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Pre-trained Language Model for Temporal Knowledge Graph Completion
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Abstract

Large Language Models (LLMs) have been proven remarkable in natural
language processing, which prompts numerous works on knowledge
extraction, knowledge fusion, knowledge representation, and knowledge
completion. Existing works mainly focus on static multi-relational
knowledge graph (KG). Unlike static knowledge graph, temporal
knowledge graph (TKG) contains temporal information and evolves
over time. Learning and reasoning about the representation of temporal
knowledge graph are more difficult. Training or fine-tuning LLMs for
temporal graph related tasks incurs significant computational overhead
and requires the design of prompts. Conducting tasks of TKG does not
necessarily require such complex work. Therefore, we explore temporal
knowledge graph completion (TKGC) based on pre-trained “small”
language model. We propose TKG-BERT by applying BERT for
temporal knowledge graph completion and classification. Specifically,
We introduce three ways to model temporal knowledge in TKG-BERT:
vanilla knowledge embedding (Van.), explicit time modeling (Exp.) and
implicit time modeling (Imp.). TKG-BERT(Van.) only adopts static
knowledge without embedding time information; TKG-BERT(Exp.)
embeds timestamp in quadruple explicitly; TKG-BERT(Imp.) models
time implicitly, by dividing the training set and testing set in chronological
order. We conduct experiments on ICEWS14 and ICEWS05-15, which
are two public temporal knowledge graph datasets. Various experiments
of temporal knowledge graph completion and classification tasks show the
effectiveness of pre-trained language model for TKG completion. We also
compare the performance of TKG-BERT accross different time modeling
way and proportion of training set.

Keywords: Knowledge graph; knowledge graph representation; temporal
knowledge graph; pre-trained language model

Introduction

Knowledge graph is a kind of graph-structured data for representing
knowledge, which supports knowledge reasoning. Knowledge graphs
are widely used in various applications such as information retrieval,
recommendation, and natural language processing. However, most existing
knowledge graphs are incomplete and need to be reasoned and completed.
Regarding this purpose, Knowledge Graph Embedding (KGE) transforms
knowledge into low-dimensional vector space, to obtain the form of
quantifiable, computable and reasonable knowledge for knowledge graph
completion. Existing KGE methods can be classified into two categories:
static KGE and temporal KGE. Static knowledge embedding considers the
representation of static triples without considering changes in entities and
relations along with time. Temporal knowledge embedding focuses on
modeling the dynamic evolutionary properties of knowledge.
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Figure 1: Example of temporal knowledge graph

There are two main categories of approaches to modeling
temporal knowledge: timestamp transformation-based models
and snapshot-based models. Timestamp transformation-
based models represent timestamps within text. They
incorporates timestamps into embedding vectors of entities
or relations, or model time using hyperplane projections.
Snapshot-based models represent temporal knowledge as a
sequence of graphs, and using time-and-graph or time-then-
graph to model graph structures!!l. Figure 1 is a temporal
knowledge graph example, and some of its knowledge is
represented in quadruple displayed in Table 1. The relation
between entities consistently vary with time. The difficulty
in complete temporal knowledge graph is modeling temporal
information accurately to help complete historical knowledge
or predict future fact.

LLMs have demonstrated remarkable success in natural
language processing tasks. This leads to numerous research
efforts in knowledge extraction, fusion, representation, and
completion using pre-trained language models. However,
there are the following challenges in directly applying large

Table 1: Examples of temporal knowledge represented by
quadruples

Subject . . . .
entity Relation Object entity | timestamp
Joseph . .
) Express intent to Dominican
Robinette meet or negotiate Republic t
Biden 9 P
Dominican Arrest, detain, or
Republic charge VYIth legal | Immigrants(Cuba) t2
action
Caribbean Dominican
Community Threaten Republic 3
Dominican Host a visit Turkish Airlines t4
Republic
Joseph Dominican
Robinette Consult ) t5
. Republic
Biden

models to temporal knowledge graphs: (1) Calculation
threshold: Training and fine-tuning large models require a
significant amount of computational resources; (2) Prompt
requirement: The use of large models requires the design of
high-quality prompts; (3) Adaptation problem: The graph is
generally sparse, and using large models can easily cause
overfitting. Recently, researchers have explored the design
and application of small pre-trained language models (SLMs),
and various small model architectures have emerged™. The
performance of small models in certain tasks is not inferior
to that of large models, indicating that the task of completing
temporal knowledge graphs may be relatively effective
through simplified language model architecture.

