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Abstract 

Host genetics is an emerging theme in COVID-19. A handful of common polymorphisms and some rare variants have 

been identified, either through GWAS or candidate gene approach, respectively. However, an organic model is still 

missing. Here, we propose a model that takes into account both common and rare coding variants. This model has been 

piloted in a cohort of 1,318 Italian SARS-CoV-2 positive individuals. Ordered logistic regression of clinical WHO 

grading on age, stratified by sex, was used to obtain a binary phenotypic classification useful for subsequent data 

mining. Genetic variability from WES was synthesized in several Boolean representations differentiated according to 

allele frequencies and genotype effect. LASSO logistic regression was used for extracting relevant features, part of 

them being sex specific. We defined a set of common coding polymorphisms relevant for COVID-19 severity. Another 

set of rare coding variants were found to contribute either to mildness or severity of COVID-19, which in some cases 

simulate a Mendelian inheritance. The combined effect of common and rare variants can be described as an Integrated 

PolyGenic Score (IPGS). This score can be computed using the following formula: (nmildness-nseverity) +F (mmildness-

mseverity). Here n is the number of common driver genes, m is the number of driver rare variants, and F is a factor for an 

appropriate weighing of the more powerful rare variants. We named this model: “post-Mendelian”. The model has been 

tested with multiple train-test splits and the polygenic score accurately separated patients with severe COVID-19 from 

those having a mild form. Furthermore, segregation of IPGS can be observed in familial cases in which more than one 

infected individual is present. 

 

Keywords: COVID-19; Genetic science modelling; Host genetics; Integrative polygenic score  

 

1. Introduction 

Coronavirus disease 2019 (COVID-19) presents an important test case for developing new models for studying complex 

disorders with a background of combined genetic and environmental factors. Unlike other multifactorial disorders, the 

main environmental factor for COVID-19, SARS-CoV-2, can easily be identified through PCR-based tests on swab. 

Assuming a relatively low impact of viral genome variability [1], the remaining variability in clinical outcome may 

likely be associated with age and host genetics, including sex. Genome-Wide Association Studies (GWASs) have 

identified a certain number of common polymorphisms in relevant genes [2-4]. However, these associations do not fully 

explain the variability of clinical outcomes. The candidate gene approach has shown that, as with many other complex 

disorders, a simple Mendelian inheritance is also found in COVID-19, affecting some rare individuals with defective 

gene variants related to innate immunity [5-7]. 

 

In early COVID-19 research, the Italian GEN-COVID Multicenter Study explored COVID-19 host genetics through 

Whole Exome Sequencing analysis (WES) in a cohort of 35 hospitalized patients. This research led to the preliminary 

identification of a combination of rare and common variants that appeared to potentially impact patient clinical outcome 

[8]. Then, within this Italian GEN-COVID Multicenter Study, biospecimens from more than 1,000 SARS-CoV-2 

positive individuals were collected in the GEN-COVID Biobank (GCB), with clinical data stored in the related Patient 

Registry (GCPR), and genetic data in the connected Genetic Data Repository (GCGDR) [9]. SNP genotyping of this 

cohort contributed to the identification of some loci associated with COVID-19 [3], while WES analysis pinpointed 

additional common non bi-allelic polymorphisms [10-12] and rare coding variants [13]. However, an organic model 

explaining how common variants may combine with rare variants is still lacking. In the study presented in this paper, 

we propose a new model for describing the severity of COVID-19 using both common and rare coding variants. The 
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model was defined in two steps: in the first step, logistic regression approach was used to identify a set of genes that are 

predictive for the severe or the mild phenotype of COVID-19. In the second step of the model, these extracted 

predictive genes were used to define a score that separates the extreme COVID-19 phenotypes, giving a disease severity 

prediction.  

 

2. Materials and Methods 

2.1. Patient’s cohort and clinical classification 

Demographic and clinical characteristics of the data set were identified and published [9]. The number of cases used for 

this study was 1,318. In order to obtain a clinical classification as independent as possible from age and sex, an Ordered 

Logistic Regression (OLR) model was used. Separately for the male and female cohorts, two OLR models were fitted 

using age to predict the ordinal grading (0, 1, 2, 3, 4, 5) dependent variable (Figure 1). Then, each patient was assigned 

a clinical classification: equal to 0 (mild), if the actual patient grading was below the one predicted by the OLR; or 

equal to 1 (severe), if the grading was above the OLR prediction. The patients with a predicted grading equal to the 

actual grading were excluded from the following analyses in order to compare patients where the genetic contribution 

towards the severe/mild phenotype is expected to be more relevant. 

