»), the marginal type | error rate and power are given as

2nq
o = Z a(z1. z2) g1 (z1|py. py) g2 (22|py. y)
z1=0
and
211
1—8=1=>" B(z1.2)01(z1|ps.py) 92(z2|pa. py)
z1=0

respectively. For a specified type I error rate o* and power 1 —3*, a two-stage design defined by (n1, n) and {ai, a(z,
22),0 <7 <2n;, 1 =1, 2} is a candidate design if 1 — > 1 — .

2.4 Minimax, optimal, and admissible designs:

Among the candidate designs, the one with the smallest maximal sample size n is called the minimax design.

A two-stage design with a futility stopping is to save the number of patients when Hy is true. For a candidate two-
stage design defined by (n1, n) and {a1, a(z1, z2), 0 <z < 2ny, | = 1, 2}, the probability of early termination (PETo)

under Ho: px = py for a specified py for sample size calculation is obtained by

2mq miy
PET) = P(Xi—Y1 < aq|ps = py) = Z a1(21|pe = py) Z fi(aa|z, DI{aq < (z14a1)/2}
z1=0 T=IM] —

Under Ho, the sample size per arm is n; with probability PET, and n with probability 1 — PET), so that the expected
sample size is given by

ENo = n; x PETO +n x (1 — PETo)
Given (o, 1-p*), the two-stage design with the smallest ENo is called the optimal design.
Jung and his colleagues [6, 7] define admissible designs for single-arm two- stage designs. Applying their concept to
randomized trials, a candidate two-stage randomized phase Il trial is admissible if it minimizes wxn + (1-w) XENo for
any w € [0, 1]. Since w = 0 corresponds to the optimal design and w = 1 corresponds to the minimax design, both

minimax and optimal designs are admissible.

3. Two-Stage Design with Both Superiority And Futility Interim Tests

For a randomized phase Il trial, we may want to save the number of patients when the experimental therapy is
definitely efficacious as well as when it is inefficacious. To this end, we consider two-stage phase Il clinical trial
designs with an early stopping for both futility and superiority of the experimental arm compared to the control arm.
A two-stage randomized phase |1 trial with early stopping values al for futility and b1 for superiority is carried out as

follows.

Stage 1: Randomize n; patients to each arm, and observe numbers of responders X; and Y.

1. If X1 — Y1 < ay, reject the experimental arm and stop the trial.
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2. If X1 — Y1 > by, accept the experimental arm and stop the trial.

3. Otherwise (i.e. a1 < X1 — Y1 < by), proceed to stage 2.
Stage 2: Randomize n; patients to each arm, and observe numbers of responders X, and Y. Let Z; = X1 + Y1, Zy =
X2+ Y.

1. Choose the second stage critical value a depending on z; and z..

2. Reject the experimental arm if X—Y < a, where X =X1+Xzand Y = Y1+Ya.

3. Accept the experimental arm if X —Y > a for further investigation.

For two-stage Fisher’s test, the critical values a; = a1(z1), b1 = b1(z1), and a = a (z1, z2) will depend on the total numbers
of responders from the two stages, z; and z,. Given input parameters (px, py, o*, 1-p*), a two-stage designs, defined
by sample sizes (n1, n) and critical values, {(ay(z1),a(z1,22)),0 < 21 < 2ny,0 < 25 < 20y},

is identified as follows.

3.1 How to find as, b1, and a: Suppose that (n, ny) are given. And, (z1, 2) are observed from the trial. For a two- stage
design defined by (n1, n2) and  {a1(21), bi(21), alz1, 22) 0 < 2 < 2my, 1 = 1,2},

the conditional type | error rate and the conditional power function are calculated by

alz, ) = PX,-Y, > bl‘il.ﬁ = 1)+P(G1 <Xi-Yi<b,X-Y > (I|$1. 2.0 =1)

miy
= Z fl(.l'1|f1A 1)[{1‘1 > (31 +bl)/2}
I1=mi—
mis  Mmas

+ Z Z filzi]z1, 1) fala| 22, 1)
T{=My_ Tg=Mg_
xI{(z:1+01)/2 <wy < (z1+0)/2,0 + 29> (21 + 2+ 0)/2}
and

1-08(z, ) =PX; -V > 51\31-9) + P((ll <Xi-Vi<hX-YV> (Tl.?']. 29, 0)

miy
= Z Jilay)z, 0)[{ay > (21 +by)/2}
I1=mi—
mi+ mas

+ Y)Y nmle ) flraln.6)