Driven by this motivation, we explored the application
of BERT, the most basic pre-trained language model (PLM)
architecture whose parameter number is far less than LLM,
in tasks related to temporal knowledge graphs. We propose
TKG-BERT (Temporal Knowledge Graph by Bidirectional
Encoder Representations from Transformers). Our approach
extends the capabilities of pre-trained language models to
capture temporal aspects by introducing three methods for
modelingtemporal knowledge: vanillaknowledge embedding,
explicit time modeling and implicit time modeling. These
methods leverage the pre-trained representations learned by
BERT and aim to enhance the understanding and completion
of TKGs. We conduct experiments with various temporal
models and explore the capacity of TKG-BERT to model
temporal knowledge. The contributions of this paper are
summarized as follows:

® Application of pre-trained language models to temporal
knowledge graphs. This work explores the utilization of
PLMs, specifically BERT, for temporal knowledge graph
completion. It extends the application of PLMs beyond
static KGs and investigates their effectiveness in capturing
and modeling temporal aspects.

® Three ways for temporal knowledge embedding. We
introduce three methods: vanilla knowledge embedding,
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explicit time modeling and implicit time modeling
for embedding temporal knowledge. Main fine-tuning
tasks includes masked entity modeling, masked relation
modeling, and tuple classification modeling.

® Evaluation of PLM capacity for temporal knowledge
modeling. We conducts experiments on two temporal KG
datasets to assess the capacity of TKG-BERT in temporal
knowledge completion. It evaluates the ability of TKG-
BERT to conduct knowledge reasoning under different
time modeling ways.

The rest of this paper is organized as follows: Section 2
gives the notations and problem definition. Section 3 presents
the model architecture, and three time modeling methods
of our proposed approach TKG-BERT. Section 4 describes
the experimental setup and presents the results and analysis.
Finally, Section 5 gives the discussions and conclusions of
this research.

Notations and Problem Definition

We first list the general notations used in model description
in Table 2, and define the problem of temporal knowledge
graph.

A temporal knowledge graph G can be formalized by
quadruple ¢ = (s, 7, o, t), which is a triple with timestamp
t. The quadruple denote an fact that happen at timestamp ¢,
where t€T. s€V and o€V are subject entity and object entity,
respectively. 7ER denote a relationship fact between s and o.
The notations used in this seciton are listed in Table 2.

Table 2: Notation description
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There are three common tasks of temporal knowledge
embedding: entity prediction, relation prediction, and tuple
classification. Entity prediction is to predict the missing
subject entity s in the incomplete quadruple (?, 7, o, ¢) or the
missing object entity o in (s, r, 7, ¢). Relation prediction is to
predict the missing relation 7 in (s, ?, o, ¢). Tuple classification
is to determine whether the given tuple (s, 7, o, ¢) is correct
or incorrect.

For ease of reading, the abbreviations and meanings of the
three models proposed in this study are listed in Table 3, as
well as the abbreviations and explanations of the knowledge
graph completion tasks that were adopted.

Methodology

This section introduce our proposed temporal knowledge
graph embedding approach: TKG-BERT. We illustrate
model architecture of TKG-BERT in section 3.1. Then, we
introduced three temporal knowledge modeling methods
based on TKG-BERT in sequence, including vanilla, explicit,
and implicit modeling. We provide a detailed introduction
on how to design and perform input-output tasks for each of
these three different modeling approaches.

Overview of Temporal Knowledge Graph BERT

BERT (Bidirectional Encoder Representations from
Transformers) B! is a pre-trained language model based on
multi-layer Transformer encoder . BERT learns deep
bidirectional representations from unlabeled text by jointly
conditioning on both the left and right context in all layers.
The same as other language model, BERT consists of two
steps: pre-training and fine-tuning. During pre-training,
BERT is trained on large scale unlabeled general domain
corpus. In fine-tuning phase, BERT is initialized with pre-
traind parameters and then is fine-tuned on specific domain
corpus and tasks such as named entity recognition, question
answering, and sentence pair classification. To leverage
the rich language patterns and contextual representations
effectively, we fine-tune the pre-trained BERT model for
temporal knowledge completion tasks. We concatenate the
entity tokens, relation tokens, and timestamp tokens as word
sequences into BERT for fine-tuning. Such architecture is
called TKG-BERT (Temporal Knowledge Graph based on
BERT). TKG-BERT utilize pre-trained BERT (BERT base)
and are fine-tuned on sequence classification with temporal
knowldge graph corpus.

Table 3: Abbreviation of models and tasks

Notation Description
G temporal knowledge graph
"4 entity set
R relation set
T timestamp set
q quadruple (s, 1, 0, t)
s subject entity
r relation
o) object entity
timestamp
Model Description

The vanilla version of TKG-BERT,
without time modeling

TKG-BERT with explicit time modeling

TKG-BERT (Van.)
TKG-BERT(Exp.)

