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Abstract
Importance: Glaucoma, a leading cause of irreversible blindness, 
necessitates accurate intraocular pressure (IOP) prediction for early 
detection and management. The integration of deep learning algorithms 
with clinical data presents a novel approach to enhance diagnostic accuracy 
and patient care in ophthalmology, addressing a critical gap in current 
diagnostic methodologies.

Objective: To assess the effectiveness of deep learning models, specifically 
Segformer and EfficientNetV2B0, in predicting IOP when combined 
with clinical data and eye fundus images, aiming to improve diagnostic 
accuracy and management of glaucoma.

Design, Setting, and Participants: This cross-sectional study utilized 
the PAPILA database. The study employed publicly available databases 
G1020, ORIGA, and PAPILA, incorporating retinal fundus images from 
patients diagnosed with glaucoma. It focused on leveraging clinical data 
such as central corneal thickness, age, gender, axial length, and refractive 
defect for predictive analysis.

Exposure(s): Participants were exposed to deep learning algorithm-based 
analysis, integrating clinical data with retinal fundus images to predict IOP.

Main Outcome(s) and Measure(s): The primary outcome was the 
accuracy of the IOP predictions, evaluated using Mean Absolute Error 
(MAE), Coefficient of Determination (R-squared), and Root Mean Squared 
Error (RMSE). The model's performance was assessed based on its ability 
to accurately predict actual measured IOP values.

Results: The study analyzed images and clinical data from patients within 
the PAPILA database. The deep learning model achieved an MAE of 2.52, 
indicating moderate accuracy in predicting IOP. The R-squared value was 
reported at 0.10, reflecting the model's limited capacity to explain variance 
in IOP values among the study population.

Conclusions and Relevance: The findings suggest that deep learning 
algorithms, when integrated with clinical data, have the potential to 
predict IOP with a moderate level of accuracy. This innovative approach 
could significantly impact the management and diagnosis of glaucoma. 
This study underscores the potential of AI in revolutionizing ophthalmic 
diagnostics, particularly for glaucoma, although further validation and 
improvement of these models are necessary before clinical application.
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Results
With the Segformer neural network, the entire PAPILA 

[8] dataset was cropped (Figure 1). Uncertain diagnoses from
the PAPILA [8] dataset were excluded. Among the dataset,
90% of the images were labeled as normal, while 10% were
identified as having glaucoma. The distribution of gender
within the dataset consisted of 34% men and 66% women.
The mean age was 59 years with a standard deviation of 12.
The mean refractive error was 0.85 with a standard deviation
of 2.11. The mean central corneal thickness was 534 with a
standard deviation of 41. Additionally, the mean axial length
was 23.46 with a standard deviation of 1.10, and the mean
intraocular pressure (IOP) was 16.01 with a standard deviation 
of 3.35. The majority of IOP observations are concentrated in
the range of 13.0 to 20.0, with the highest frequency observed
at an IOP value of 16.0. There are fewer observations with
IOP values above 20.0, indicating that higher IOP values are
less common in the dataset (Figure 2).

The PAPILA [8] dataset images, along with the clinical 
variables mentioned above, were utilized to train a neural 
network for predicting intraocular pressure (IOP). The 
dataset was split into three subsets: 70% for training, 15% 
for validation, and 15% for testing purposes. The outcomes 
of the neural network model on the test subset are depicted in 
Figures 3 and 4.

Introduction
The simultaneous maturation of several pivotal digital 

innovations in information and communications technology 
has surged at an unprecedented pace in this new century. 
This rapid evolution has reverberated across all sectors, 
including healthcare. Notable digital advancements, such as 
the further integration of telehealth services, the advent of 5th 
generation wireless networks (5G), artificial intelligence (AI) 
methodologies like machine learning (ML) and deep learning 
(DL), and the widespread adoption of the Internet of Things 
(IoT), alongside fortified digital security capabilities such as 
blockchain, have cultivated an extraordinary landscape ripe 
with new prospects in healthcare and beyond [1].

Glaucoma is known as the major cause of irreversible 
blindness worldwide [2,3].

The global prevalence of glaucoma is projected to rise 
to 111.8 million by 2040, with a disproportionate impact 
on individuals living in Asia and Africa [4]. Undiagnosed 
glaucoma cases still account for more than 50 % of the cases 
worldwide [5]. These projections are crucial for shaping 
the development of glaucoma screening, treatment, and 
associated public health initiatives.

Materials & Methods
In this study, the public databases G1020 [6], ORIGA[7], 

and PAPILA[8] were employed. G1020 and Origa, containing 
a combined total of 1670 images, were utilized for training 
a Segformer model (nvidia/mit-b0) from HuggingFace [9], 
aimed at segmenting the optic disc. Sixty percent of the 1670 
images were designated for training, with 20% allocated for 
validation and another 20% for testing. Validation results 
revealed an overall accuracy of 99%, with a loss of 1%, while 
during training, the overall accuracy was 98%, with a loss 
of 3%. Following this, the transformer model was applied to 
segment the PAPILA[8] dataset and to crop the optic nerve 
at 1.5 diameters of the optic disc, covering the upward, 
downward, leftward, and rightward directions.

