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Abstract
Large Language Models (LLMs) have been proven remarkable in natural 
language processing, which prompts numerous works on knowledge 
extraction, knowledge fusion, knowledge representation, and knowledge 
completion. Existing works mainly focus on static multi-relational 
knowledge graph (KG). Unlike static knowledge graph, temporal 
knowledge graph (TKG) contains temporal information and evolves 
over time. Learning and reasoning about the representation of temporal 
knowledge graph are more difficult. Training or fine-tuning LLMs for 
temporal graph related tasks incurs significant computational overhead 
and requires the design of prompts. Conducting tasks of TKG does not 
necessarily require such complex work. Therefore, we explore temporal 
knowledge graph completion (TKGC) based on pre-trained “small” 
language model. We propose TKG-BERT by applying BERT for 
temporal knowledge graph completion and classification. Specifically, 
We introduce three ways to model temporal knowledge in TKG-BERT: 
vanilla knowledge embedding (Van.), explicit time modeling (Exp.) and 
implicit time modeling (Imp.). TKG-BERT(Van.) only adopts static 
knowledge without embedding time information; TKG-BERT(Exp.) 
embeds timestamp in quadruple explicitly; TKG-BERT(Imp.) models 
time implicitly, by dividing the training set and testing set in chronological 
order. We conduct experiments on ICEWS14 and ICEWS05-15, which 
are two public temporal knowledge graph datasets. Various experiments 
of temporal knowledge graph completion and classification tasks show the 
effectiveness of pre-trained language model for TKG completion. We also 
compare the performance of TKG-BERT accross different time modeling 
way and proportion of training set.

Keywords: Knowledge graph; knowledge graph representation; temporal 
knowledge graph; pre-trained language model

Introduction
Knowledge graph is a kind of graph-structured data for representing 

knowledge, which supports knowledge reasoning. Knowledge graphs 
are widely used in various applications such as information retrieval, 
recommendation, and natural language processing. However, most existing 
knowledge graphs are incomplete and need to be reasoned and completed. 
Regarding this purpose, Knowledge Graph Embedding (KGE) transforms 
knowledge into low-dimensional vector space, to obtain the form of 
quantifiable, computable and reasonable knowledge for knowledge graph 
completion. Existing KGE methods can be classified into two categories: 
static KGE and temporal KGE. Static knowledge embedding considers the 
representation of static triples without considering changes in entities and 
relations along with time. Temporal knowledge embedding focuses on 
modeling the dynamic evolutionary properties of knowledge.
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There are two main categories of approaches to modeling 
temporal knowledge: timestamp transformation-based models 
and snapshot-based models. Timestamp transformation-
based models represent timestamps within text. They 
incorporates timestamps into embedding vectors of entities 
or relations, or model time using hyperplane projections. 
Snapshot-based models represent temporal knowledge as a 
sequence of graphs, and using time-and-graph or time-then-
graph to model graph structures[1]. Figure 1 is a temporal 
knowledge graph example, and some of its knowledge is 
represented in quadruple displayed in Table 1. The relation 
between entities consistently vary with time. The difficulty 
in complete temporal knowledge graph is modeling temporal 
information accurately to help complete historical knowledge 
or predict future fact.

LLMs have demonstrated remarkable success in natural 
language processing tasks. This leads to numerous research 
efforts in knowledge extraction, fusion, representation, and 
completion using pre-trained language models. However, 
there are the following challenges in directly applying large 

models to temporal knowledge graphs: (1) Calculation 
threshold: Training and fine-tuning large models require a 
significant amount of computational resources; (2) Prompt 
requirement: The use of large models requires the design of 
high-quality prompts; (3) Adaptation problem: The graph is 
generally sparse, and using large models can easily cause 
overfitting. Recently, researchers have explored the design 
and application of small pre-trained language models (SLMs), 
and various small model architectures have emerged[2]. The 
performance of small models in certain tasks is not inferior 
to that of large models, indicating that the task of completing 
temporal knowledge graphs may be relatively effective 
through simplified language model architecture.