TKG-BERT(Imp.) TKG-BERT with implicit time modeling

Tasks Description
sop subject object prediction, namely entity prediction
mw relation prediction
tc and qc tuple classification (tuc), including triplet

classification (tc) and quadruple classification(qc)
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Figure 2: Illustrations of fine-tuning TKG-BERT with different time moedling ways on various tasks.

The left part of Figure 2 shows the architecture of TKG-
BERT for modeling knowledge represented by tuple (triple
or quadruple). For each tuple, we represent the entities and
relation as their text word sequences. TKG-BERT take
entity and relation word sequences as the input sentence for
fine-tuning. As shown in Figure 2, we concatenate the word
sequences of (s, 7, o) as a single input sequence, i.e., the
input token sequence to BERT. This is the general universal
architecture, because the inpput tokens and the output labels
maybe different according to different modeling modes. For
example, there is an temporal quadruple:

(Islamic Rebirth Party, Make a visit, Tatarstan, 2014-03-
21)

KG-BERT takes the following token sequences as an
input:

([CLS], Islamic, Rebirth, Party, [SEP], Make, visit, [SEP],
Tatarstan, [SEP], 2014-03-21, [SEP]).

In original BERT, “[CLS]” is the special symbol for
classification output, and “[SEP]” is the special symbol to
separate non-consecutive token sequences. In our TKG-
BERT, the first token of each input sequence is always
“[CLS]”, denoting the tuple representation is fed into an
output layer for classification. The word sequences of entities
and relations are seperated by “[SEP]”.

Token sequences of knowledge are input into pre-trained

BERT to generate embeddings (blue blocks marked with “E”
in Figure 2). The embedding of each given token is generated
by summing token embedding, segment embedding, and
position embedding. Token embedding is the original word
embedding of current token. Segment embedding is the
embedding to distinguish the tokens in different segment.
The tokens seperated by “[SEP]” have different segment
embeddings, whereas tokens within one same entity or relation
have the same segment embedding. Position embedding
aims to fuse position information, so different tokens at the
same position have the same position embedding. The token
embeddings are fed into BERT, generate the final hidden
vectors (green blocks marked with “C” and “T” in Figure 2)
after Transformer encoding. The final hidden vector “C” is
used for aggregating sequence representation for computing
the final label. Other hidden vectors marked “T” corresponds
to entity tokens, relation tokens, and “[SEP]” tokens. Label
denotes the final output given input triple, which is different
due to different training task and mode.

oK'

Attention(Q, K, V') = soft max( \/Z 4 €))
MultiHead(Q, K,V') = Concat(head, __head,)W* )
T = Norm(FeedForward(Mid)+ Mid) 3)
Mid = Norm(E + MultiHead (E)) (4)

The pre-trained BERT layer consists of 12 bidirectional
Transformer encoders. Each bidirectional Transformer
encoder implements a multi-head self-attention. The multi-
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head attention generate multiple sets of (Q, K, V) according
to different weight matrices. Q, K, V refers to query, key,
and value in multi-head self-attention. Transformer calculate
attention according to equation (1). The output of Multi-
head attention is equation (2). The final hidden vector T’
are calculated by equation (3), wherein Mid is the output of
normalized multi-head after residual, calculated by equation
(4). Building on the above, we designed three approaches
for fine-tuning TKG-BERT on temporal knowledge graph
reasoning tasks. This enables us to investigate whether
temporal information plays a role when using language
models for knowledge graph reasoning, as well as the extent
to which different temporal modeling methods affect the
reasoning outcomes.

Vanilla knowledge embedding of TKG-BERT

The vanilla knowledge embedding design of TKG-
BERT (Abbreviated as TKG-BERT (Van.)) intends to
investigate its performance on temporal knowledge graph
tasks without incorporating temporal information. The task
modeling approach for TKG-BERT (Van.) is illustrated in
the middle section of Figure 2. Under this configuration,
TKG-BERT does not model the temporal information
present in the temporal knowledge graph but instead trains
and predicts using only the static triple components of the
temporal quadruples: (s, 7, o). The tasks are identical to those
performed on static knowledge graphs.

Original BERT randomly masks some tokens of the input
sequences and then predict those masked token. Inspired by
this masked language modeling, TKG-BERT adopts masking
entity or relation in triple to learning their embeddings. As
depicted, the three tasks include entity prediction, relation
prediction, and triple classification. For the entity prediction
task, masked entity modeling is employed, while for the
relation prediction task, masked relation modeling is used.

® Masked entity modeling is to construct positive and
negative tuple samples by randomly corrupt the subject
entity s or the object entity 0. TKG-BERT will learning
the optimal embeddings to make the triple scores of
positive and negative samples seperated as far as possible.
Then during the test phase, the masked entity would be
predicted towards the correct scoring.

