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Abstract
Background: Postoperative pancreatic fistula is one of the major 
complications after pancreatic head resection and can be life-threatening for 
patients. This study employed machine learning and radiomics to determine 
whether postoperative pancreatic fistulas (POPF) and perioperative drain 
amylase dynamics can be predicted prior to pancreaticoduodenectomy by 
evaluating the radiologic appearance of the pancreatic tissue. 

 Methods: In this retrospective trial 68 patients were included. For POPF 
prediction model (PPM) Radiomic features of the pancreas were extracted 
from the arterial phase of computed tomography (CT) at a 1 mm slice 
thickness for each patient. The radiomic features with highest correlation 
with POPF for our models, controlling for autocorrelation and applying 
Bonferroni correction for P-values were selected. For amylase prediction 
model (APM), radiomic features were correlated with postoperative 
maximum drain amylase levels at a cut-off of 1000U/l. ROC analysis was 
performed for evaluation of the resulting prediction models. The project 
was approved by the Ethics Committee of the University of Freiburg 
(246/20) in accordance with the Helsinki Declaration.

Results: POPF prediction model showed an area under the curve (AUC) 
of 0.897 (confidence interval (CI) =82.3-97.1%) in the cohort. The AUC 
of PPM was higher than that for the Roberts score, but the difference was 
not statistically significant. An attempt to predict postoperative amylase 
dynamics in the drainage fluid achieved an AUC of 0.936 (CI=88%-
99.1%).

Conclusions: Preoperative prediction of POPF and drain amylase 
dynamics using radiomics and machine learning showed promising 
results. Both models offer new approaches to the clinical management of 
POPF.

Keywords: Radiomics; Machine Learning; Prediction Modeling; POPF; 
Pancreaticoduodenectomy.

Background
The incidence and mortality rates of pancreatic cancer have increased 

over the past few decades [4, 6, 25, 31]. Not only the developments of the 
past, but also the prognoses of increasing case numbers for the future pose 
new challenges for pancreatic surgery.
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Significant improvements have been achieved by 
understanding premalignant lesions, preventing pancreatic 
cancer and adjuvant chemotherapy, which significantly 
prolongs patient survival after complete tumor resection [4, 
6, 8, 21, 25, 31]. Perioperative complications after pancreatic 
surgery severely diminish both achievements [14, 28]. 

Perioperative morbidity is reported to be 30-50% and the 
driver of postoperative complications after pancreas resections 
are postoperative pancreatic fistulas (POPF) accounting 
for 10-36% of complications [9, 28]. POPF summarize the 
observation of digestive enzymes leaking from the pancreatic 
anastomosis and are classified according to the International 
Study Group of Pancreatic Fistula (ISGPF) into biochemical 
leak (BL) and clinically relevant grade B and C fistulas [6, 
7]. Based on these definitions, the classification can only be 
performed retrospectively; thus, in clinical practice, less-
standardized observations such as cut of drain amylase values 
are regularly used for clinical decision-making [11, 17, 30]. 

Despite detailed knowledge of the adverse effects 
of pancreatic fistulas, strategies for fistula prevention 
have not been found in routine clinical practice. In this 
context, preoperative prediction of POPF is essential 
for an individualized approach during the pre- and early 
perioperative course of pancreatic resections [4]. Although 
the scores differ in their architecture, they reflect the scientific 
consensus regarding the risk factors for the development of 
POPF [2, 24, 29] such as pancreatic duct width, texture of the 
pancreatic parenchyma and body mass index (BMI) [29, 31]. 

Purely preoperative scores have been developed by 
Yamamoto, Wellner and Roberts. The Roberts score is the 
only preoperative score that has been validated to date and 
serves as the reference in this study [2, 24, 29, 32]. This 
simple score includes preoperative pancreatic duct width and 
BMI, which are always available without additional costs 
[29]. 