Driven by this motivation, we explored the application 
of BERT, the most basic pre-trained language model (PLM) 
architecture whose parameter number is far less than LLM, 
in tasks related to temporal knowledge graphs. We propose 
TKG-BERT (Temporal Knowledge Graph by Bidirectional 
Encoder Representations from Transformers). Our approach 
extends the capabilities of pre-trained language models to 
capture temporal aspects by introducing three methods for 
modeling temporal knowledge: vanilla knowledge embedding, 
explicit time modeling and implicit time modeling. These 
methods leverage the pre-trained representations learned by 
BERT and aim to enhance the understanding and completion 
of TKGs. We conduct experiments with various temporal 
models and explore the capacity of TKG-BERT to model 
temporal knowledge. The contributions of this paper are 
summarized as follows:

 Application of pre-trained language models to temporal
knowledge graphs. This work explores the utilization of
PLMs, specifically BERT, for temporal knowledge graph
completion. It extends the application of PLMs beyond
static KGs and investigates their effectiveness in capturing
and modeling temporal aspects.

 Three ways for temporal knowledge embedding. We
introduce three methods: vanilla knowledge embedding,

Figure 1: Example of temporal knowledge graph

Subject 
entity Relation Object entity timestamp

Joseph 
Robinette 

Biden

Express intent to 
meet or negotiate

Dominican 
Republic t1

Dominican 
Republic

Arrest, detain, or 
charge with legal 

action
Immigrants(Cuba) t2

Caribbean 
Community Threaten Dominican 

Republic t3

Dominican 
Republic Host a visit Turkish Airlines t4

Joseph 
Robinette 

Biden
Consult Dominican 

Republic t5

Table 1: Examples of temporal knowledge represented by 
quadruples
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explicit time modeling and implicit time modeling 
for embedding temporal knowledge. Main fine-tuning 
tasks includes masked entity modeling, masked relation 
modeling, and tuple classification modeling.

 Evaluation of PLM capacity for temporal knowledge
modeling. We conducts experiments on two temporal KG
datasets to assess the capacity of TKG-BERT in temporal
knowledge completion. It evaluates the ability of TKG-
BERT to conduct knowledge reasoning under different
time modeling ways.

The rest of this paper is organized as follows: Section 2
gives the notations and problem definition. Section 3 presents 
the model architecture, and three time modeling methods 
of our proposed approach TKG-BERT. Section 4 describes 
the experimental setup and presents the results and analysis. 
Finally, Section 5 gives the discussions and conclusions of 
this research.

Notations and Problem Definition
We first list the general notations used in model description 

in Table 2, and define the problem of temporal knowledge 
graph.

A temporal knowledge graph G can be formalized by 
quadruple q = (s, r, o, t), which is a triple with timestamp 
t. The quadruple denote an fact that happen at timestamp t,
where t∈T. s∈V and o∈V are subject entity and object entity,
respectively. r∈R denote a relationship fact between s and o.
The notations used in this seciton are listed in Table 2.

There are three common tasks of temporal knowledge 
embedding: entity prediction, relation prediction, and tuple 
classification. Entity prediction is to predict the missing 
subject entity s in the incomplete quadruple (?, r, o, t) or the 
missing object entity o in (s, r, ?, t). Relation prediction is to 
predict the missing relation r in (s, ?, o, t). Tuple classification 
is to determine whether the given tuple (s, r, o, t) is correct 
or incorrect.

For ease of reading, the abbreviations and meanings of the 
three models proposed in this study are listed in Table 3, as 
well as the abbreviations and explanations of the knowledge 
graph completion tasks that were adopted.

Methodology
This section introduce our proposed temporal knowledge 

graph embedding approach: TKG-BERT. We illustrate 
model architecture of TKG-BERT in section 3.1. Then, we 
introduced three temporal knowledge modeling methods 
based on TKG-BERT in sequence, including vanilla, explicit, 
and implicit modeling. We provide a detailed introduction 
on how to design and perform input-output tasks for each of 
these three different modeling approaches.

Overview of Temporal Knowledge Graph BERT
BERT (Bidirectional Encoder Representations from 

Transformers) [3] is a pre-trained language model based on 
multi-layer Transformer encoder [4]. BERT learns deep 
bidirectional representations from unlabeled text by jointly 
conditioning on both the left and right context in all layers. 
The same as other language model, BERT consists of two 
steps: pre-training and fine-tuning. During pre-training, 
BERT is trained on large scale unlabeled general domain 
corpus. In fine-tuning phase, BERT is initialized with pre-
traind parameters and then is fine-tuned on specific domain 
corpus and tasks such as named entity recognition, question 
answering, and sentence pair classification. To leverage 
the rich language patterns and contextual representations 
effectively, we fine-tune the pre-trained BERT model for 
temporal knowledge completion tasks. We concatenate the 
entity tokens, relation tokens, and timestamp tokens as word 
sequences into BERT for fine-tuning. Such architecture is 
called TKG-BERT (Temporal Knowledge Graph based on 
BERT). TKG-BERT utilize pre-trained BERT (BERT_base) 
and are fine-tuned on sequence classification with temporal 
knowldge graph corpus.