® Masked relation modeling is to delete the relation in
input tuple sequence. Only the subject entity and object
entity are input into fine-tuning. The relations are regarded
as labels. TKG-BERT learns to embedding the entities
towards fitting the relation label representations.

The architecture of TKG-BERT(Van.) for triple
classification mode is shown in Figure 2. On this task, TKG-
BERT also take the concatenation of word sequences of
entities and relation as token sequence input, whereas the
output label denotes the quadruple is true or false.
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Explicit Time Modeling of TKG-BERT

Explicit Temporal Modeling of TKG-BERT (Abbreviated
as TKG-BERT (Exp.)) refers to the process of explicitly
incorporating time-related information into models designed
for handling data that has a temporal component. This
modeling method typically involves the explicit representation
and utilization of timestamps or other temporal features in the
learning and inference mechanisms of the model. Temporal
knowledge graph is usually formally represented as quadruple:
(s, 7, o, t), wherein $t$ is the time that the triple fact happens.
Explicit time modeling is to treat the timestamp as individual
elements as entity and relaiton, and learn the embedding of the
timestamp. Compared to TKG-BERT(Van.) with no temporal
modeling, TKG-BERT(Exp.) embeds timestamps alongside
entities and relations, appending the timestamp token after
the entity-relation triple, thereby inputting the temporal
quadruples into the model. Tasks under explicit temporal
modeling include entity prediction with timestamps, relation
prediction with timestamps, and quadruple classification. The
inputs and outputs for these three tasks are illustrated in the
right part of Figure 2.

® TKG-BERT(Exp.) for predicting entity takes the
concatenation of subject entity, relation, object entity,
and timestamp in quadruple as token sequence input.
Embedded by the pre-trained BERT layer, the token
embeddings are transformed to final hidden vectors. The
hidden vector C of the special token “[CLS]” aggregates
the sequence representation, then calculate the quadruple
score as the model output.

® TKG-BERT(Exp.) for predicting relation only use the
tokens of subject entity s, the object entity 0, and timestamp
t to predict the relation  between them. In preliminary of
KG-BERT®, predicting with two entities directly is better
than using entity prediction mode with relation corruption.
So we adopt the same way for predicting relation. After
encoding and final hidden vector generating, the model
output the relation label y€R of given entity pair.

TKG-BERT(Exp.) for quadruple classification takes
the quadruple as token sequence input. The only difference
between quadruple classification and triple classification is
the addition of the timestamp. Quadruple classification also
adopt binary classification, distinguish positive and negative
quadruple samples.

Implicit Time Modeling of TKG-BERT

In previous research on temporal knowledge graphs,
the modes of knowledge prediction include interpolation
and extrapolation. As shown in the left part of Figure 3,
“interpolation” involves randomly selecting a portion of the
knowledge for model training and speculating on the missing
knowledge. In this mode, the model may infer missing
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historical knowledge based on knowledge from future
time points. “Interpolation” mode corresponds to vanilla
knowledge modeling of TKG-BERT. “Extrapolation”, on
the other hand, involves training the model using historical
data and then reasoning or predicting knowledge at future
time points. In the previous subsection on explicit temporal
modeling, we adopted the interpolation setting. However,
in practice, the extrapolation mode is more aligned with
practical applications. Therefore, we designed a time
modeling approach under the extrapolation setting, which is
the implicit temporal modeling (Abbreviated as TKG-BERT

(Imp.)).

As illustrated in the right part of Figure 3, we restructured
the two datasets used in this study according to their temporal
order, selecting 80% of the historical data for the training set
and the more recent data for the test set. Under this setting,
similar to the TKG-BERT(Van.), we do not explicitly embed
temporal information such as timestamps. Instead, we
implicitly model time through the restructuring of the dataset
, learning from history to predict the future.

TKG-BERT(Imp.) captures temporal dynamics within
a KG without explicitly encoding or representing time-
related information. In this method, the model learns to infer
temporal patterns and dependencies from the input data itself,
rather than relying on explicit timestamps or time intervals.
For the given temporal knowledge graph, we reconstruct the
graph, create training set by selecting the fact quadruples
that occurred relatively earlier, and conduct entity or relation
prediction of the fact quadruples which occurr in a relatively
future time.

Experiments

We conduct abundant experiments to evaluate the
performance of TKG-BERT on public temporal KG datasets.
In the following sections, we first introduce experiment

interpolation

time axis
training knowledge

predicted knowledge

extrapolation

time axis

2014.1.1~2014.10.18 (history)

2005.1.1~2013.10.18 (history)
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settings, including dataset selection, evaluation tasks and
metrics, and hyperparameter settings. Then we present each
part of the experiment results, analyze the role of time and
temporal information in knowledge reasoning tasks.