T1=M1_ T9=Mng9_

{214+ 01)/2 <2y < (204 01)/2,00 + 29 > (21 + 25 +a)/2}

Given (n1, nz), we want to choose a reasonable combination of (a1, bi, a) conditioning on the values of z; and z, that
controls the type I error rate below a given o* while maintaining the power as high as possible. It takes too much
computing time to search for optimal values of (a1, b1, a) for every combination of (z1, z2). Jung[8] claims that
reasonable early stopping values a; and b; are determined around the expected differences under Ho and Hs,

respectively, based on the results of two-stage binomial designs by Jung[3]. As a result, we choose a; = —1 and by =
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[n1(px — py)] + 1 which do not depend on z; or z,, where [c] denotes the round down of c. With a; and b, fixed at these
values, we choose a as in the designs with a futility interim test only. Since the type I error rate o(z1, z2) decreases in
a, we choose a = a(z1, z2) to control the conditional type | error rate below a* by

a=min{a: a(z1, 22) < 0*} 2

for each combination of z; € [0, 2n;] and z; € [0, 2n].

3.2 How to choose n and nu:

We increase n from a small number, like 20, until it has a high enough power. For a given n, we choose ny in [1, n —
1] for a two-stage design. Given (ny, n), we {a(zy,29),0 < 2y < 2ny,0 < 29 < 219}, selecta;=-1andby=
[ni(px — py)] + 1, and a = a(z, z2) is chosen so that the conditional type | error does not exceed the specified a* as in
(2). So, for the selected sample sizes (n1, n), and critical values a1 =—1, b1 = [n1(px — py)] + 1, and {a(zl, z2), 0 < zl

<2nl,1=1, 2}, the marginal type | error rate the marginal power are calculated as

2n
Z 21, 22)g1(2 y)92(22|Py; Py)
and
2n1
L= =1-= Bz 2)01(21/pe. py) g2 (22lpe- 1y)
z1=0

respectively. Since the critical values are chosen so that the conditional type I error rates do not exceed a* for all (z1,
2») outcomes, the marginal type I error rate is maintained below a* t00.

Given (o, 1 — B*), a two-stage design defined by (n1, n), a1 =—1, b = [n1(px — py)] + 1, and {a(z1, 22), 0 <z1 < 2n, | =
1,2} is a candidate designif 1 —p>1— p*.

3.3 Minimax, Optimal, and Admissible Two-Stage Designs: Among candidate two-stage designs, the design with
the smallest maximal sample n is called the minimax design.

Recall that a two-stage design with both futility and superiority interim analyses is to save the number of patients
when the experimental therapy is inefficacious (i.e. when Hy is true) as well as when it is efficacious (i.e. when Hy is
true) compared to the control therapy. So, an optimal two-stage design will have small, expected sample sizes under
both Ho and H;. Since we cannot minimize the both expected sample sizes at the same time, we will minimize a

weighted average of them. Under Hy (h = 0, 1), the probability of early termination is calculated by
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PET, = P(X; =Y, <ajor X, =Y, > by|0 =1)

2n1 mi4
= Z g1(21|py, py) Z Silzalz, DI{ay < (21 +a1) /2 or 2y > (21 + by)/2}

z1=0 T=1]

PET; = P(X; — Y1 <aj or X1 — Y1 > b1|0)

2nq my

— Zgl(;l D Dy) Z Jilay

z1=0 T=T1 _

21, 0){zy < (z1+ay)/20r xy > (21 + by)/2}

Hence, the expected sample size under Hy (h = 0, 1) is given by ENy = n1 X PETh + n x (1-PETn). We propose to
minimize a weighted average of the expected sample sizes by the relative importance of type | error and type Il error
rates specified at the design stage. When we design a trial, we would select a small a* if the control of false decision
under Ho is important and a small B* if that under H; is important. So accounting for their relative importance, we
consider a weighted average between the two expected sample sizes by

BN — ENy/a* + ENy /3" o B*ENg + o*ENy
R L /ov* + 1 /3% o ot o [3*

The two-stage design with the smallest EN is called the optimal design. If a* = B*, then our weighted expected sample
size is identical to the simple average of the expected sample sizes that was used for single-arm two-stage trial designs

[9, 10] regardless of the relative size between o* and B*.

Both minimizing maximal sample size and minimizing weighted mean expected sample sizes are good strategies to
define good two-stage designs, but these two strategies do not get along sometimes. In other words, we may have to
sacrifice expected sample size to minimize maximal sample size or we may have to sacrifice maximal sample size to
minimize expected sample size. This happens since we cannot minimize both maximal sample size and expected
sample size at the same time. In this case, we may consider minimizing a linear combination of maximal sample size
and expected sample size as an effort to identify a good compromise between the minimax design and the optimal
design. Using the concept of [6] and [7], we call a candidate two-stage randomized phase 11 trial an admissible design
if it minimizesw x n + (1 —w) x EN for any w € [0, 1]. Since w = 0 corresponds to the optimal design and w = 1

corresponds to the minimax design, both minimax and optimal designs are admissible.