Notation Description
G temporal knowledge graph

V entity set

R relation set

T timestamp set

q quadruple (s, r, o, t)

s subject entity

r relation

o object entity

t timestamp

Table 2: Notation description

Model Description Tasks Description

TKG-BERT (Van.) The vanilla version of TKG-BERT, 
without time modeling sop subject object prediction, namely entity prediction

TKG-BERT(Exp.) TKG-BERT with explicit time modeling rp relation prediction

TKG-BERT(Imp.) TKG-BERT with implicit time modeling tc and qc tuple classification (tuc), including triplet 
classification (tc) and quadruple classification(qc)

Table 3: Abbreviation of models and tasks
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BERT to generate embeddings (blue blocks marked with “E” 
in Figure 2). The embedding of each given token is generated 
by summing token embedding, segment embedding, and 
position embedding. Token embedding is the original word 
embedding of current token. Segment embedding is the 
embedding to distinguish the tokens in different segment. 
The tokens seperated by “[SEP]” have different segment 
embeddings, whereas tokens within one same entity or relation 
have the same segment embedding. Position embedding 
aims to fuse position information, so different tokens at the 
same position have the same position embedding. The token 
embeddings are fed into BERT, generate the final hidden 
vectors (green blocks marked with “C” and “T” in Figure 2) 
after Transformer encoding. The final hidden vector “C” is 
used for aggregating sequence representation for computing 
the final label. Other hidden vectors marked “T” corresponds 
to entity tokens, relation tokens, and “[SEP]” tokens. Label 
denotes the final output given input triple, which is different 
due to different training task and mode.

( , , ) max( )
T

k

QKAttention Q K V soft V
d

=       (1)
0

1,.....,( , , ) ( )hMultiHead Q K V Concat head head W=       (2)

( ( ) )T Norm FeedForward Mid Mid= + 	       (3)
( ( ))Mid Norm E MultiHead E= + 		       (4)

The pre-trained BERT layer consists of 12 bidirectional 
Transformer encoders. Each bidirectional Transformer 
encoder implements a multi-head self-attention. The multi-

The left part of Figure 2 shows the architecture of TKG-
BERT for modeling knowledge represented by tuple (triple 
or quadruple). For each tuple, we represent the entities and 
relation as their text word sequences. TKG-BERT take 
entity and relation word sequences as the input sentence for 
fine-tuning. As shown in Figure 2, we concatenate the word 
sequences of (s, r, o) as a single input sequence, i.e., the 
input token sequence to BERT. This is the general universal 
architecture, because the inpput tokens and the output labels 
maybe different according to different modeling modes. For 
example, there is an temporal quadruple:

(Islamic Rebirth Party, Make a visit, Tatarstan, 2014-03-
21)

KG-BERT takes the following token sequences as an 
input:

([CLS], Islamic, Rebirth, Party, [SEP], Make, visit, [SEP], 
Tatarstan, [SEP], 2014-03-21, [SEP]).

In original BERT, “[CLS]” is the special symbol for 
classification output, and “[SEP]” is the special symbol to 
separate non-consecutive token sequences. In our TKG-
BERT, the first token of each input sequence is always 
“[CLS]”, denoting the tuple representation is fed into an 
output layer for classification. The word sequences of entities 
and relations are seperated by “[SEP]”.

Token sequences of knowledge are input into pre-trained 

Figure 2: Illustrations of fine-tuning TKG-BERT with different time moedling ways on various tasks.
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head attention generate multiple sets of (Q, K, V) according 
to different weight matrices. Q, K, V refers to query, key, 
and value in multi-head self-attention. Transformer calculate 
attention according to equation (1). The output of Multi-
head attention is equation (2). The final hidden vector T 
are calculated by equation (3), wherein Mid is the output of 
normalized multi-head after residual, calculated by equation 
(4). Building on the above, we designed three approaches 
for fine-tuning TKG-BERT on temporal knowledge graph 
reasoning tasks. This enables us to investigate whether 
temporal information plays a role when using language 
models for knowledge graph reasoning, as well as the extent 
to which different temporal modeling methods affect the 
reasoning outcomes.