Experimental Settings

This section introduces the temporal knowledge graph
dataset used in this research, the experimental tasks, and the
evaluation metrics, as well as the of hyperparameter settings
during model training.

Datasets

We evaluate TKG-BERT on two temporal KG dataset:
ICEWSI14 and ICEWSO05-15. They are constructed from
ICEWS (Integrated Crisis Early Warning System)®, an
periodic updated event graph. ICEWS consists of events that
represent interactions between the socio-political actors (for
instance, cooperative or hostile actions between individuals,
groups, sectors and nation states). ICEWS has been
discontinued, changed to POLECAT. POLECAT contains
event data from 2018 to the present, updated weekly, and
previously events of terminated years stored monthly. Event
knowledge are stored in fields according to an event standard.
However, as most of the research and experiments on temporal
knowledge graphs are based on the ICEWS dataset, we also
used this series of datasets for research purposes in order to
facilitate performance comparison with baseline models.

ICEWS14 and ICEWS05-15 used in this work are subsets
of the data present in the ICEWS repository as created by
Garcia-Duran et al.[”). The statistics of the 2 datasets are listed
in Table 4. ICEWS14 is a short-range dataset consisting of the
events that occurred in 2014. ICEWSO05-15 is a long-range
dataset consisting of the events that occurred between 2005
to 2015. We take the same partition proportion for training/
validation/test set as DE®], which is a classic temporal KGE
model.

ICEWS14 (re-construct)

2014.10.19~2014.12.31 (future)

2013.10.19~2015.12.31 (future)

ICEWS05-15 (re-construct)

Figure 3: The task setting of interpolation and extrapolation and the reconstruction of datasets.
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Tasks and Metrics

Four kinds of tasks are adopted to evaluate different
time modeling way of TKG-BERT, including sop, rp, tc,
and gc. The most principal task for temporal knowledge
graph completion (TKGC) is sop, namely entity prediction.
It aims to forecast the absent entity within a test quadruple
(s, r, o, t). Specifically, it means predicting the missing s when
presented with (?, r, o, t), or predicting the missing o when
given (s, r, 7, t). For each test quadruple, we substitute the
unknown entity with every candidate entity from the entity
set V, thereby creating a collection of corrupted quadruples.
We then evaluate these corrupted quadruples using temporal
KG embedding models to assign scores. A superior model
should position the genuine quadruple ahead of the corrupted
ones in its ranking. Consequently, we ascertain the rank of the
genuine quadruple among the corrupted set. The mean rank
across all test quadruples is denoted as MR, while the mean
reciprocal rank is referred to as MRR. Hits@n measures the
percentage of correctly predicted entities that appear within
the top n ranks. Lower MR values, higher MRR values, and
increased Hits@n percentages all indicate enhanced model
performance. To conduct a quantitative comparison of
different models, we utilize the widely accepted evaluation
metrics: Mean Rank (MR), Mean Reciprocal Rank (MRR),
and Hits@n (where the value of n is 1, 3, and 10).

Hyper-parameter Setting

TKG-BERT are implemented with deep learning
framework PyTorch and is trained on GPU of NVIDIA
GeForce RTX 4090. Unless otherwise specified, we take
the default setting for all hyper-parameters, which are
listed as follows: learning rate is 5e, training batch size is
32, evaluation batch size is 135, the max token sequence is
limited to 15, the training epochs are 5.0, negative ratio is 2,
embedding size is 50, output embedding dimension is 100;
we use multi-head attention in fine-tuning, and set the number
of head to 2, the margin of hinge loss is 5. We use pre-trained
BERT word embeddings bert-base-uncased.

Temporal Knowledge Graph Completion

This section is the main experimental part of TKGC,
which includes three temporal knowledge modeling methods
for subject entity and object entity prediction, relation
prediction, and tuple classification tasks.

Comparison on Entity Prediction

For entity prediction task, we compare TKG-BERT with
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two categories of models: static KGE model and temporal
KGE model. We compare TKG-BERT (Van.) with static
KGE models to explore their completion capabilities
without temporal modeling. Meanwhile, TKG-BERT(Exp.)
and TKG-BERT(Imp.) are contrasted with temporal models
to investigate the performance gains achieved through
time-aware information modeling. Compared static models
include DistMult?”), ComplEx!'%, R-GCNIY, ConvE!2,
ConvTransE), RotatE!Y., Compared temporal models
under the interpolation setting include HyTE!"), TtransE!®),
TA-DistMult!”, and DE®. The interpolation setting is
appropriate for the comparison of TKG-BERT(Exp.).
Compared temporal models under the extrapolation setting
include RG-CRN!7 CyGNet!!®l, RE-NET!?), RE-GCNE,
The extrapolation setting is appropriate for comparison of
TKG-BERT(Imp.).