In addition to the clinically assessable body mass index, 
the pancreatic duct width is always available because CT has 
become the reference standard for preoperative staging [23]. 
CT is required to assess resectability, vascular infiltration, 
lymph node involvement and potential metastases [23]. In 
terms of qualitative characteristics, CT provides information 
that is not directly visible to humans. Technological advances 
have made it possible to quantify and harness these imaging 
features. The respective method, called radiomics, is based 
on being able to predict a defined endpoint reliant on 
quantitative imaging features. Furthermore, these features 
can be correlated with clinical variables according to machine 
learning principles and statistically analyzed [12, 15, 19]. 
Several studies have shown that radiomics has enormous 
potential for the prediction, diagnosis, classification, 
progression, planning, treatment and treatment response in 
oncology [19].

Methods
Study Design

This study employed a retrospective, monocentric clinical 
design. The data pertaining to patients undergoing pancreatic 
surgery were extracted from a prospectively maintained 
database. The CT scans were obtained from the hospital 
radiology database. The project was approved by the Ethics 
Committee of the University of Freiburg (246/20) and was 
conducted in accordance with the Helsinki Declaration.

Study population
The cohort consisted of 977 patients diagnosed 

with pancreatic head carcinoma who underwent partial 
pancreaticoduodenectomy at the Department of General 
and Visceral Surgery at the University Hospital Center of 
the University of Freiburg between 1998 and 2019. Only 
participants who underwent contrast-enhanced abdominal CT 
in the late arterial phase were included in the trial. Following 
the selection process, 68 patients were included in the study. 
All imaging was obtained at our radiology center to ensure 
the generation of homogeneous data collection in accordance 
with the principles of basic research. Patients who did not 
meet the inclusion criteria or whose examinations exhibited 
qualitative deficiencies, such as artifacts and incomplete 
visualization of the pancreas, were excluded (Figure 1). The 
Ethics Committee of the Albert-Ludwigs-University Freiburg 
waived the requirement for a written declaration of consent.

Figure 1: Flowchart of the recruitment of the total collective.

Abbreviation: CT, computed tomography.
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CT examination
All patients underwent multiphase contrast-enhanced 

CT, performed using a Toshiba Aquilion ONE (320-line 
detector). The pitch factor was 0.813, the current voltage 
was 120 kV, and the current intensity was 55 mAs. The 
reconstructions were performed using a matrix of 512 × 512 
and an axial reconstruction window of 440 × 440 mm. The 
layer thickness and spacing were both 1 mm. A total of 110 
milliliters of Imeron 400 was administered to the patients at 
a 90% dilution, with isotonic saline serving as the contrast 
agent. The injection rate was 4 ml/s. The region of interest 
was placed in the aorta of the upper abdomen for bolus 
tracking. The mean delay was 20 seconds, which corresponds 
to the late arterial phase. This approach is recommended 
by the American College of Radiology for the diagnosis 
of pancreatic cancer, as it allows for the optimal contrast 
enhancement of the pancreatic parenchyma, resulting in the 
strongest image contrast between tumor tissue and healthy 
parenchyma [23]. This is also important for segmentation. 

Segmentation and Radiomics Analysis
3D Slicer version 4.10.2 (Figure 2) was used for 

Segmentation of the pancreas. 3D Slicer is an open source 
software developed by the Surgical Planning Laboratory 
at Brigham and Women's Hospital and the MIT Artificial 
Intelligence Laboratory [10]. The segmentation was 
performed manually, and the results were then confirmed by 
a Board-approved consulting radiologist. The segmentation 
process involved the delineation of the pancreas on each slice 
as a region of interest (ROI), with a cutline running from 

anterior to posterior at the level of the superior mesenteric 
vein at a 90° angle to the coronary slice plane (Figure 3). This 
imaginary line corresponds to the surgical incision pattern of 
the Whipple procedure typically performed in this area. Cysts 
and dilated pancreatic ducts were included in the region of 
interest (ROI) regardless of their extent. The pancreatic head, 
including the tumor tissue, feeding vessels, and calcifications, 
was excluded from the region of interest (ROI). Radiomics 
analysis was conducted using PyRadiomics in Python 2.4, 
an open-source code that facilitates the extraction of features 
from medical imaging [13]. No image normalization or 
preprocessing was employed.

Figure 2: Segmentation of different p ancreas m orphologies with 
3D-slicer.
Notes:Two-dimensional (A+C) and three-dimensional (B+D) representations 
of segmentations performed in this study from a patient whose pancreas is 
normal in appearance (A+B) and from a patient whose pancreas is 
atrophic and whose pancreatic duct is markedly dilated (C+D).