Vanilla knowledge embedding of TKG-BERT
The vanilla knowledge embedding design of TKG-

BERT (Abbreviated as TKG-BERT (Van.)) intends to 
investigate its performance on temporal knowledge graph 
tasks without incorporating temporal information. The task 
modeling approach for TKG-BERT (Van.) is illustrated in 
the middle section of Figure 2. Under this configuration, 
TKG-BERT does not model the temporal information 
present in the temporal knowledge graph but instead trains 
and predicts using only the static triple components of the 
temporal quadruples: (s, r, o). The tasks are identical to those 
performed on static knowledge graphs.

Original BERT randomly masks some tokens of the input 
sequences and then predict those masked token. Inspired by 
this masked language modeling, TKG-BERT adopts masking 
entity or relation in triple to learning their embeddings. As 
depicted, the three tasks include entity prediction, relation 
prediction, and triple classification. For the entity prediction 
task, masked entity modeling is employed, while for the 
relation prediction task, masked relation modeling is used.

 Masked entity modeling is to construct positive and
negative tuple samples by randomly corrupt the subject
entity s or the object entity o. TKG-BERT will learning
the optimal embeddings to make the triple scores of
positive and negative samples seperated as far as possible.
Then during the test phase, the masked entity would be
predicted towards the correct scoring.

 Masked relation modeling is to delete the relation in
input tuple sequence. Only the subject entity and object
entity are input into fine-tuning. The relations are regarded
as labels. TKG-BERT learns to embedding the entities
towards fitting the relation label representations.

The architecture of TKG-BERT(Van.) for triple
classification mode is shown in Figure 2. On this task, TKG-
BERT also take the concatenation of word sequences of 
entities and relation as token sequence input, whereas the 
output label denotes the quadruple is true or false.

Explicit Time Modeling of TKG-BERT
Explicit Temporal Modeling of TKG-BERT (Abbreviated 

as TKG-BERT (Exp.)) refers to the process of explicitly 
incorporating time-related information into models designed 
for handling data that has a temporal component. This 
modeling method typically involves the explicit representation 
and utilization of timestamps or other temporal features in the 
learning and inference mechanisms of the model. Temporal 
knowledge graph is usually formally represented as quadruple: 
(s, r, o, t), wherein $t$ is the time that the triple fact happens. 
Explicit time modeling is to treat the timestamp as individual 
elements as entity and relaiton, and learn the embedding of the 
timestamp. Compared to TKG-BERT(Van.) with no temporal 
modeling, TKG-BERT(Exp.) embeds timestamps alongside 
entities and relations, appending the timestamp token after 
the entity-relation triple, thereby inputting the temporal 
quadruples into the model. Tasks under explicit temporal 
modeling include entity prediction with timestamps, relation 
prediction with timestamps, and quadruple classification. The 
inputs and outputs for these three tasks are illustrated in the 
right part of Figure 2.

 TKG-BERT(Exp.) for predicting entity takes the
concatenation of subject entity, relation, object entity,
and timestamp in quadruple as token sequence input.
Embedded by the pre-trained BERT layer, the token
embeddings are transformed to final hidden vectors. The
hidden vector C of the special token “[CLS]” aggregates
the sequence representation, then calculate the quadruple
score as the model output.

 TKG-BERT(Exp.) for predicting relation only use the
tokens of subject entity s, the object entity o, and timestamp 
t to predict the relation r between them. In preliminary of
KG-BERT[5], predicting with two entities directly is better
than using entity prediction mode with relation corruption. 
So we adopt the same way for predicting relation. After
encoding and final hidden vector generating, the model
output the relation label y∈R of given entity pair.

TKG-BERT(Exp.) for quadruple classification takes
the quadruple as token sequence input. The only difference 
between quadruple classification and triple classification is 
the addition of the timestamp. Quadruple classification also 
adopt binary classification, distinguish positive and negative 
quadruple samples.

Implicit Time Modeling of TKG-BERT
In previous research on temporal knowledge graphs, 

the modes of knowledge prediction include interpolation 
and extrapolation. As shown in the left part of Figure 3, 
“interpolation” involves randomly selecting a portion of the 
knowledge for model training and speculating on the missing 
knowledge. In this mode, the model may infer missing 
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historical knowledge based on knowledge from future 
time points. “Interpolation” mode corresponds to vanilla 
knowledge modeling of TKG-BERT. “Extrapolation”, on 
the other hand, involves training the model using historical 
data and then reasoning or predicting knowledge at future 
time points. In the previous subsection on explicit temporal 
modeling, we adopted the interpolation setting. However, 
in practice, the extrapolation mode is more aligned with 
practical applications. Therefore, we designed a time 
modeling approach under the extrapolation setting, which is 
the implicit temporal modeling (Abbreviated as TKG-BERT 
(Imp.)).