4 Numerical studies:

Tables 1 to 6 report the minimax and optimal designs and their type | error rates, powers, and weighted averages of
expected sample sizes for various combinations of (px, py) under (a*, f*) = (0.1, 0.85), (0.1, 0.8), (0.15, 0.85), (0.15,
0.8), (0.2, 0.85), and (0.2, 0.8). As stated earlier, a; = —1 and by = [n1(px — py)] + 1 for all the designs, but a = a(z1, z»)
will be dependent on (z1, z2), so that we cannot report all the conditional second stage critical values in these tables.
As expected, maximal sample size n decreases in a* and increases in Ff*. For some design settings, the minimax

design is identical to the optimal design, e.g. when (a*, H3*, px, py) = (0.15, 0.8, 0.2, 0.05). Under each design setting,

Archives of Clinical and Biomedical Research Vol. 5 No.2 — April 2021. [ISSN 2572-9292].

221



Arch Clin Biomed Res 2021; 5 (2): 214-229

the minimax design tends to conduct the interim analysis later (i.e. ni/n is larger) than the optimal design. We have
this result because the minimax design delays the interim analysis time to mimic the corresponding single-stage design,
while the optimal design tries to conduct the interim analysis early to lower the weighted average between n; and n.

Under each design setting, the maximal sample size of the minimax design is mostly identical to the sample size of

the single-stage design as reported in Jung [3].
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by px Maximal Design Optimal Design
(n, n1) a 1-8 EN n, ni a 1-8 EN
0.05 0.15 (95, 51) 0.0509 0.8002 77.99 (97, 43) 0.0527 0.8001 76.02
0.2 (52, 49) 0.0316 0.8006 50.83 (53, 25) 0.0348 0.8014 42.53
0.25 (34, 22) 0.0218 0.8006 29.89 (36, 12) 0.0222 0.8042 29.06
0.1 0.25 (68, 41) 0.0584 0.8025 56.99 (70, 31) 0.061 0.8001 53.48
0.3 (43, 22) 0.05 0.8003 34.87 (44, 16) 0.0533 0.8001 33.87
0.15 0.3 (80, 57) 0.0674 0.8004 69.72 (84, 35) 0.0727 0.8001 62.77
0.35 (50, 26) 0.0626 0.8007 40.23 (51, 24) 0.0652 0.8006 39.26
0.2 0.35 (91, 54) 0.0737 0.8007 74.51 (100, 35) 0.0793 0.8001 70.55
0.4 (56, 31) 0.0675 0.8011 45.36 (59, 21) 0.071 0.8011 43.04
0.25 0.4 (99, 66) 0.0772 0.8001 83.2 (108, 40) 0.0813 0.8009 77.01
0.45 (59, 36) 0.0694 0.8036 48.94 (62, 26) 0.0732 0.8014 46.32
0.3 0.45 (106, 106) 0.0777 0.8014 106 (118, 40) 0.0844 0.8006 81.63
0.5 (60, 49) 0.0695 0.8 54.9 (60, 49) 0.0695 0.8 54.9
0.35 0.5 (110, 62) 0.0796 0.8007 87.23 (119, 47) 0.0848 0.8015 84.99
0.55 (65, 34) 0.0773 0.8 50.28 (68, 28) 0.0799 0.8001 49.19
0.4 0.55 (111, 60) 0.0825 0.8009 87.06 (115, 55) 0.0843 0.8012 86.22
0.6 (65, 35) 0.0789 0.8002 50.41 (68, 29) 0.0826 0.8001 49.15
0.45 0.6 (111, 61) 0.0864 0.8017 87.23 (115, 55) 0.0865 0.8012 86.11
0.65 (65, 34) 0.0806 0.8 50.12 (68, 28) 0.0834 0.8001 48.97
0.5 0.65 (110, 62) 0.0871 0.8007 86.99 (119, 47) 0.0869 0.8015 84.57
0.7 (60, 49) 0.0726 0.8 54.82 (60, 49) 0.0726 0.8 54.82
0.55 0.7 (106, 106) 0.0737 0.8014 106 (112, 47) 0.0859 0.8009 81.1
0.75 (59, 36) 0.0751 0.8036 48.66 (66, 23) 0.0858 0.8002 4551
0.6 0.75 (99, 66) 0.08 0.8001 82.8 (108, 40) 0.087 0.8009 75.96
0.8 (56, 30) 0.0777 0.8008 44.67 (59, 21) 0.0816 0.8011 42.05
0.65 0.8 (91, 54) 0.0796 0.8007 73.92 (100, 35) 0.0871 0.8001 69.01
0.85 (50, 26) 0.0739 0.8007 39.54 (55, 18) 0.0851 0.8029 37.87
0.7 0.85 (80, 57) 0.077 0.8004 69.24 (90, 29) 0.088 0.8006 61.2
0.9 (43, 22) 0.0748 0.8003 33.92 (44, 16) 0.0779 0.8001 32.38
0.75 0.9 (68, 40) 0.0756 0.8022 55.89 (75, 21) 0.0856 0.8018 51.37
0.95 (34, 22) 0.0677 0.8006 29.05 (36, 12) 0.0788 0.8042 26.46
0.8 0.95 (52, 49) 0.0652 0.8006 50.71 (57,17) 0.0902 0.8002 39.65
0.85 0.95 (95, 51) 0.0772 0.8002 75.92 (102, 31) 0.0858 0.8018 71.53