Table 5 present the entity prediction results on the
test sets of ICEWS14 and ICEWS05-15. The results of
baseline models are from the paper?!l. As demonstrated
in the table, the three time modeling approaches of TKG-
BERT consistently outperform the baselines across most
metrics, showing significant improvements. Specifically,
for static knowledge graph embedding, which there is no
time information modeling, TKG-BERT(Van.) far exceed
all baselines. On ICEWS14, TKG-BERT(Van.) achieves
the improvements of 20.42%(51.92-31.50) on MRR,
14.0% (36.26-22.46) on Hits@1, 27.9% (62.88-34.98) on
Hits@3, 28.17% (78.20-50.03) on Hits@10, compared with
suboptimal model (ConvTransE). On ICEWS05-15, TKG-
BERT(Van.) achieves the improvements of 35.06%(85.34-
30.28) on MRR, 37.51% (59.07-21.56) on Hits@1, 32.36%
(68.06-35.70) on Hits@3, 21.73% (72.69-50.96) on Hits@10
compared with suboptimal model (ConvTransE). There is
a huge improvement in both ICEWS14 and ICEWSO05-15,
and the improvement in ICEWSO05-15 is greater than that
in ICEWS14.

For temporal knowledge graph embedding under
interpolation setting, corresponding to explicit time
modeling, TKG-BERT(Exp.) also show superiority on entity
prediction. On ICEWS14, TKG-BERT(Exp.) achieves the
improvements of 2.07%(52.17-50.10) on MRR, 0.92%
(40.12-39.20) on Hits@1, 1.37% (58.27-56.90) on Hits@3,
0.11% (70.91-70.80) on Hits@10 compared with suboptimal
model (DE-DistMult). On ICEWSO05-15, TKG-BERT(Exp.)

Table 4: Dataset statistical information.

Dataset Entity Relation Time Span
ICEWS14 7,128 230 2014
ICEWS05-15 10,488 251 2005-2015

Time Gap Training Validation Test Total
365 72,826 8,941 8,963 90,730
4,017 3,86,962 46,275 46,092 4,79,329
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Table 5: Performance for the entity prediction task on ICESW14 and ICEWS05-15 with raw metrics (in percentage)

ICEWS14
Method
MRR Hits@1 Hits@3

DistMult 20.32 6.13 27.59
ComplEx 22.61 9.88 28.93
R-GCN 28.03 19.42 31.95
ConvE 30.3 21.3 34.42
ConvTransE 31.5 22.46 34.98
RotatE 25.71 16.41 29.01
TKG-BERT(Van.) 51.92 36.46 62.88
HyTE 16.78 213 24.84
TTransE 12.86 3.14 15.72
TA-DistMult 26.22 16.83 29.72
DE-TransE 326 124 46.7
DE-DistMult 50.1 39.2 56.9
TKG-BERT(Exp.) 52.17 40.12 58.27
RG-CRN 33.31 24.08 36.55
CyGNet 34.68 25.35 38.88
RE-NET 35.77 25.99 40.1
RE-GCN 37.78 27.17 42,5
TKG-BERT(Imp.) 49.35 35.64 57.33

achieves the improvements of 5.18%(53.58-48.40) on MRR,
1.94% (38.54-36.60) on Hits@1, 8.77% (63.37-54.60) on
Hits@3, 4.19% (75.99-71.80) on Hits@10 compared with
suboptimal model (DE-DistMult). The effect improvement
of TKG-BERT(Exp.) is relatively small compared to TKG-
BERT(Van.), and the improvement on ICEWSO05-15 is
slightly higher than that on ICEWS14.

For temporal knowledge graph embedding under
extrapolation setting, corresponding to implicit time
modeling. TKG-BERT(Imp.) also show superiority on entity
prediction. On ICEWS14, TKG-BERT(Imp.) achieves the
improvements of 11.57%(49.35-37.78) on MRR, 8.47%
(35.64-27.17) on Hits@1, 14.83% (57.33-42.50) on Hits@3,
16.92% (75.76-58.84) on Hits@ 10 compared with suboptimal
model (RE-GCN). On ICEWS05-15, TKG-BERT(Exp.)
achieves the improvements of 12.3%(50.57-38.27) on MRR,
12% (39.43-27.43) on Hits@1, 11.91% (54.97-43.06) on
Hits@3, 9.32% (69.25-59.93) on Hits@10 compared with
suboptimal model (RE-GCN). The effect improvement of
TKG-BERT(Imp.) is relatively significant compared to
TKG-BERT(Exp.), whereas the improvement on ICEWS14
and that on ICEWS05-15 is almost equivalent.