As illustrated in the right part of Figure 3, we restructured 
the two datasets used in this study according to their temporal 
order, selecting 80% of the historical data for the training set 
and the more recent data for the test set. Under this setting, 
similar to the TKG-BERT(Van.), we do not explicitly embed 
temporal information such as timestamps. Instead, we 
implicitly model time through the restructuring of the dataset 
, learning from history to predict the future.

TKG-BERT(Imp.) captures temporal dynamics within 
a KG without explicitly encoding or representing time-
related information. In this method, the model learns to infer 
temporal patterns and dependencies from the input data itself, 
rather than relying on explicit timestamps or time intervals. 
For the given temporal knowledge graph, we reconstruct the 
graph, create training set by selecting the fact quadruples 
that occurred relatively earlier, and conduct entity or relation 
prediction of the fact quadruples which occurr in a relatively 
future time.

Experiments
We conduct abundant experiments to evaluate the 

performance of TKG-BERT on public temporal KG datasets. 
In the following sections, we first introduce experiment 

settings, including dataset selection, evaluation tasks and 
metrics, and hyperparameter settings. Then we present each 
part of the experiment results, analyze the role of time and 
temporal information in knowledge reasoning tasks.

Experimental Settings
This section introduces the temporal knowledge graph 

dataset used in this research, the experimental tasks, and the 
evaluation metrics, as well as the of hyperparameter settings 
during model training.

Datasets
We evaluate TKG-BERT on two temporal KG dataset: 

ICEWS14 and ICEWS05-15. They are constructed from 
ICEWS (Integrated Crisis Early Warning System)[6], an 
periodic updated event graph. ICEWS consists of events that 
represent interactions between the socio-political actors (for 
instance, cooperative or hostile actions between individuals, 
groups, sectors and nation states). ICEWS has been 
discontinued, changed to POLECAT. POLECAT contains 
event data from 2018 to the present, updated weekly, and 
previously events of terminated years stored monthly. Event 
knowledge are stored in fields according to an event standard. 
However, as most of the research and experiments on temporal 
knowledge graphs are based on the ICEWS dataset, we also 
used this series of datasets for research purposes in order to 
facilitate performance comparison with baseline models.

ICEWS14 and ICEWS05-15 used in this work are subsets 
of the data present in the ICEWS repository as created by 
Garcia-Duran et al.[7]. The statistics of the 2 datasets are listed 
in Table 4. ICEWS14 is a short-range dataset consisting of the 
events that occurred in 2014. ICEWS05-15 is a long-range 
dataset consisting of the events that occurred between 2005 
to 2015. We take the same partition proportion for training/
validation/test set as DE[8], which is a classic temporal KGE 
model.

Figure 3: The task setting of interpolation and extrapolation and the reconstruction of datasets.
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Tasks and Metrics
Four kinds of tasks are adopted to evaluate different 

time modeling way of TKG-BERT, including sop, rp, tc, 
and qc. The most principal task for temporal knowledge 
graph completion (TKGC) is sop, namely entity prediction. 
It aims to forecast the absent entity within a test quadruple  
(s, r, o, t). Specifically, it means predicting the missing s when 
presented with (?, r, o, t), or predicting the missing o when 
given (s, r, ?, t). For each test quadruple, we substitute the 
unknown entity with every candidate entity from the entity 
set V, thereby creating a collection of corrupted quadruples. 
We then evaluate these corrupted quadruples using temporal 
KG embedding models to assign scores. A superior model 
should position the genuine quadruple ahead of the corrupted 
ones in its ranking. Consequently, we ascertain the rank of the 
genuine quadruple among the corrupted set. The mean rank 
across all test quadruples is denoted as MR, while the mean 
reciprocal rank is referred to as MRR. Hits@n measures the 
percentage of correctly predicted entities that appear within 
the top n ranks. Lower MR values, higher MRR values, and 
increased Hits@n percentages all indicate enhanced model 
performance. To conduct a quantitative comparison of 
different models, we utilize the widely accepted evaluation 
metrics: Mean Rank (MR), Mean Reciprocal Rank (MRR), 
and Hits@n (where the value of n is 1, 3, and 10).