Figure 3: Segmentation of the ROI using 3D slicer.
Notes: Axial (A) and coronal (B) CT reconstruction with segmentation 
(highlighted in green) to demonstrate the segmentation margin at the border 
with the pancreatic head, equivalent to the site of surgical transection. 
Abbreviations: ROI, region of interest.

For each segmentation, the following feature classes were 
extracted: Shape, First-order and Second-order consisting of 
Gray Level Co-Occurence (GLCM), Gray Level Run Length 
(GLRLM) and Gray Level Size Zone (GLSZM) matrices. 
The term "shape features" refers to characteristics that result 
from the boundary of the region of interest, or the shape of 
the segmentation and describes two- and three-dimensional 
shape characteristics. First-order features represent the 
distribution of gray values or their intensity. The spatial 
location is not considered. In contrast, the frequency of the 
gray values is depicted as a histogram. From this, a variety 
of information, including mean values, medians, intensities, 
entropy, uniformity, and others, can be calculated. Second-
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order features represent the texture of the region of interest 
(ROI) by creating different matrices. GLCM describes 
the frequency with which a specific pixel or voxel of a 
given grey value is related to another specific grey value. 
Additionally, the distance between the grey values within 
the region of interest (ROI) is also fixed. Angular changes 
can be employed to capture multi-dimensional spaces and 
expressed mathematically. GLRLM describes the frequency 
with which a specific gray value recurs in a single direction 
until it is interrupted. This sequence is referred to as a "run." 
GLSZM indicates areas of neighboring pixels with identical 
gray values. It examines the relationships between gray value 
groups in all directions, as well as the group size. Given 
that the number of features to be extracted is theoretically 
unlimited, it is crucial to exercise caution when selecting the 
features to be included in the model. Including an excess of 
or an insufficient number of features may compromise the 
validity of the data obtained, potentially leading to over- or 
underfitting [19].

Ultimately, 16 shape features and 18 intensity features 
were extracted. In addition, 54 texture features were 
generated. The extracted features included 22 GLCM, 16 
GLRLM, and 16 GLSZM features. A total of 86 features were 
extracted. Given that the collective size of the cohort was 68 
patients, there was a risk of overfitting with the 86 extracted 
features. Therefore, it was necessary to restrict the analysis to 
the named classes in order to keep the dimensionality of the 
feature space as low as possible from the outset. For further 
information on pyradiomics and the radiomics workflow, we 
direct the reader to the work of van Griehuysen and Liu et al. 
[13, 19].

Statistical analysis
All extracted features underwent an autocorrelation 

analysis, employing a cluster correlation matrix and 
visualized through a heat map. Features that exhibited a 
statistically significant correlation with the development of 
POPF or an amylase threshold of >1000 U/l in the drain were 
identified and quantified using Spearman’s rank correlation 
coefficient. The significance level of the feature correlation 
following the Bonferroni correction was adjusted according 
to the number of features (p* < 0.05/86 = 0.0005814). 
Regularization entails the selection of the most significantly 
correlated features. The selected features were subsequently 
subjected to autocorrelation testing via a cluster correlation 
matrix, with the results presented in the form of heat maps. 
The heat maps afforded the opportunity to graphically 
read significant correlations using color spectra (Figure 4). 
Subsequently, the identified features were employed in the 
generation of the model. Multivariate analysis also retained 
the radiomic features obtained. To assess the models for their 
predictive accuracy, we applied a 10-fold cross-validation 
with a 90:10 ratio. Subsequently, the models were extended 
to include clinical markers using the same system. The 

predictive ability of the constructed radiomics models was 
depicted graphically using receiver operating characteristic 
(ROC) curves. To enhance the accuracy of the results, we 
employed bootstrapping as an additional resampling method. 
The confidence intervals (CI) for the area under the curve 
(AUC) were calculated based on the analysis. All statistical 
analyses were conducted using R, version 4.3.2, with the 
graphical interface RStudio, version 2022.02.0, a free 
software environment for statistical computing and graphics 
developed by the R Foundation for Statistical Computing.