The PAPILA [8] dataset encompasses three diagnoses—
normal, glaucoma, and uncertain. The uncertain diagnoses 
were excluded from analysis, resulting in a total of 331 
images, consisting of 298 normal images and 33 glaucoma 
images. Clinical data associated with these images, such as 
the diagnosis of glaucoma, central corneal thickness, age, 
gender, axial length, and refractive defect, were utilized to 
predict intraocular pressure. For this purpose, 70% of the 
images were employed for training, while 15% each were 
allocated for validation and testing.

Fine-tuning of EfficientNetV2B0 [10] involved utilizing 
the last 200 layers with images, employing AdamW optimizer 
with a learning rate of 1e-2 and weight decay of 1e-4, and 
utilizing mean square error as the loss function. Subsequently, 
image features were concatenated with metadata features to 
facilitate the prediction of intraocular pressure.

Figure 1: Shows a comparison of normal original PAPILA dataset 
image and the cropped One.

Figure 2: Histogram illustrating intraocular pressure distribution in 
PAPILA dataset
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The Mean Absolute Error (MAE) of the model is 2.52, 
indicating an average absolute deviation of approximately 
2.52 units between the predicted and actual values. The 
Coefficient of Determination (R-squared) value of 0.10 
suggests that only around 10.24% of the variance in the target 
variable is explained by the model. The Root Mean Squared 
Error (RMSE) is 3.13, which represents the square root of the 
average of squared differences between predicted and actual 
values, indicating an average deviation of approximately 3.13 
units from the actual values.

Discussion
Many studies have been published demonstrating neural 

networks' capability to accurately classify glaucoma and 
normal patients using retinal fundus images, with AUC values 
typically around 99% [11-14]. However, this study represents 
the first attempt to predict intraocular pressure (IOP) using 
retinal fundus images in combination with ophthalmology 
clinical data. Another study by Isshi K et al. [15] attempted 
to predict IOP using machine learning models based solely 
on systemic variables, but their results were found to be 

insufficient when compared to predicting IOP using only 
retinal fundus images.

In our study, we trained a deep learning algorithm using 
both eye fundus images and eye clinical data, in contrast to 
Isshi K et al [15], who trained machine learning algorithms 
solely with systemic variables. Our Mean Absolute Error 
(MAE) of 2.52 is very similar to his MAE of 2.29. This 
metric is highly clinically interpretable. When the MAE is 2 
and the predicted result is 15, it means that, on average, the 
model's predictions deviate by approximately 2 units from 
the actual values.

Thus, if the predicted result is 15 with an MAE of 2, 
we can reasonably expect the actual value to fall within the 
range of 13 to 17. This interpretation stems from the fact 
that the MAE represents the average absolute deviation of 
the model's predictions from the actual values. Therefore, the 
MAE provides an estimate of the typical magnitude of errors 
made by the model. With an MAE of 2, it suggests that the 
majority of actual values would likely fall within ±2 units of 
the predicted value of 15.

Figure 3: Displays a comparison between the first thirty intraocular pressure predictions generated by the neural network and 
the corresponding real intraocular pressure values from the test subset of the PAPILA dataset.

Figure 4: Illustrates a comparison between the remaining cases of intraocular pressure predictions generated by the neural 
network and the corresponding real intraocular pressure values from the test subset of the PAPILA dataset.
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Our deep learning model achieved an R-squared value of 
0.1, which is comparable to the R-squared value of Isshi K 
et al [15], who rounds it to 0.15 depending on the machine 
learning model employed. However, it's crucial to understand 
that R-squared is not an ideal metric for evaluating non-linear 
models like deep learning models [16,17]. Therefore, even if 
a deep learning model performs well in terms of prediction 
accuracy, its R-squared value may not reflect this accurately.

While eye fundus images contain a wealth of information 
that can be leveraged to predict age [18,19], vascular risk 
factors [18,19], sex [20], and even neurological diseases 
such as Alzheimer's [21,2], it lacks sufficient information to 
predict intraocular pressure (IOP) [8] on its own. Additional 
clinical data must be incorporated to accurately predict IOP.

Using deep learning to predict IOP could be useful if 
employed in conjunction with other neural networks that 
distinguish between glaucoma and healthy individuals. 
By doing so, in locations lacking access to ophthalmology 
resources, a network that distinguishes between healthy and 
glaucomatous eyes, combined with another network that 
estimates IOP, could establish protocols and different criteria 
for referral. 

Conclusions
In summary, our research demonstrates the potential of 

combining deep learning algorithms with clinical data to 
predict intraocular pressure (IOP). This innovative approach 
offers opportunities to optimize diagnostic protocols and 
improve patient management strategies, particularly in areas 
with limited access to ophthalmic resources.
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