The excellent performance of TKG-BERT shows
the powerful contextual prediction capability of BERT.

ICEWS05-15
Hits@10 MRR Hits@1 Hits@3 Hits@10
46.61 19.91 5.63 27.22 4733
4757 20.26 6.66 26.43 47.31
44.83 27.13 18.83 30.41 43.16
47.89 31.4 21.56 35.7 50.96
50.03 30.28 20.79 33.8 49.95
45.16 19.01 10.42 21.35 36.92
78.2 65.34 59.07 68.06 72.69
43.94 16.05 6.53 20.2 34.72
33.65 16.53 5.51 20.77 39.26
4523 27.51 17.57 31.46 47.32
68.6 314 10.8 453 68.5
70.8 48.4 36.6 54.6 71.8
70.91 53.58 38.54 63.37 75.99
51.54 35.93 26.23 40.02 54.63
53.16 35.46 25.44 40.2 54.47
54.87 36.86 26.24 41.85 57.6
58.84 38.27 27.43 43.06 59.93
75.76 50.57 39.43 54.97 69.25

According to the statistics of the datasets in Table 4,
ICEWSO05-15 has more complicated graph structure than
ICEWSI14. Correspondingly, the entity prediction results
on ICEWSO05-15 is better compared with ICEWS14. These
results indicates that TKG-BERT take good advantage of
BERT because it is expert in dealing with complex graph
structure. Futhermore, From the comparative results of
the three types of KGE models, it can be seen that without
utilizing time information, the entity prediction capability
of TKG-BERT far exceeds that of static models. However,
under conditions where time modeling is employed, the
improvement in TKG-BERT's performance is limited. TKG-
BERT with implicit time modeling (TKG-BERT(Imp.))
has a slight advantage over TKG-BERT with explicit time
modeling (TKG-BERT(Exp.)) in entity prediction. This is
because implicit time modeling and explicit time modeling
are equivalent to different tasks, with implicit modeling being
more difficult and therefore performing worse.

Mean Rank of Entity and Relation

We have visualized the Mean Rank (MR) values for
entities and relations in our entity prediction and relation
prediction experiments, and the results are shown in Figure
4. It can be seen from the figure that, TK G-BERT reduces the
entity MR of entity prediction task for both datasets to 6 and

Citation: Wenying Feng, Angxiao Zhao, Jianming Li, Zhigiang Zhang, Yan Jia and Zhaoquan Gu. Pre-trained Language Model for Temporal
Knowledge Graph Completion. Journal of Pharmacy and Pharmacology Research. 10 (2026): 25-35.



Feng W, et al., J Pharm Pharmacol Res 2026
DOI:10.26502/fjppr.0122

Journals

7 respectively. This means that the vast majority of entities
are trained to have ranked mean values of about 6 and 7 in
entity prediction task. Since other research works usually do
not focus on this metric, the baseline under this metric is not
found for comparison in this study. It is known that the MR of
entities in static knowledge graphs is generally reduced to a
few hundred to a few thousand after training. Given the entity
number of these two temporal datasets in this study (7,128
entities in ICEWS14 and 10,488 entities in ICEWS05-15),
reducing the MR of entities to less than 10 proves the strong
entity semantic learning and reasoning capability of TKG-
BERT.

The lower part of Figure 4 represents the Mean Rank (MR)
on ICEWS14 using different proportions of the training set.
As the size of the training set increases, TKG-BERT (Van.)
consistently reduces the overall MR value, lowering the
rank of the correct entities and relations. This demonstrates
that, without time modeling, continuously increasing the
training set helps improve TKG-BERT's overall predictive
performance for both entities and relations.

Explicit Time Modeling v.s. Implicit Time Modeling

We compared the performance of TK G-BERT on different
tasks under different time modeling settings, including TKG-
BERT(Van.), TKG-BERT(Exp.) and TKG-BERT(Imp.).
The results are in Figure 5. Horizontal coordinates represent

20% 40%
SPTGR (Van.): sop 7.2 8.9
SPTGR (Van.): rp 8.9 7.9
sop: Van. sop: Exp. sop: Imp.
icews14 6 7] 74
icews05-15 6.8 5.8 719

Volume 10 « Issue 1 33

the metrics for the tasks, including MR, Hits@3, precision,
recall, f1, and accuracy. Vertical coordinates represent the
results of TKG-BERT on corresponding metric. The metric
values except MR are in percentage. The histograms show
following findings:

® On a fixed dataset, whether or not time information is
embedded does not significantly affect the performance
of reasoning tasks.