Table 1: Minimax and Optimal designs for (a*, 1-p*) = (0.1, 0.8)
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Py Px Maximal Design Optimal design
(n, n1) a 1-8 EN (n, ni1) a 1-8 EN
0.05 0.15 (109, 66) | 0.0545 0.8502 91.16 (114, 47) 0.0573 0.8505 86.46
0.2 (61, 28) 0.0383 0.8528 49.52 (62, 26) 0.0401 0.8527 48.05
0.25 | (39,22) 0.0252 0.8513 33.21 (40, 19) 0.0244 0.8521 32,51
0.1 0.25 (79, 41) 0.0615 0.8519 63.66 (83, 32) 0.0668 0.8503 60.94
0.3 (50, 24) 0.0556 0.8504 39.3 (53, 20) 0.0562 0.8545 39.12
0.15 0.3 (94, 56) 0.071 0.8502 77.28 (101, 39) 0.0754 0.8507 72.42
0.35 (58, 31) 0.0644 0.8515 47 (61, 25) 0.0682 0.8507 44.88
0.2 0.35 (107,61) | 0.0755 0.8503 86.57 (115, 44) 0.0799 0.8511 82.01
0.4 (64, 36) 0.0687 0.8504 52.13 (71, 24) 0.0755 0.8502 49.69
0.25 0.4 (117,86) | 0.0774 0.85 102.3 (124, 49) 0.0818 0.8506 89.17
0.45 (71, 35) 0.0748 0.85 54.07 (74, 29) 0.0774 0.8519 53.14
0.3 0.45 (122, 74) 0.0785 0.8506 100.02 (135, 52) 0.0849 0.85 94.27
0.5 (72, 45) 0.0741 0.85 59.25 (75, 35) 0.0777 0.8502 55.89
0.35 0.5 (131, 71) 0.0822 0.8501 102.17 (136, 59) 0.0847 0.8504 97.97
0.55 (73, 42) 0.0745 0.8502 58.95 (74, 35) 0.0765 0.8514 56.95
0.4 0.55 (132,71) | 0.0821 0.8503 102.5 (138,57) 0.0862 0.8503 98.52
0.6 (73, 44) 0.0795 0.8502 59.33 (83, 30) 0.0842 0.8508 56.89
0.45 0.6 (132,71) | 0.0849 0.8503 102.42 (138,57) 0.0892 0.8503 98.39
0.65 (73, 42) 0.0823 0.8502 58.85 (83, 30) 0.0866 0.8526 56.81
0.5 0.65 (131,71) | 0.0853 0.8501 101.92 (136, 59) 0.0908 0.8504 97.57
0.7 (72, 45) 0.083 0.85 59.06 (80, 28) 0.0821 0.8505 55.43
0.55 0.7 (122,74) | 0.0793 0.8506 99.74 (135, 52) 0.0864 0.85 93.47
0.75 (71, 35) 0.0817 0.85 53.56 (74, 29) 0.0835 0.8519 52.42
0.6 0.75 (117,86) | 0.0823 0.85 102.05 (124, 49) 0.0856 0.8506 88.19
0.8 (64, 35) 0.0726 0.8508 51.54 (71, 24) 0.0868 0.8502 48.49
0.65 0.8 (107,60) | 0.0797 0.8503 85.77 (115, 44) 0.0873 0.8511 80.62
0.85 (58, 31) 0.0766 0.8515 46.4 (61, 25) 0.0837 0.8507 43.65
0.7 0.85 | (94, 56) 0.0785 0.8502 76.58 (101, 39) 0.0871 0.8507 | 70.61
0.9 | (50, 24) 0.0778 0.8504 38.19 (53, 19) 0.0837 0.8543 | 37.45
0.75 0.9 | (79, 40) 0.0773 0.8513 62.45 (83, 32) 0.0863 0.8503 | 58.76
0.95 | (39, 22) 0.0693 0.8513 32.15 (41, 11) 0.0777 0.85 | 30.12
0.8 0.95 | (61,27) 0.0745 0.8531 47.66 (62, 26) 0.0846 0.8527 | 45.46
0.85 0.95 | (109, 66) 0.0773 0.8502 89.51 (114, 47) 0.0855 0.8505 | 82.88