Figure 4: Heat map of the 86 Pyradiomics features.
Notes: Red arrows as markers of significantly correlated features for the 
development of POPF.
Abbreviation: POPF, postoperative pancreatic fistula.

Surgery and Postoperative treatment
The surgical procedures were performed by experienced 

pancreatic surgeons. The pancreatic head was resected by 
dividing the left superior mesenteric vein. Subsequently, 
an end-to-side pancreaticojejunostomy (PJ) were created 
according to the description of Cattell and Warren. All 
patients receive a minimum of 2 drains which are placed 
dorsal and ventral of the pancreatoenteric anastomosis 
and passed through the abdominal wall in one insertion. 
Additional drains located distant to the panreatoenteric 
anastomosis (BDA or lower abdomen) were placed according 
to the surgeons preference. Following surgery, serum and 
peripancreatic drainage fluid amylase levels were measured 
in all patients on postoperative days 1 and 3. CT scans or 
further amylase measurements were not routinely performed, 
but were conducted depending on the clinical course. The 
peripancreatic drains were removed according to the following 
criteria: (1) the flow rate, (2) amylase levels in drain fluid 
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(removal if below 1000 U/l on the third postoperative day), 
(3) clinical findings, and (4) no evidence of fistula formation.
In the event that infection was uncontrollable or instability
persisted despite adequate clinical treatment, reoperation was
performed. In the event of leakage or suspected infectious
complications, the peripancreatic drains were retained
and antibiotics were administered at the discretion of the
treating physician. Percutaneous or endoscopic drainage was
performed, depending on the location of the fluid collection.
In cases of biochemical leakage, no additional treatment was
administered.

Results
The total cohort (n=68) consisted of 27 women and 41 

men. The median age was 70.7 years (IQR=17.2). Detailed 
information on the clinical parameters of the cohort is shown 

in Table 1. The median body mass index (BMI) was 24.7 
kg/m2 (IQR=4.4). The median width of the pancreatic duct 
measured on the preoperative computed tomography was 4 
mm (IQR= 3.1). The median preoperative serum amylase 
level of the entire cohort was 21 U/l (IQR= 21). On the first 
postoperative day (POD1), the median serum amylase level 
was 43 U/l (IQR=118.5). The maximum postoperative drain 
amylase activity yielded a median of 374.5 U/l (IQR=3361). 
According to the ISGPF definition 39.7% (n = 27) of all 
patients in our cohort developed postoperative pancreatic 
fistula [3,11]. Of these, nine patients had a biochemical leak, 
14 had grade B, and four had grade C biochemical leak. In 
this context, the architecture of our prediction models only 
allows a binary distinction between no fistula and fistula 
according to the ISGPF classification, which aligns our 
outcome stratification with the results of comparable studies.

Characteristics Total collective (n=68)
Demographic characteristics
Age, years 70.7 (59.2-76.4)
Sex, male 41 (60.3)
Histopathological characteristics

51 (75)
Adenocarcinoma
Acinar cell carcinoma 1 (1.47)
Cystadenoma 1 (1.47)
IPMN 3 (4.41)
PanIN 1 (1.47)
Chronic pancreatitis 6 (8.82)
Inflammatory alteration 1 (1.47)
Metastasis 1 (1.47)
Neuroendocrine tumor 1 (1.47)
Other 2 (2.94)
Clinical characteristics
BMI, kg/m2 24.7 (23.1-27.4)
DM, yes 12 (8.2)
Exocrine insufficiency, yes 4 (2.7)
Preoperative creatinine, mg/dl 0.8 (0.7-1)
Preoperative bilirubin, µmol/l 0.8 (0.4-2.1)
CA 19-9, U/ml 23.2 (0-136.5)
Preoperative serumamylase, U/l 21 (13.5-34.5)
Serumamylase POD1, U/l 43 (9-127.5)
Max. amylase in drainage, U/l 374.5 (19.5-3380.5)
CT-predictors
Duct width, mm 4 (2.6-5.7)
POPF

27 (39.7)
Total
BL 9 (33)
B 14 (52)
C 4 (15)

Notes: unless otherwise indicated n(%) or (IQR).
Abbreviations: IQR, interquartile range; IPMN, intraductal papillary mucinous neoplasia; PanIN, intraepithelial neoplasia; 
BMI, body mass index; DW, duct width; DM, diabetes mellitus types 1 and 2; CA19-9, carbohydrate antigen 19-9; POD1, postoperative day 1.