® For the sop task, the model performance ranking is: TKG-
BERT(Van.) > TKG-BERT(Exp.) > TKG-BERT(Imp.).
For rp and fc tasks, there is almost no difference
between TKG-BERT(Van.) and TKG-BERT(Exp.), both
performing slightly better than TKG-BERT(Imp.).

® The differences in the various time modeling approaches
of TKG-BERT are more pronounced on ICEWS05-15.

We re-construct ICEWS14 to model temporal information
implicitly. Specifically, the fact quadruples that happens in
relatively previous time are used for training, those happens
later are used for testing. The proportion of the training,
validating, and test set is the same as original dataset. This
setting increases the difficulty of the model in performing
prediction tasks, so the results show worse. Besides, there
are some other reasons for the above phenomena: (1)
BERT uses pre-trained word vectors, which do not capture
the implicit temporal information in digital text. TKG-

60% 80% 100%
7.6 6.5 6
7.5 7 6.7
10
rp: Van. rp: Exp. rp: Imp.
5
6.7 6.7 8.1
6.1 6 7.2

Figure 4: Mean Rank of TKG-BERT on ICEWS datasets.

Citation: Wenying Feng, Angxiao Zhao, Jianming Li, Zhigiang Zhang, Yan Jia and Zhaoquan Gu. Pre-trained Language Model for Temporal
Knowledge Graph Completion. Journal of Pharmacy and Pharmacology Research. 10 (2026): 25-35.



fapiur‘e Feng W, et al., J Pharm Pharmacol Res 2026

Journge DOI:10.26502/fjppr.0122

@ TKG-BERT(Van)

sop on ICEWS14
100 70

TKG-BERT(Exp.)
rp on ICEWS14

Volume 10 ¢ Issue 1 | 34

TKG-BERT(Imp.)

tc on ICEWS14
100

MR Hits@3 Accuracy

60

80 80
50

60 20 60

40 30 40
20

20 20
10

o o 0

MR

Hits@3

80
60
40
20

0

Accuracy Precision Recall Accuracy

tc on ICEWS05-15
100

sop on ICEWS05-15 rp on ICEWS05-15

80 70
60

60 50
40

40
30

20 20
10

o o
MR Hits@3 Accuracy MR Hits@3 Accuracy

Precision Recall Accuracy

Figure 5: Comparison of TKG-BERT time modeling on different tasks.

BERT(Exp.) embeds timestamp information directly, has
little contribution compared with conventional no-temporal
modeling approach (2). We use reconstructed dataset for
implicit temporal modeling. In original dataset, there is a
situation where some event knowledge with later timestamp
is introduced into the training set (test leakage), while
knowledge with former timestamp is classified into test
set, due to data randomization. However, implicit temporal
modeling, on the other hand, divides the training set and the
test set according to the chronological order, so it does not
suffer from such problem . Correspondingly, TKG-BERT
(Imp.) performs slightly worse under, which is more realistic.
(3)The inclusion of timestamp information had a weakening
effect on the model's performance in entity prediction tasks,
while it provided a slight improvement in relation prediction
tasks. This might be due to the large time span covered by the
ICEWS05-15 dataset, making TKG-BERT more sensitive to
changes in the textual information of timestamps.

Conclusions

This paper proposes a novel approach called TKG-
BERT for temporal knowledge graph embedding. The paper
investigates the role of temporal information in knowledge
completion tasks. TKG-BERT utilizes pre-trained language
models, specifically BERT, to model temporal knowledge
in three different ways: vanilla static knowledge modeling,
explicit time modeling, and implicit time modeling. The
proposed approach is evaluated through various KG
completion task to explore the capacity of pre-trained language
models to handle temporal knowledge. Experimental results
suggest the following conclusions:

® The entity prediction task is the most complex, leading
to the least stable model performance. In contrast, the
model shows relatively stable performance in the tuple
classification task.

® Temporal information is necessary, and explicitly
incorporating temporal information can lead to a slight
improvement in performance. But there is a need to
find more effective ways of modeling timing, in order to
effectively utilize temporal information.

® When temporal information is lacking, the model can
choose to mine existing knowledge information, thereby
improving the inference of unknown knowledge.

® Explicit temporal modeling is suitable for interpolation
scenarios where timestamps are available, while implicit
temporal modeling is more applicable to stream data
and extrapolation scenarios where timestamps are not
accessible, making it more aligned with practical needs.

Overall, the TKG-BERT approach presented in this
paper fills the gap in the research on temporal knowledge
graph completion using pre-trained language models. The
experimental results demonstrate the effectiveness and
potential of TKG-BERT in temporal knowledge graph
representation.
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