Table 2: Minimax and Optimal designs for (a*, 1-p*) =(0.1,0.85)
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Minimax Design Optimal design
Px (n, n1) a 1-8 EN (n, ni1) a 1-8 EN
0.05 0.15 (78, 41) 0.0827 0.8001 64.27 (79, 35) 0.0849 0.8001 61.85
0.2 (44, 18) 0.0637 0.8031 34.81 (44, 18) 0.0637 0.8031 34.81
0.25 (29, 14) 0.0475 0.8088 23.96 (29, 14) 0.0475 0.8088 23.96
0.1 0.25 (55,40) | 0.0881 0.8 48.31 (57,25) | 0.0947 0.8003 43.31
0.3 (36,17) | 0.0771 0.8014 28.92 (37,14) | 0.0837 0.8026 27.86
0.15 0.3 (65,42) | 0.1042 0.8001 55.05 (73,26) | 0.1144 0.8024 50.78
0.35 (41,22) | 0.0925 0.8001 33.23 (46,15) | 0.1064 0.8002 31.97
0.2 0.35 (73,50) | 0.109 0.8001 62.47 (80,30) | 0.1191 0.8004 56.7
0.4 (45,27) | 0.1021 0.8005 37.28 (48,18) | 0.1085 0.8032 34.76
0.25 0.4 (82,44) | 0.1189 0.8002 63.85 (85,36) | 0.1217 0.8007 61.84
0.45 (47,27) | 0.1041 0.8007 38.17 (54,20) | 0.1187 0.8047 37.45
0.3 0.45 (85,49) | 0.1172 0.8004 67.98 (93,37) | 0.1263 0.8011 65.48
0.5 (53,22) | 0.1169 0.8008 38.97 (56,20) | 0.1215 0.8013 38.06
0.35 0.5 (86,54) | 0.1187 0.8001 71.07 (98,35) | 0.1275 0.8009 67.46
0.55 (54,27) | 0.1113 0.8015 41.66 (58,19) | 0.1249 0.8028 38.79
0.4 0.55 (86,58) | 0.1258 0.8001 72.22 (93, 41) 0.128 0.8012 68.05
0.6 (54,27) | 0.1115 0.8 41.56 (58,19) | 0.1295 0.8009 38.61
0.45 0.6 (86,58) | 0.1298 0.8001 72.17 (93,41) | 0.1315 0.8012 67.95
0.65 (54,27) | 0.1141 0.8015 41.53 (57,20) | 0.1345 0.8008 38.02
0.5 0.65 (86, 54) 0.13 0.8001 70.93 (98,35) | 0.1326 0.8009 67.07
0.7 (53,22) | 0.1206 0.8008 38.63 (56,20) | 0.1347 0.8013 37.58
0.55 0.7 (85,49) | 0.1312 0.8004 67.66 (93, 37) 0.131 0.8011 64.87
0.75 (47,27) | 0.1098 0.8007 37.88 (54,20) | 0.1306 0.8047 36.74
0.6 0.75 (82,44) | 0.1247 0.8002 63.31 (92, 32) 0.132 0.8023 60.92
0.8 (45,27) | 0.1211 0.8005 36.92 (48,18) | 0.1214 0.8032 33.93
0.65 0.8 (73,50) | 0.1163 0.8001 62.1 (80,30) | 0.1282 0.8004 55.52
0.85 (41,22) | 0.1125 0.8001 32.66 (46,15) | 0.1295 0.8002 30.54
0.7 0.85 (65,42) | 0.1149 0.8001 54.53 (73,26) | 0.1312 0.8024 49.05
0.9 (36,17) | 0.111 0.8014 28.03 (37,14) | 0.1215 0.8026 26.45
0.75 0.9 (56,27) | 0.1161 0.802 43.82 (57,25) | 0.1226 0.8003 41.78
0.95 (29,13) | 0.1093 0.8072 22.51 (31,9) 0.1246 0.801 21.7
0.8 0.95 (44,18) | 0.1185 0.8031 32.61 (44,18) | 0.1185 0.8031 32.61
0.85 0.95 (78,41) | 0.1133 0.8001 62.53 (85,27) | 0.1322 0.8004 57.77