Hyper-parameter Setting
TKG-BERT are implemented with deep learning 

framework PyTorch and is trained on GPU of NVIDIA 
GeForce RTX 4090. Unless otherwise specified, we take 
the default setting for all hyper-parameters, which are 
listed as follows: learning rate is 5e-5, training batch size is 
32, evaluation batch size is 135, the max token sequence is 
limited to 15, the training epochs are 5.0, negative ratio is 2, 
embedding size is 50, output embedding dimension is 100; 
we use multi-head attention in fine-tuning, and set the number 
of head to 2, the margin of hinge loss is 5. We use pre-trained 
BERT word embeddings bert-base-uncased.

Temporal Knowledge Graph Completion
This section is the main experimental part of TKGC, 

which includes three temporal knowledge modeling methods 
for subject entity and object entity prediction, relation 
prediction, and tuple classification tasks.

Comparison on Entity Prediction

For entity prediction task, we compare TKG-BERT with 

two categories of models: static KGE model and temporal 
KGE model. We compare TKG-BERT (Van.) with static 
KGE models to explore their completion capabilities 
without temporal modeling. Meanwhile, TKG-BERT(Exp.) 
and TKG-BERT(Imp.) are contrasted with temporal models 
to investigate the performance gains achieved through 
time-aware information modeling. Compared static models 
include DistMult[9], ComplEx[10], R-GCN[11], ConvE[12], 
ConvTransE[13], RotatE[14]. Compared temporal models 
under the interpolation setting include HyTE[15], TtransE[16], 
TA-DistMult[7], and DE[8]. The interpolation setting is 
appropriate for the comparison of TKG-BERT(Exp.). 
Compared temporal models under the extrapolation setting 
include RG-CRN[17], CyGNet[18], RE-NET[19], RE-GCN[20]. 
The extrapolation setting is appropriate for comparison of 
TKG-BERT(Imp.).

Table 5 present the entity prediction results on the 
test sets of ICEWS14 and ICEWS05-15.  The results of 
baseline models are from the paper[21]. As demonstrated 
in the table, the three time modeling approaches of TKG-
BERT consistently outperform the baselines across most 
metrics, showing significant improvements. Specifically, 
for static knowledge graph embedding, which there is no 
time information modeling, TKG-BERT(Van.) far exceed 
all baselines. On ICEWS14, TKG-BERT(Van.) achieves 
the improvements of 20.42%(51.92-31.50) on MRR, 
14.0% (36.26-22.46) on Hits@1, 27.9% (62.88-34.98) on 
Hits@3, 28.17% (78.20-50.03) on Hits@10, compared with 
suboptimal model (ConvTransE). On ICEWS05-15, TKG-
BERT(Van.) achieves the improvements of 35.06%(85.34-
30.28) on MRR, 37.51% (59.07-21.56) on Hits@1, 32.36% 
(68.06-35.70) on Hits@3, 21.73% (72.69-50.96) on Hits@10 
compared with suboptimal model (ConvTransE). There is 
a huge improvement in both ICEWS14 and ICEWS05-15, 
and the improvement in ICEWS05-15 is greater than that 
in ICEWS14.

For temporal knowledge graph embedding under 
interpolation setting, corresponding to explicit time 
modeling, TKG-BERT(Exp.) also show superiority on entity 
prediction. On ICEWS14, TKG-BERT(Exp.) achieves the 
improvements of 2.07%(52.17-50.10) on MRR, 0.92% 
(40.12-39.20) on Hits@1, 1.37% (58.27-56.90) on Hits@3, 
0.11% (70.91-70.80) on Hits@10 compared with suboptimal 
model (DE-DistMult). On ICEWS05-15, TKG-BERT(Exp.) 

Dataset Entity Relation Time Span Time Gap Training Validation Test Total

ICEWS14 7,128 230 2014 365 72,826 8,941 8,963 90,730

ICEWS05-15 10,488 251 2005-2015 4,017 3,86,962 46,275 46,092 4,79,329

Table 4: Dataset statistical information.
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achieves the improvements of 5.18%(53.58-48.40) on MRR, 
1.94% (38.54-36.60) on Hits@1, 8.77% (63.37-54.60) on 
Hits@3, 4.19% (75.99-71.80) on Hits@10 compared with 
suboptimal model (DE-DistMult). The effect improvement 
of TKG-BERT(Exp.) is relatively small compared to TKG-
BERT(Van.), and the improvement on ICEWS05-15 is 
slightly higher than that on ICEWS14.