Table 1: Characteristics of the total collective.
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Discussion
In this study we successfully employed preoperative 

CT imaging, using radiomics, to predict postoperative 
pancreatic fistula (POPF), which was then compared with 
a preoperative multicenter validated scoring system. These 
results demonstrate the potential of radiomics for advancing 
the perioperative management of patients with pancreatic 
head carcinoma. 

A purely preoperative gain of information about possible 
postoperative fistula formation offers the advantage of being 
able to reduce the risk of fistula formation preoperatively 
by means of medical therapy. For example, preoperative 
treatment with pasireotide was shown to significantly reduce 
the risk of fistula formation by Allen et al. [3].

PPM is useful for predicting the development of clinically 
relevant fistulas. Using APM, we were able to demonstrate that 
the amylase activity in the drainage on the third postoperative 
day is a suitable biomarker for predicting fistula development. 
This approach allowed us to provide a transfer possibility of 
radiological knowledge gain to clinical-surgical relevance.

Pancreatic fistulas, particularly postoperative pancreatic 
fistulas (POPF), are significant complications following 
pancreaticoduodenectomy. POPF result from the leakage 
of pancreatic fluid and can lead to severe morbidity and 
mortality. The incidence of POPF varies widely, influenced 
primarily by patient-specific factors such as gland texture, 
duct size, and underlying pathology. Current diagnostic and 
management strategies rely heavily on intraoperative findings 

The heat map of all the extracted features revealed several 
autocorrelations. Regarding PPM, 6 of the 86 features from 
Pyradiomics, correlated significantly with a postoperative 
fistula. Of these, 2 were GLRLM features, 1 was GLSZM 
feature and 3 were shape features.

The ROC curve of Roberts’ score for the total cohort 
showed an AUC of 0.813 (CI=70.6%–92%). In comparison, 
PPM without clinical markers was initially inferior to the 
Roberts score, with an AUC of 0.779 (CI=66.1- 89.6%). 
After the correlation of BMI, duct width and radiomics, the 
predictive power increased to an AUC of 0.897 (CI=82.3- 
97.1%), exceeding the level of the clinical Roberts’ score, 
but without reaching statistical significance (p=0.144)  
(Figure 5).

Regarding APM, 11 radiomic features correlated 
significantly with the postoperative elevation of amylase 
enzyme activity in the drain fluid above a threshold of 
1000 U/l on the third postoperative day, which is used as 
the cut-off level in clinical practice in our hospital. This 
threshold is used to determine whether a drain should be 
removed or left in place. After definitive selection, 5 of the 
11 features corresponding to the most significant correlation 
were chosen. The final feature group is composed of one 
shape feature, one GLRLM feature and two first-order 
features. Evaluation of the ROC curve of APM resulted in 
a predictive strength with an AUC of 0.902 (CI=70.6-92%). 
BMI and duct width resulted in an increased AUC of 0.936 
(CI=88-99.1%) (Figure 6).

Figure 5: ROC curves of PPM and Roberts’ score.
Notes: (A) Statistical comparison of ROC curves of Roberts’ score (green) and Radiomics + Duct + BMI (blue) with an AUC of 0.897 (CI=82.3-97.1%) and  
p = 0.14409. (B) Statistical comparison of ROC curves of Roberts’ score (green) and Radiomics (blue) with an AUC of 0.779 (CI=66.1-89.6%) and p= 0.66712. 
(C) ROC curve of Roberts’ score for the total collective (green) with an AUC 0.813 (CI=70.6-92%).
Abbreviations: PPM, POPF prediction model; ROC, receiver operating characteristic; AUC(CI), area under the curve (confidence interval).
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and postoperative biochemical analysis, underscoring the 
need for reliable preoperative predictive models. Following 
the current literature, the incidence ranges from 3% to 30% 
[6, 14, 28, 31]. The relatively elevated incidence observed 
within our cohort may potentially limit the generalizability 
of our findings to other patient groups.  It could be attributed 
to selection bias, possibly stemming from patients with grade 
BL transitioning into B because they are ambulatory during 
clinical follow-up; therefore, the drain cannot be pulled until 
21 days.