Table 224: Minimax and Optimal designs for (o*, 1-p*) =(0.15,0.8)
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Minimax Design Optimal Design
By Px
(n, n1) a 1-8 EN (n, n1) a 1-B
0.05 0.15 (91, 49) 0.0876 0.8501 73.09 (95, 40) 0.0912 0.8511 71.26
0.2 (51, 25) 0.068 0.8535 41.18 (53, 19) 0.0695 0.8533 40.3
0.25 (34, 15) 0.0527 0.8592 27.06 (34, 15) 0.0527 0.8592 27.06
0.1 0.25 (65, 36) 0.0954 0.8502 53.14 (70, 26) 0.101 0.8523 50.58
0.3 (41, 24) 0.0822 0.8503 33.98 (45, 15) 0.091 0.8533 32.35
0.15 0.3 (78, 42) 0.1079 0.8501 62.52 (83, 33) 0.1135 0.8506 59.38
0.35 (49, 22) 0.0992 0.8502 38.03 (51, 20) 0.1037 0.8536 36.96
0.2 0.35 (88, 54) 0.1127 0.8504 73.15 (93, 39) 0.1196 0.8511 67.03
0.4 (52, 32) 0.1005 0.8502 43.45 (59, 20) 0.1146 0.8509 40.55
0.25 0.4 (94, 62) 0.1145 0.85 79.42 (106, 39) 0.1257 0.8506 72.81
0.45 (59, 28) 0.1143 0.85 45.01 (67, 20) 0.1215 0.8517 44.04
0.3 0.45 (104, 57) 0.1241 0.8501 81.64 (117, 39) 0.1293 0.851 77.52
0.5 (60, 34) 0.1105 0.8511 47.82 (60, 34) 0.1105 0.8511 47.82
0.35 0.5 (106, 66) 0.1184 0.8503 86.34 (114, 46) 0.1276 0.8506 79.47
0.55 (61, 33) 0.1136 0.8513 48.04 (62, 28) 0.1183 0.8516 46.15
04 0.55 (107, 65) 0.1214 0.8504 86.47 (115, 46) 0.1312 0.8501 79.67
0.6 (61, 34) 0.1197 0.8513 48.13 (66, 25) 0.1284 0.851 45.46
0.45 0.6 (107, 65) 0.1251 0.8504 86.41 (115, 46) 0.1351 0.8501 79.55
0.65 (61, 33) 0.1229 0.8513 47.94 (66, 25) 0.1324 0.8525 4541
0.5 0.65 (106, 66) 0.1256 0.8503 86.19 (108, 52) 0.1341 0.8507 79.92
0.7 (60, 34) 0.1232 0.8511 47.62 (65, 25) 0.1325 0.8531 44.97
0.55 0.7 (104, 57) 0.1243 0.8501 81.31 (117, 40) 0.1315 0.8511 76.67
0.75 (59, 28) 0.1237 0.85 44.61 (67, 20) 0.1285 0.8517 43.19
0.6 0.75 (94, 62) 0.1241 0.85 79.15 (106, 39) 0.1334 0.8506 71.86
0.8 (52, 32) 0.1069 0.8502 43.15 (60, 19) 0.1304 0.8532 40.24
0.65 0.8 (88, 54) 0.1209 0.8504 72.73 (93, 39) 0.1284 0.8511 66.01
0.85 (49, 22) 0.1178 0.8502 37.33 (51, 20) 0.1221 0.8536 35.91
0.7 0.85 (78, 42) 0.1207 0.8501 61.81 (83, 33) 0.1283 0.8506 57.97
0.9 (41, 24) 0.1086 0.8503 33.38 (45, 14) 0.125 0.8513 30.95
0.75 0.9 (65, 36) 0.1143 0.8502 52.31 (70, 26) 0.1271 0.8523 48.71
0.95 (34, 15) 0.1184 0.8592 25.48 (37,9) 0.1276 0.8519 25.42
0.8 0.95 (51, 24) 0.1149 0.8534 39.62 (53, 20) 0.1261 0.8545 37.61
0.85 0.95 (91, 49) 0.1207 0.8501 71.18 (95, 40) 0.1269 0.8511 68.23

Table 4: Minimax and Optimal designs for (a*, 1-p*) =(0.15, 0.85)
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Minimax Design