 

 

 

Figure 1: Clinical classification adjusted by age. Two Ordered Logistic Regression (OLR) models, stratified by sex, 

fitted using age to predict the ordinal grading (0, 1, 2, 3, 4, 5) dependent variable. On the Y axis, the grading according 

to patients’ treatment is reported (5=deceased; 4=intubated; 3=CPAP/biPAP; 2=oxygen therapy; 1=hospitalized without 

oxygen support; 0=not hospitalized oligo-asymptomatic patients). On the X axis, age is reported. Red dots represent 

subjects falling above the expected treatment outcomes according to age (hence considered severe), green dots are 

subjects falling below the expected treatment outcomes according to age (hence considered mild) and black dots are 

subjects matching the expected treatment outcomes according to age (hence considered intermediate). 

 

2.2. WES analysis 

Whole Exome Sequencing with at least 97% coverage at 20x was performed using the Illumina NovaSeq6000 System 

(Illumina, San Diego, CA, USA). Library preparation was performed using the Illumina Exome Panel (Illumina) 

according to the manufacturer's protocol. Library enrichment was tested by qPCR, and the size distribution and 
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concentration were determined using Agilent Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA). The 

Novaseq6000 System (Illumina) was used for DNA sequencing through 150 bp paired-end reads. Variant calling was 

performed according to the GATK4 best practice guidelines, using BWA for mapping and ANNOVAR for annotating. 

WES data were represented in a binary mode on a gene-by-gene basis. 

 

2.3. Boolean representation of bi-allelic polymorphisms  

In the Boolean representation of bi-allelic polymorphisms, coding variants (missense, non-sense, and ins/del), as well as 

splicing mutations, with a frequency > 1% as defined in gnomAD for the Non-Finnish European population were 

considered. Depending on the boolean representation considered (see section 2.6) only homozygous variants, or both 

homozygous and heterozygous variants were considered. For those genes having more than one common variant, all the 

unique combinations (mutually exclusive) with a frequency above 5% in the cohort were represented. For instance, 

IBSP gene has 5 coding polymorphisms with 5 combinations and with a frequency above 5% in the cohort. Each 

combination was represented separately as IBSP_1 to IBSP_5. A further feature, named IBSP_0, was defined to 

represent the presence of any combination with a frequency lower than 5%. These unique combinations were used to 

define a matrix of M by N input features (M and N being, respectively, the number of combinations and the number of 

samples), with the element j,i equal to 1 if the combination of common variants j is present in the sample i. 

 

2.4. Boolean representation of rare variants 

Three models were proposed for the binary representation of rare variants: autosomal dominant (AD), autosomal 

recessive (AR), and X-linked (XL). Only coding variants (missense, non-sense, and ins/del), as well as splicing 

mutations, were considered, together with any pathogenic mutations (coding and non-coding) having a frequency below 

5% (e.g. Phe508del in CFTR being 1.1% in the non-Finnish European population). In the AD model, the input feature 

j,i was 1 if gene j in sample i had at least one variant with a frequency ≤ 1%, as defined in gnomAD for the Non-Finnish 

European population. In the AR model, the input feature j,i was 1 if gene j in sample i had either a variant with a 

frequency ≤ 1% in a homozygous state or two variants. In the XL model, only genes on chromosomes X were 

considered. The input feature j,i is 1 if gene j in sample i has a variant with frequency ≤ 1% (hemizygous state in 

males).  

 

2.5. Sample pre-processing  

Among the 1,318 samples, after PCA analysis, 63 outliers were removed. Those corresponded to non-white subjects (32 

hispanic, 12 black, 18 asian, 1 arabic). In the Boolean representation of rare variants, the cumulative probability 

distribution for the number of mutated individuals per gene was estimated, and the elbow method was used to identify 

the number of mutated individuals per gene that corresponds to a change in the convexity of the cumulative probability. 