Most of the significantly correlated features in our models 
were Second-order features, which primarily reflected the 
relationships among voxels within the ROI using matrices. 
A possible explanation for this result is the complexity 
of the pancreatic structure and its large cell variance in a 
comparatively small organ volume [1]. Thus, the complexity 
of pancreatic parenchyma is reflected in the matrices of 
this class. This is a clue for radiomics as a relevant tool in 
pancreas-related research because the depth of Second-
order matrices exceeds human image interpretation. This 
assumption is supported by the fact that in previous pancreas-
related radiomics studies, the most prevalent significant 
radiomics features observed were Second-order as well [1].

Isolated radiological analysis of pancreatic parenchyma 
using radiomics (AUC=0.779) was inferior to prediction 
using the Roberts score (AUC=0.831), whose comparatively 
high value was consistent with the results of recent studies. 

Therefore, we investigated whether the combination of 
radiomics and clinical parameters used for the clinical score 
would alter the value of POPF prediction. 

Although BMI did not have the expected effect on 
predictive strength, the implementation of duct width 
significantly improved the predictive performance of our 
models. We observed an increase in the AUC of PPM 
(+0,113) after combining it with the ductal size determined 
on preoperative CT scans. On the one hand, this could be 
explained by the influence of duct width on the possibility of 
surgical re-anastomosis. On the other hand, it could indicate a 
limitation of pure radiomics analysis to adequately distinguish 
the parenchyma and ductal system within the ROI. This 
finding supports our approach of combining radiomics with 
clinical parameters. 

In contrast, the lack of a positive effect of BMI on the 
power of our prediction model may be explained by the 
distribution of BMI in our cohort, in which BMI was relatively 
low overall. The median BMI of 24.7 kg/m2 (IQR=4.4) was 
within the normal range. Nevertheless, we decided to include 
BMI to ensure the best possible comparability with the 
Roberts score [15, 24, 27].

Both models achieved a high level of predictive accuracy 
in the context of comparable literature [18, 19, 26, 34]. The 
potential of combining radiomics with clinical parameters 
is reflected in the increase in AUC due to the correlation 
with duct width and in the outcome of both models. The 

Figure 6: ROC curves of APM. 
Notes: (A) ROC curve of results of Radiomics + Drain-Amy 1000 + BMI + Duct with an AUC of 0.936 (CI=88.0-99.1%). (B) ROC curve of the results of 
Radiomics + Drain-Amy 1000 with an AUC of 0.902 (CI=83.1-97.3%).
Abbreviations: APM, amylase prediction model; ROC, receiver operating characteristic; AUC (CI), area under the curve (confidence interval).
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predictive power of PPM compared to Roberts’ score is 
critical for realistic consideration of the results. The lack of 
significance of our results can be explained by the strong 
clinical score and small cohort size [1, 24, 33]. In the future, 
our model should be applied to larger cohorts to further verify 
the significance level and transferability to other cohorts. 
Constructing the APM, we succeeded in detecting a total of 
11 radiomics features that significantly correlated with an 
increase in enzyme activity in the drainage above 1000U/l. 
Our result, with an AUC of 0.936 (CI=88.0-99.1%) suggests 
a strong possibility to predict the healing process after PD 
perioperatively using radiomics [1, 11, 19]. 

Thus, to the best of our knowledge, this approach represents 
an innovation because there have been no comparable 
approaches in perioperative drainage management after PD. 
Postoperative management is controversial in the current 
literature regarding prophylactic drainage, timing of cutoff 
determination, cutoff level and timing of removal [11, 30].

This shows a gap between the theoretical retrospective 
classification according to ISGPF and its value for the clinical 
perioperative management of POPF. This fact is reflected 
in all prediction systems developed so far, which cannot 
distinguish between BL and clinically relevant grades B and 
C in the interpretation of results [19, 26, 29, 34]. This may 
explain the clinically practical importance of a cutoff level as 
a maxim for action. 