For temporal knowledge graph embedding under 
extrapolation setting, corresponding to implicit time 
modeling. TKG-BERT(Imp.) also show superiority on entity 
prediction. On ICEWS14, TKG-BERT(Imp.) achieves the 
improvements of 11.57%(49.35-37.78) on MRR, 8.47% 
(35.64-27.17) on Hits@1, 14.83% (57.33-42.50) on Hits@3, 
16.92% (75.76-58.84) on Hits@10 compared with suboptimal 
model (RE-GCN). On ICEWS05-15, TKG-BERT(Exp.) 
achieves the improvements of 12.3%(50.57-38.27) on MRR, 
12% (39.43-27.43) on Hits@1, 11.91% (54.97-43.06) on 
Hits@3, 9.32% (69.25-59.93) on Hits@10 compared with 
suboptimal model (RE-GCN). The effect improvement of 
TKG-BERT(Imp.) is relatively significant compared to 
TKG-BERT(Exp.), whereas the improvement on ICEWS14 
and that on ICEWS05-15 is almost equivalent.

The excellent performance of TKG-BERT shows 
the powerful contextual prediction capability of BERT. 

According to the statistics of the datasets in Table 4, 
ICEWS05-15 has more complicated graph structure than 
ICEWS14. Correspondingly, the entity prediction results 
on ICEWS05-15 is better compared with ICEWS14. These 
results indicates that TKG-BERT take good advantage of 
BERT because it is expert in dealing with complex graph 
structure. Futhermore, From the comparative results of 
the three types of KGE models, it can be seen that without 
utilizing time information, the entity prediction capability 
of TKG-BERT far exceeds that of static models. However, 
under conditions where time modeling is employed, the 
improvement in TKG-BERT's performance is limited. TKG-
BERT with implicit time modeling (TKG-BERT(Imp.)) 
has a slight advantage over TKG-BERT with explicit time 
modeling (TKG-BERT(Exp.)) in entity prediction. This is 
because implicit time modeling and explicit time modeling 
are equivalent to different tasks, with implicit modeling being 
more difficult and therefore performing worse.

Mean Rank of Entity and Relation
We have visualized the Mean Rank (MR) values for 

entities and relations in our entity prediction and relation 
prediction experiments, and the results are shown in Figure 
4. It can be seen from the figure that, TKG-BERT reduces the
entity MR of entity prediction task for both datasets to 6 and

Method
ICEWS14 ICEWS05-15

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

DistMult 20.32 6.13 27.59 46.61 19.91 5.63 27.22 47.33

ComplEx 22.61 9.88 28.93 47.57 20.26 6.66 26.43 47.31

R-GCN 28.03 19.42 31.95 44.83 27.13 18.83 30.41 43.16

ConvE 30.3 21.3 34.42 47.89 31.4 21.56 35.7 50.96

ConvTransE 31.5 22.46 34.98 50.03 30.28 20.79 33.8 49.95

RotatE 25.71 16.41 29.01 45.16 19.01 10.42 21.35 36.92

TKG-BERT(Van.) 51.92 36.46 62.88 78.2 65.34 59.07 68.06 72.69

НуТЕ 16.78 2.13 24.84 43.94 16.05 6.53 20.2 34.72

TTransE 12.86 3.14 15.72 33.65 16.53 5.51 20.77 39.26

TA-DistMult 26.22 16.83 29.72 45.23 27.51 17.57 31.46 47.32

DE-TransE 32.6 12.4 46.7 68.6 31.4 10.8 45.3 68.5

DE-DistMult 50.1 39.2 56.9 70.8 48.4 36.6 54.6 71.8

TKG-BERT(Exp.) 52.17 40.12 58.27 70.91 53.58 38.54 63.37 75.99

RG-CRN 33.31 24.08 36.55 51.54 35.93 26.23 40.02 54.63

CyGNet 34.68 25.35 38.88 53.16 35.46 25.44 40.2 54.47

RE-NET 35.77 25.99 40.1 54.87 36.86 26.24 41.85 57.6

RE-GCN 37.78 27.17 42.5 58.84 38.27 27.43 43.06 59.93

TKG-BERT(Imp.) 49.35 35.64 57.33 75.76 50.57 39.43 54.97 69.25

Table 5: Performance for the entity prediction task on ICESW14 and ICEWS05-15 with raw metrics (in percentage)
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7 respectively. This means that the vast majority of entities 
are trained to have ranked mean values of about 6 and 7 in 
entity prediction task. Since other research works usually do 
not focus on this metric, the baseline under this metric is not 
found for comparison in this study. It is known that the MR of 
entities in static knowledge graphs is generally reduced to a 
few hundred to a few thousand after training. Given the entity 
number of these two temporal datasets in this study (7,128 
entities in ICEWS14 and 10,488 entities in ICEWS05-15), 
reducing the MR of entities to less than 10 proves the strong 
entity semantic learning and reasoning capability of TKG-
BERT.