The genes with a number of mutated individuals above this threshold were considered artefacts and not included in 

further analyses. Among the 18,085 annotated genes, 18 genes were excluded from the analysis due to annotation 

errors, such as the ARSD and the VCX family genes. 

 

2.6. LASSO logistic regression  

The binary classification problem, i.e., mild/severe cases, was solved by a logistic regression model, one of the most 

common and successful Machine Learning (ML) algorithms for binary classification tasks with probabilistic 

interpretation. For each sex, 6 separate logistic models were defined using the following input features: 1) common bi-
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allelic coding haplotypes of autosomal genes (hetero plus homo versus wt) extracting common variants acting in a 

heterozygous state; 2) common bi-allelic coding haplotypes of autosomal genes (homo versus hetero and wt) extracting 

common variants acting in a homozygous state; 3) common bi-allelic coding haplotypes of X-linked genes extracting 

common variants acting in a hemizygous state in males or as X-linked dominat in females; 4) rare variants of autosomal 

genes (hetero plus homo versus wt) extracting rare variants acting in heterozygous state; 5) rare variants of autosomal 

genes (homo versus hetero and wt) extracting rare variants acting in a homozygous state; and 6) rare variants of X-

linked genes extracting rare variants acting in a hemizygous state in males or as X-linked dominat in females. In order 

to enforce both the sparsity and the interpretability of the results, the model was trained with the additional LASSO 

(Least Absolute Shrinkage and Selection Operator) regularization term. By denoting with 𝛽𝑘 the coefficients of the 

logistic regression model, and by denoting with lambda (λ) the strength of the regularization, the LASSO regularization 

term of the loss, 𝜆 ∑  
𝑝
𝑘=1 |𝛽𝑘|, has the effect of shrinking the estimated coefficients to 0, providing a feature selection 

method for sparse solutions within the classification task. The weights resulting from the logistic regression algorithm 

can be interpreted as the feature importances for the task [14]. 

 

The fundamental hyper-parameter of the logistic regression algorithm is the strength of the LASSO term, which was 

tuned with a grid search method on the average accuracy for the 10-fold cross-validation. 50 equally spaced values in 

logarithmic scale in the range 𝜆 ∑  
𝑝
𝑘=1 |𝛽𝑘| were tested. The optimal regularization parameter was selected as the one 

with the best trade-off between the simplicity of the model and the cross-validation score, i.e., as the highest value 

providing an average score close to the highest score with its half standard deviation. The method is designed to select 

the most important genes (and not necessarily the entire set of genes contributing to COVID-19 variability). Data 

preprocessing was coded in Python. For the logistic regression model, the scikit-learn module with the liblinear 

coordinate descent optimization algorithm was used. The entire cohort was splitted into a training set (90%) and a 

testing set (10%). The model has been tested with multiple train-test splits. 

 

2.7. The post-Mendelian model  

The proposed model aims at combining the genetic knowledge extracted from the individual LASSO logistic regression 

models by extending the standard “threshold model” of common polymorphisms to a more general framework, 

including the effect(s) of rare variants. The main hypothesis of the model is that it is possible to define an Integrated 

PolyGenic core (IPGS) by counting the number of variants in genes promoting the severe or the mild phenotype, 

assigning a different weight to common and rare variants. 

 

The following formula calculates the IPGS as: 

IPGS = (n_mildness - n_severity) + F (m_mildness - m_severity) 

In the equation above, n_mildness and n_severity are the number of common polymorphic driver genes conferring 

mildness or severity (respectively) to COVID-19; while m_mildness and m_severity are the number of driver rare 

variants conferring severity or mildness (respectively) to COVID-19 (Figure 2).  

 

https://en.wiktionary.org/wiki/%CE%BB
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Figure 2: The determinative formula for the post-Mendelian model. This formula determines the integrated polygenic 

score (IPGS). The first term is the difference between the number of common variants/coding haplotypes conferring 

mildness (n_mildness) and severity (n_severity) to COVID-19; whereas the second term is the difference between the 

number of rare variants conferring mildness (m_severity) and severity (m_severity) to COVID-19. The multiplicative 

factor F was included to model the penetrant effect of rare variants in comparison to common variants. 