Optimal design

ol (n, n1) a 1-B8 EN (n, n1) a 1-B8
0.05 0.15 (65, 44) 0.11 0.8001 56.83 (68, 28) 0.1199 0.8002 51.66
02| (37,18) 0.0803 0.8007 3024 | (39,13) 0.0843 0.8008 29.53
0.25 (25, 13) 0.0484 0.8048 21.23 (26, 10) 0.0514 0.8054 20.57
0.1 025 | (47,23) | 0.1242 0.8009 3732 | (49,20) | 0.1306 0.8012 35.91
03 (30,17) | 0.1046 0.8007 25.19 | (33,10) | 0.1169 0.8014 23.49
0.15 0.3 (54, 36) 0.1364 0.8001 46.17 (63, 20) 0.1567 0.8 41.9
0.35 (34, 19) 0.1244 0.8002 27.46 (36, 15) 0.133 0.8048 26.43
0.2 0.35 (63, 31) 0.1544 0.8006 47.81 (67, 26) 0.161 0.8006 46.54
0.4 (39, 19) 0.1456 0.8026 29.86 (42, 15) 0.1521 0.8028 29.03
0.25 04 | (67,38) | 0.1548 0.8001 5287 | (77,26) | 0.1686 0.8 50.62
045 | (40,24) | 0.1393 0.8005 3252 | (46,15) | 0.1594 0.8002 30.55
0.3 0.45 (68, 50) 0.153 0.8002 59.41 (75, 32) 0.1661 0.801 52.96
0.5 (41, 24) 0.1464 0.8003 32.88 (43,17) 0.1536 0.8007 31.25
0.35 0.5 (69, 50) 0.164 0.8004 59.81 (78, 31) 0.1731 0.8006 53.93
0.55 (41, 29) 0.1508 0.8002 35.26 (45, 16) 0.1631 0.803 32.15
0.4 0.55 (70, 47) 0.1712 0.8006 59.24 (70, 47) 0.1712 0.8006 59.24
0.6 (42, 26) 0.1586 0.8037 34.88 (45, 16) 0.1697 0.8015 32.02
0.45 0.6 (70, 47) 0.1749 0.8006 59.21 (70, 47) 0.1749 0.8006 59.21
0.65 | (41,29) | 0.1615 0.8002 3521 | (45,16) | 0.1737 0.803 31.99
0.5 0.65 | (69,50) | 0.1757 0.8004 59.72 | (78,31) | 0.1797 0.8006 53.65
0.7 (41, 24) 0.1623 0.8003 32.71 (43,17) 0.1743 0.8007 30.96
0.55 07| (68,50) | 0.1728 0.8002 59.27 | (75,32) | 0.1825 0.801 52.5
0.75 | (40,24) | 0.1634 0.8005 3227 | (46,15) | 0.1744 0.8002 29.9
0.6 0.75 (67, 38) 0.1738 0.8001 52.46 (77, 26) 0.1748 0.8 49.74
0.8 (39, 19) 0.165 0.8026 29.36 (42, 14) 0.1677 0.8016 28.29
0.65 0.8 (63, 31) 0.1646 0.8006 47.14 (67, 26) 0.1745 0.8006 45.55
0.85 (34, 19) 0.1458 0.8002 26.97 (36, 14) 0.1588 0.8031 25.56
0.7 0.85 (54, 36) 0.1538 0.8001 45.75 (64, 19) 0.1752 0.8013 40.9
0.9 (30, 17) 0.1432 0.8007 24.66 (33,9) 0.1624 0.8036 22.16
0.75 09| (47,23)| 0.1562 0.8009 36.36 | (50,19) | 0.1668 0.8041 34.91
095 | (25,12) | 0.1381 0.8056 202 | (26,10) | 0.1578 0.8054 18.83
0.8 095 | (37,18) | 0.1512 0.8007 2883 | (39,13) | 0.1649 0.8008 26.99
0.85 095 | (65,44) | 0.1451 0.8001 55.93 | (68,28) | 0.1642 0.8002 49.06