The lower part of Figure 4 represents the Mean Rank (MR) 
on ICEWS14 using different proportions of the training set. 
As the size of the training set increases, TKG-BERT (Van.) 
consistently reduces the overall MR value, lowering the 
rank of the correct entities and relations. This demonstrates 
that, without time modeling, continuously increasing the 
training set helps improve TKG-BERT's overall predictive 
performance for both entities and relations.

Explicit Time Modeling v.s. Implicit Time Modeling
We compared the performance of TKG-BERT on different 

tasks under different time modeling settings, including TKG-
BERT(Van.), TKG-BERT(Exp.) and TKG-BERT(Imp.). 
The results are in Figure 5. Horizontal coordinates represent 

the metrics for the tasks, including MR, Hits@3, precision, 
recall, f1, and accuracy. Vertical coordinates represent the 
results of TKG-BERT on corresponding metric. The metric 
values except MR are in percentage. The histograms show 
following findings:

 On a fixed dataset, whether or not time information is
embedded does not significantly affect the performance
of reasoning tasks.

 For the sop task, the model performance ranking is: TKG-
BERT(Van.) > TKG-BERT(Exp.) > TKG-BERT(Imp.).
For rp and tc tasks, there is almost no difference
between TKG-BERT(Van.) and TKG-BERT(Exp.), both
performing slightly better than TKG-BERT(Imp.).

 The differences in the various time modeling approaches
of TKG-BERT are more pronounced on ICEWS05-15.

We re-construct ICEWS14 to model temporal information 
implicitly. Specifically, the fact quadruples that happens in 
relatively previous time are used for training, those happens 
later are used for testing. The proportion of the training, 
validating, and test set is the same as original dataset. This 
setting increases the difficulty of the model in performing 
prediction tasks, so the results show worse. Besides, there 
are some other reasons for the above phenomena: (1) 
BERT uses pre-trained word vectors, which do not capture 
the implicit temporal information in digital text. TKG-

Figure 4: Mean Rank of TKG-BERT on ICEWS datasets.
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BERT(Exp.) embeds timestamp information directly, has 
little contribution compared with conventional no-temporal 
modeling approach (2). We use reconstructed dataset for 
implicit temporal modeling. In original dataset, there is a 
situation where some event knowledge with later timestamp 
is introduced into the training set (test leakage), while 
knowledge with former timestamp is classified into test 
set, due to data randomization. However, implicit temporal 
modeling, on the other hand, divides the training set and the 
test set according to the chronological order, so it does not 
suffer from such problem . Correspondingly, TKG-BERT 
(Imp.) performs slightly worse under, which is more realistic. 
(3)The inclusion of timestamp information had a weakening
effect on the model's performance in entity prediction tasks,
while it provided a slight improvement in relation prediction
tasks. This might be due to the large time span covered by the
ICEWS05-15 dataset, making TKG-BERT more sensitive to
changes in the textual information of timestamps.

Conclusions
This paper proposes a novel approach called TKG-

BERT for temporal knowledge graph embedding. The paper 
investigates the role of temporal information in knowledge 
completion tasks. TKG-BERT utilizes pre-trained language 
models, specifically BERT, to model temporal knowledge 
in three different ways: vanilla static knowledge modeling, 
explicit time modeling, and implicit time modeling. The 
proposed approach is evaluated through various KG 
completion task to explore the capacity of pre-trained language 
models to handle temporal knowledge. Experimental results 
suggest the following conclusions:

 The entity prediction task is the most complex, leading
to the least stable model performance. In contrast, the
model shows relatively stable performance in the tuple
classification task.

 Temporal information is necessary, and explicitly
incorporating temporal information can lead to a slight
improvement in performance. But there is a need to
find more effective ways of modeling timing, in order to
effectively utilize temporal information.

 When temporal information is lacking, the model can
choose to mine existing knowledge information, thereby
improving the inference of unknown knowledge.

 Explicit temporal modeling is suitable for interpolation
scenarios where timestamps are available, while implicit
temporal modeling is more applicable to stream data
and extrapolation scenarios where timestamps are not
accessible, making it more aligned with practical needs.

Overall, the TKG-BERT approach presented in this
paper fills the gap in the research on temporal knowledge 
graph completion using pre-trained language models. The 
experimental results demonstrate the effectiveness and 
potential of TKG-BERT in temporal knowledge graph 
representation.
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