 

The genes conferring mildness or severity were identified using the LASSO logistic regression models described in 

section 2.6. Boolean representations 1-3 were used to define n_mildness and n_severity, and boolean representations 4-6 

were used to define m_mildness and m_severity. IPGS value calculated for each sex excludes genes specific of the other 

sex. In order to identify the optimal value of the F factor, for each value of F in the range 0-5, the silhouette coefficient 

of the clustering (mild vs severe) results was calculated. The optimal value of F was defined as the one that maximizes 

the silhouette coefficient, i.e., provides the best separation between the two clusters. The entire procedure is 

schematized in Figure 3. 

 

 

 

Figure 3: Outline of the method. Separately for the male and female cohorts, two OLR models were fitted using the age 

to predict the ordinal grading (0, 1, 2, 3, 4, 5) dependent variable. Then, each patient was provided a clinical 

classification equal to 0 (green), if the actual patient grading was below the one predicted by the OLR, or 1 (red), if the 

actual patient grading was above the OLR prediction. The patients with a predicted grading equal to the actual grading 

(black) were excluded from the LASSO analysis. LASSO Logistic Regression was performed on WES data represented 

in a Boolean manner, including common and rare variants, separately for males and females. Following the analysis 
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provided on the basis of the WES data analyzed through LASSO Logistic Regression, the post-Mendelian model was 

applied. For each subject then, an integrated polygenic score (IPGS) was calculated. 

 

2.8. Bootstrap analyses 

In order to have more robust feature selection the dataset was divided into a training set and a testing set (90/10), and 

the feature selection was performed using only samples in the training set. A bootstrap approach with 82 iterations was 

adopted (Supplementary Tables 1-4). At each bootstrap iteration, 90% of the samples were selected (without 

replication), to identify the most relevant features for each Boolean representations (Supplementary Tables 1-4). 

 

3. Results 

3.1. Assessing clinical classification stratified by sex and adjusted by age 

Whole Exome Sequencing (WES) data stored in the Genetic Data Repository of the GEN-COVID Multicenter Study 

(GCGDR) and coming from biospecimens of 1,318 SARS-CoV-2 PCR positive subjects were used for the analysis [9]. 

Because age and sex are strong determinants of the clinical outcome, we stratified the cohort by sex and then applied 

ordered logistic regression to re-classify the patients (Figure 1) as follows: i) severe: subjects falling above the expected 

treatment outcomes according to age; ii) intermediate: subjects matching the expected treatment outcomes according to 

age; iii) mild: subjects falling below the expected treatment outcomes according to age. This novel classification is 

expected to be reliable independent of age. If this is further demonstrated, it should then facilitate the reliable 

identification of genetic factors responsible for COVID-19 severity as well as potentially identifying (druggable) 

pathways to treatment. 

 

3.2. The advantage of using several Boolean representations 

We reasoned that, in order to identify possible Mendelian-like COVID-19 disorders, different rare variants in the same 

gene be classified as 1 or 0 (0 being the absence of variants). In order to detect the underlying Mendelian-like mode of 

inheritance, genes on chr X were considered separately. This representation is able to extract X-linked recessive genes 

on males (Figure S1q), such as TLR7 which is now functionally validated by three independent studies [6,7,13]. 

Likewise, in order to distinguish autosomal dominant from autosomal recessive disorders, two different Boolean 

representations were considered for the remaining autosomal genes: at least one variant equal for the dominant model 

and at least 2 variants for the recessive models (Figures S1i-S1p). Furthermore, we reasoned that for the contribution of 

common polymorphisms, based on the chromosomal location (X versus autosomal) and the genotype (at least one 

variant versus at least 2 variants), three different Boolean representations were better suited to identify common variants 

(Figures S1a-S1h). These representations were able to extract autosomal genes acting on specific sex with a specific 

genotype. For example, using at least one variant in males, LASSO pinpoints the p.Leu412Phe polymorphism in the 

testosteron-repressed TLR3 gene (Figure S1b). This is an already known functional polymorphism [15], which is now 

associated to COVID-19 by two independent studies [11, 16], proved to reduce TNF alpha and autophagy [11]. 

 

3.3. Discovery of genes and sex dependent effect 

We used severe versus mild cases defined by ordered logistic regression of the training set as inputs for a series of 

logistic regression models using LASSO regularization. The purpose of these logistic models was to identify which 

features are better predictors of either severe or mild disease. The six different types of genetic variability identified 
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above were represented in a Boolean manner and tested separately. The full list of genes identified in both sexes are 

reported in Supplementary Tables 1-4.  