The potential limitations of our study were its 
retrospective design and small patient population size. The 
results are based exclusively on data from a single center 
and require further external validation. Similarly, the small 
cohort size could equally influence the results. The large 
reduction in the number of patients could be explained by 
strict inclusion criteria. Furthermore, we decided not to 
use so-called "preprocessing". This was done to obtain 
as unbiased findings as possible [16, 19, 27, 33]. These 
considerations refer to a conflict in research with AI: On the 
one hand, the implemented data should be made comparable. 
However, any change in the datasets entails a change in the 
algorithm processes, and thus, the results. Furthermore, most 
radiomics studies to date have used manual segmentation, 
which could be a potential methodological limitation in terms 
of time and measurement error [1, 19, 27]. An increasingly 
explored solution could be automated segmentation based 
on deep learning. The requirements for segmentation models 
are complex due to the non-rigid nature of the pancreatic 
parenchyma and constitutional factors also influence deep 
learning segmentation results [5, 20]. Further testing and 
standardization are needed before they can be used on a 
large scale [19]. When extracting features, the feature space 
should be deliberately limited in order to ensure the best 
possible interpretation of the results. In their 2020 review 
of radiomics-based pancreas research, Abunahel et al. were 
able to show that there is a considerable variance (between 

4 and 2041, median 166) in the number of extracted features 
[1]. This reinforced our approach to keep the feature space 
small right from the start of the extraction, to implement the 
selection methodology only for features that showed the most 
significant correlation and to use predefined feature classes 
whose interpretation should be comprehensible. This was 
done especially because the utility of radiometric features can 
vary depending on the application [1]. In our view, a higher 
number of features and undefined feature classes would have 
increased the scope for interpretation of the prediction results, 
which would have weakened the interpretation of results and 
reproducibility [15, 16, 27]. Nevertheless, this approach 
limited the detection of features of the pancreatic parenchyma 
that could improve the model results.

The current literature also suggests that deep learning 
will increasingly be used not only for segmentation, but also 
to develop predictive models for POPF itself. For example, 
Mu et al. were able to develop a preoperative model based 
on deep learning to identify high-risk patients with high 
predictive power [22]. Furthermore, Lee et al. were able to 
develop a POPF prediction model based on a combination 
of two machine learning and one deep learning model 
[18]. They also compared this with the Roberts score. The 
combined prediction model was significantly superior to the 
Roberts score in predicting preoperative POPF. The models 
performed equally well in predicting CR-POPF. However, 
these must be interpreted in the context of a predictive value of 
the Roberts score in this cohort that is significantly lower than 
in the literature described [24]. Despite this, the combination 
of machine and deep learning may be a promising approach 
for the future, but further research is needed.

Regarding APM, a cornerstone of radiomics research is 
the evaluation of one's model using the clinical gold standard, 
which in this case is a limitation [19, 27]. We were not aware 
of any standards against which validation would have been 
possible. The same applies to the upper limit of amylase in 
the drainage that was established. Recent advances in deep 
learning are revolutionizing medical imaging by enabling 
accurate and efficient analysis of datasets. Convolutional 
Neural Networks (CNNs) have been particularly successful 
in image classification, segmentation, and anomaly detection 
and are likely to be beneficial in the scenario of this study. 
However, CNNs were not the objective of this study and were 
therefore not tested on our dataset. Further research in this 
area would be important.

Conclusion
In summary, PPM demonstrated that preoperative 

prediction of POPF is possible and achieved a higher value in 
the ROC analysis than the Roberts score. With the APM, we 
were able to provide a promising approach for postoperative 
drainage management after PD. Both models offer a new 
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contribution to informed preoperative decision making 
for the prediction and management of POPF. The results 
suggest that the combination of radiological and clinical 
parameters developed using only preoperatively available 
routine clinical and imaging data can compete with the potent 
Robert score for preoperative POPF risk stratification. In 
the future, the increased use of machine and deep learning 
methods for preoperative prediction of POPF seems likely. 
There is still a long way to go, and patience is needed before 
its implementation in clinical practice. On one hand, there 
is a need for standardization of clinical practice and, on 
the other hand, of radiomics workflows. This will require 
comprehensive studies with a prospective design, especially 
larger patient cohorts, tests against strong conventional scores 
and external multicenter validation.
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