Table 5: Minimax and Optimal designs for (a*, 1-p*) =(0.2,0.8)
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Minimax Design Optimal deSign
Px
Dy (n, n1) a 1-8 EN (n, n1) a 1-8 EN
0.05 0.15 (78, 46) 0.1139 0.85 65.08 (84, 30) 0.1278 0.8513 60.57
0.2 (44, 23) 0.0923 0.8552 36.72 (48, 13) | 0.0995 0.8516 35
0.25 (29, 15) 0.06 0.8518 23.79 (31,10) | 0.0649 0.8568 23.68
0.1 0.25 (56, 31) 0.1314 0.8506 45.43 (62, 20) 0.14 0.8506 42.87
0.3 (35, 18) 0.1112 0.8507 28.4 (37, 15) 0.1183 0.8547 27.63
0.15 0.3 (65, 39) 0.1431 0.8505 52.96 (72, 26) 0.1539 0.8504 50.08
0.35 (42, 21) 0.1334 0.8516 33.89 (46, 15) 0.1421 0.8541 31.77
0.2 0.35 (74, 46) 0.1534 0.8504 60.57 (80, 33) 0.1617 0.8513 56.74
0.4 (45, 25) 0.1406 0.8506 35.6 (47, 20) 0.1465 0.8528 34.16
0.25 0.4 (78, 54) 0.1543 0.8509 67.32 (91, 33) 0.1682 0.8513 61.38
0.45 (46, 30) 0.1422 0.8502 38.37 (54, 20) 0.1604 0.8529 37.33
0.3 0.45 (87, 64) 0.1573 0.85 76.1 (93, 38) 0.1674 0.8502 65.62
0.5 (52, 24) 0.1576 0.8505 38.64 (57, 20) 0.162 0.8517 38.46
0.35 0.5 (89, 59) 0.1568 0.8505 74.19 (95, 39) 0.1703 0.8506 66.24
0.55 (54, 23) 0.1617 0.8518 39.46 (54, 23) 0.1617 0.8518 39.46
0.4 0.55 (89, 70) 0.1598 0.8502 79.98 (97, 39) 0.1782 0.8521 66.96
0.6 (54, 23) 0.1667 0.8503 39.35 (59, 20) 0.1696 0.8525 39.03
0.45 0.6 (89, 70) 0.1635 0.8502 79.96 (97, 39) 0.1822 0.8521 66.86
0.65 (54, 23) 0.1704 0.8518 39.33 (58, 20) 0.1721 0.8504 38.51
0.5 0.65 (89, 59) 0.1659 0.8505 74.08 (95, 39) 0.1819 0.8506 65.96
0.7 (52, 24) 0.1705 0.8505 38.4 (57, 20) 0.1721 0.8517 38.09
0.55 0.7 (87, 60) 0.1625 0.8501 73.47 (92, 40) 0.1793 0.8517 64.79
0.75 (46, 30) 0.1573 0.8502 38.18 (54, 20) 0.1663 0.8529 36.8
0.6 0.75 (78, 54) 0.155 0.8509 67.13 (91, 33) 0.1728 0.8513 60.6
0.8 (45, 26) 0.1654 0.8506 36.95 (47, 19) 0.1602 0.8508 33.59
0.65 0.8 (74, 46) 0.1667 0.8504 60.17 (80, 33) 0.1754 0.8513 55.87
0.85 (42, 21) 0.154 0.8516 33.43 (46, 15) 0.1686 0.8541 30.69
0.7 0.85 (65, 39) 0.1567 0.8505 52.42 (72, 26) 0.1726 0.8504 48.82
0.9 (35, 18) 0.1431 0.8507 27.79 (37, 14) 0.1578 0.8519 26.7
0.75 0.9 (56, 31) 0.1575 0.8506 44.68 (63, 19) 0.1714 0.8515 41.78
0.95 (29, 14) 0.146 0.8506 22.78 (31, 10) 0.1615 0.8568 21.72
0.8 0.95 (44, 20) 0.1576 0.8512 32.93 (48, 13) 0.1685 0.8516 32.06
0.85 0.95 (78, 46) 0.1542 0.85 63.87 (84, 30) 0.1709 0.8513 57.5

Table 6: Minimax and Optimal designs for (a*, 1-B*) = (0.2, 0.85)
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5. Discussion:

We have presented two-stage randomized phase Il design based on Fisher exact tests with both futility and superiority
early stopping options, so that we can save the number of patients when the experimental arm is futile as well as when
it is efficacious compared to a parallel control arm. We usually want about 40 to 60 patients per arm for randomized
phase I trials, so that we use a high o level, such as 1-sided a = 10% to 20%, rather than a standard 2-sided a = 0.05

which is a standard level for phase 11 trials.

In this paper, we propose to choose stopping values of stage 1, a; and by, that are free of the total number of responders
21 to lower the computing burden. We also have tried to optimize the designs by considering a; and b, dependent on
z1, but it increased the computation time seriously without lowering the weighted average of expected sample sizes
much. Although we present minimax and optimal designs under various design settings in Tables 1-6, readers cannot
use them for their own trials since these tables do not report the rejection value of the second stage a since each design
will have a long list of rejection values depending on (z1, z2). Furthermore, these tables do not show the admissible
designs since there can be multiple admissible designs under each design setting. We have developed a user-friendly
computer program to help us find minimax, optimal and admissible designs while giving the list of conditional critical

values for each selected design. This program is available to the readers upon request.

We have considered balanced randomization cases. We can easily extend our method for unbalanced randomized
trials. Let ny denote the number of patients for stage | (= 1, 2) randomized to arm k(= x, y). For a chosen y € (0, 1),

we will have ni/(nix + niy) = v. In this case, we may consider a two-stage design as follows.

Stage 1: Randomize nix and nyy patients to arms x and y, respectively, and observe number of responders X1 and Y.
1. If Xo/ni — Yi/ny < ay, reject the experimental arm and stop the trial.
2. If X4/n1x — Ya/nyy > by, accept the experimental arm and stop the trial.

3. Otherwise (i.e. a1 < Xa/n1x — Y1/n1y < by), proceed to stage 2.

Stage 2: Randomize nyx and nyy patients to arms x and y and observe number of responders X, and Y. Let Z; = X3 +
Y1, Z2=Xo+ Y.

1. Choose the first stage critical value a depending on z; and z».

2. Reject the experimental arm if X/(nix + N2x) — Y/(n1y + Nay) <a, where X = X1 + Xpand Y = Y1 + Y2

3. Accept the experimental arm if X/(nix + n2x) Y/(nyy + nay) > a for further investigation.
For an unbalanced randomization trial (y # 1/2), we may choose the stage 1 critical values a; and by to be the expected

values of the sample proportions under Ho and Hs, respectively.
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