 

Using the cohort inclusive of both sexes, for common bi-allelic haplotypes (hetero plus homo versus wt), we identified 

a set of genes ordered by importance (Figure 4). We then repeated the analysis using sex stratification (Figure 4). We 

found that a part of them are sex-specific, i.e., found in one sex only (Figure S1a, Figure S1b and S1c, Supplementary 

Tables 1-4). A similar pattern was found for all other Boolean representations. 

 

 

 

Figure 4: Sex specific effect. Upper panel: genes with common bi-allelic haplotypes (hetero plus homo versus wt), 

ordered by importance in the cohort that includes both sexes. Down panel: genes with common bi-allelic haplotypes 

(hetero plus homo versus wt), ordered by importance and stratified by sex (left side: genes in males; right side: genes in 

females). 

 

3.4. Discovery of relevant genes with common variants  

Applying LASSO logistic regression to the Boolean representation of common bi-allelic haplotypes, we identified a set 

of relevant genes for COVID-19 severity (Figure S1a-S1h and Supplementary Tables 1 and 2). Many genes were found 

in both sexes (Figure S1a, S1d and Supplementary Tables 1 and 2) and a set of them only affect one sex (Figure S1b, 

S1c, S1e, S1f, S1g, S1h and Supplementary Tables 1 and 2). Among the relevant common variants associated with 

severe disease, there are some genes already functionally validated and reported associate with severe COVID-19 

disease such as TLR3 with p.Leu412Phe polymorphism in heterozygous state [11,16] that controls interferon response; 

and SELP with p.Asp603Asn polymorphism in homozygous state [12], a cell adhesion molecule which mediates the 

activation of platelets and endothelial cells and its soluble isoform is increased in both venous and arterial thrombosis. 

Both TLR3 and SELP are testosterone regulated genes and in fact impact only on males patients.  

 

3.5. Discovery of relevant genes with rare variants  

Using LASSO logistic regression on the Boolean representation of rare variants, we identified a set of relevant genes for 

COVID-19 severity (Figure S1i-S1r, Supplementary Tables 3 and 4). Many genes were found in common with both 

sexes (Figure S1i, S1n and Supplementary Tables 3 and 4). Among the relevant genes extracted only in males with rare 

variants associated with severe disease, there is the already known TLR7 involved in controlling interferon response 
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[6,7,13]. Among relevant genes with rare variants associated with severe diseases in females there is TLR5 (hetero) 

previously involved in bacterial infection and more recently also in viral infection.  

 

3.6. The post-Mendelian paradigm for COVID-19 modelization 

In the previous sections, the protocol used to identify predictive genes for the severe and mild phenotypes were 

presented and the plausibility of these genes is supported by biological evidence. This agreement leads to plausible 

biological knowledge based on two independent modelling approaches. The apparent strong confirmation of our 

hypothesis convinced us to further explore the possibility of combining the derived variants' information regarding 

these genes into a predictive model of phenotype expression. The proposed model extends the standard “threshold 

model” of common polymorphisms to a more general framework, including both the effect of common and rare 

variants. In the case that each common variant carries the same relative risk, subjects with approximately the same 

number of common variants in genes indicative of mild or severe will behave according to their age (recall the black 

dots in the ordered logistic regression of Figure 1). In other cases, subjects with unbalanced variants (that is, with a 

higher number of mild- or severe disease gene variants) will more likely belong to the corresponding phenotype, with a 

probability that increases as the difference between the number of mild- and severe gene variants increases. By looking 

at the epidemiological data of the total number of those who are severely ill (intubated or CPAP-BiPAP), one should be 

able to infer the exact number of genes involved in the model and the exact percentage necessary for the threshold 

effect. In addition to the cumulative effect of common variants, another group of genes may be affected by a rare 

mutation. According to an autosomal dominant, autosomal recessive, or X linked mode let us suppose a rare mutation 

occurring in either a neutral or severe background of common variants. In such cases, a more severe or earlier disease 

segregating as a Mendelian inheritance may be identifiable. Family members are also likely to have identical or similar 

combinations of common variants. If a rare variant is identified against a mild disease background, the penetrability of 

the virus may likely be dependent on the strength of the rare variant in warding off viral replication. If a mildness rare 

occurs in a neutral or mildness background, the individual will be even more likely to exhibit a mild phenotype (for 

example, an individual with the persistence of antibodies far away from the vaccine or infection). If rare mildness 

variants occur in a harmful background, its effect will likely depend on the strength (relevance) of mildness (the type of 

gene and its mutation as well as the location of the gene in the pathophysiological process. For example, individuals 

with rare variants in FACL4 (which prevents the accumulation of lipid microparticles necessary for the development of 

the virus) could have milder symptoms even in a negative background (because the action is upstream). On the other 

hand, some individuals are asymptomatic following infection but continue to test positive for SARS-CoV-2 for a 

significant period without developing COVID-19. These could be individuals with common mildness variants but 

“severity rare mutations” favoring the spread of the virus on the tissues. However, the downstream process appears 

milder because they respond well by innate and adaptive immunity. The number of rare variants that individuals in the 

pilot study were found to have varied from 0 to 10, with an average of 3. Some individuals without rare variants were 

also found to present with or develop severe disease, indicating that common variants alone could be involved in 

affecting disease severity. In individuals with rare variants, the correct prediction of disease severity required a 

consideration of both common variants and rare variants. In cases of individuals having more than one rare variant gene 

in the same variant category (e.g., mild or severe), the segregation gene variants simulated the oligogenic model 

(digenic, trigenic, etc.). 

 

3.7. Fitting the model in the cohort and calibration of rare variants contribution  
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In the cohort of 1,318 SARS-CoV-2 used in the pilot study, we used the post-Mendelian model depicted in the previous 

section to determine an integrated polygenic score in which rare variants contribute together with common 

polymorphisms to COVID-19 liability. By counting the mutations of genes extracted by LASSO logistic regression for 

each patient in the cohort, we were able to obtain the integrated polygenic scores as reported in the frequency 

distribution shown in Figure 5 separately for severe (red) and mild (green) phenotypes. The calibrated F factor (i.e. the 

coefficient for which the mean silhouette coefficient is at its highest) is shown in Figure 5 for the male (2) and female 

(1.2) cohorts. In the overall cohort (male and female cohorts taken together), classical Mendelian inheritance was 

simulated when rare variants occurred in a medium or severe background (subjects having only 1 susceptibility 

mutation) and oligogenic inheritance (having 2 susceptibility mutations, having 3 mutations, etc.). 

 

 

 

Figure 5: Integrated Polygenic Score, factor calibration, and phenotypes. Frequency distributions of the IPGS score for 

the male cohort (Panel a) and female cohort (Panel b). The red distribution is related to the severe phenotypes and the 

green one to the mild phenotypes. Panel c and Panel d report the mean silhouette coefficient of the clustering of mild 

and severe phenotypes as a function of possible F values of the IPGS formula in the range 0-5. The coefficient is a 

measure of the goodness of the clustering. The maximum value that provides the best separation between the two 

clusters is 2 for the male cohort (Panel c) and 1.2 for the female cohort (Panel d). 

 

3.8. Segregation of the post-Mendelian model in families 

In the overall cohort 15 familial cases were collected and analysed. Segregation analysis using an integrated polygenic 

score is in line with the phenotype in each of the families (Figure 6). Through further exploration for rare variants in 

this individual family members, an extremely rare pathogenic mutation was detected in IFNAR1. The frequency, 

however, of IFNAR1 variants was too low to identify using logistic regression in a cohort of this size. 
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Figure 6: Segregation analysis afforded by the post-Mendelian model. Example of segregation analysis using the post-

Mendelian model applying an integrated polygenic score to 9 pedigrees. The squares represent male subjects and the 

circles represent female subjects. Red = severely affected (category 1 in Figure 1); green = oligo-asymptomatic subjects 

(category 0 in fig. 1); grey squares represent intermediate subjects (category black in Figure 1). Under each symbol is 

reported the treatment and (in parenthesis) the age. For each patient the formula for the computation of the integrated 

polygenic score (IPGS) is reported. Panel a: Brothers of 32 and 31 years with discordant phenotypes: hospitalized 

CPAP treated, and oligosymptomatic, respectively. In agreement with their phenotype, they have IPGS 0 and 10.1 

respectively, mainly due to increased common polymorphisms associated with mild disease in the asymptomatic brother 

(such as p.Ile57Val of AURKA, a cell cycle regulator downregulated during SARS-CoV-2 infection; 

p.Cys357Arg/p.Va335Met of GBP3, a strong repressor of the activity of the viral polymerase complex, which results in 

decreased synthesis of viral proteins; and p.M1? of TLR8, a member of the Toll-like receptor family which plays a 

fundamental role in pathogen recognition and activation of innate immunity). Panel b: Sisters of 62 and 60 years of age 

with partially discordant phenotype, hospitalized with oxygen support only and hospitalized CPAP treated, respectively. 

In agreement with their phenotype, they have IPGS minus 2.8 and minus 7.05, respectively, mainly due to increased 

severity of rare variants in the more severely affected sister (including Amyloid Beta Precursor Protein Binding Family 

A Member 3 APBA3, which plays a role in immune response; and the low density lipoprotein receptor family member 

LRP8, which has a role in the suppression of innate response). Treatment with immunosuppressive agents may be an 

option in this patient. 

 

3.9. Testing the model 

In order to test whether the proposed model is able to generalize the predictions to unseen samples, the entire cohort 

was splitted into a training set and a testing set (10%). The entire training procedure was completely blind to the 

samples in the testing set, namely, the training set was used to: (i) train the OLR models for predicting the phenotype 

adjusted by age and sex; (ii) identify the parameters and the regularization strength (by cross-validation on the training 

set) of the LASSO logistic regression models; (iii) estimate the optimal value of the F score in the IPGS. The 

predictivity of the model was estimated by using the ROC-AUC. In order to have a robust estimate of the predictivity of 

the model, the whole procedure of train-test split was repeated 150 times. Then, the distribution of the ROC-AUC 

scores was compared with the one (null-hypothesis) obtained by the shuffling of the phenotypes. As expected, the 

average ROC-AUC is centered at 0.5 in the presence of random phenotype. Instead, when the actual phenotypes are 

adopted the ROC-AUC distribution is significantly shifted towards higher values (p-value of 2.7x10-6) as shown in 

Figure 7. 
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Figure 7: Model performances. The ROC-AUC is compared between models trained using randomly shuffled 

phenotypes (blue boxes) and the actual COVID-19 severity phenotypes (orange boxes). The two-sided t-test for the null 

hypothesis that 2 independent samples have equal average is performed with a statistically significant p-value of 2.7x10
-

6
. 

 

4. Discussion 

Using data analysis techniques to investigate approximately 20,000 genes, we have identified a subset of a few hundred 

candidate genes involved in the COVID-19 mild and severe disease. Some of those candidate genes appear to be 

involved in disease severity when associated with rare variants; while others of them appear to be involved though one 

or more common polymorphism/s.  

 

Extracted genes bearing rare variants simulate a Mendelian-like disorder in infected members. Among these is the 

recently identified X-linked recessive disorder associated with the TLR7 gene [6, 7, 13]. In this case males appear to be 

severely affected due to a defect in the viral sensor TLR7, which is unable to appropriately trigger the downstream 

events leading to interferon production. The appropriate therapy for these males is interferon as soon as the infection is 

identified. About ten families with this defect in the cohort of the pilot study were identified. Among females an 

autosomal dominant-like disorder conditioned by sex is due to TLR5, another sensor, previously involved in bacterial 

infection and more recently also in viral infection [17, 18]. This is an autosomal gene inhibited by estrogen. Those who 

inherit the mutation are at significant risk of severe COVID-19, especially if they are females in which the amount of 

the protein is naturally reduced. The recommended treatment, as with TLR7, is interferon. Some tens of families with 

this variant were present in the cohort of the pilot study. There are also inverted Mendelian disorders leading to 

inheritance of protective rare variants. These include: i) the XPNPEP2 gene, the ACE2 co-receptor that is also involved 

in the metabolism of bradykinin, a potent vasodilator that acts as a protective against vasoconstriction and thrombosis 

[19]. The gene is found on the X chromosome, thus having a role in protecting males; and ii) VEGFD gene, encoding 

for vascular endothelial growth factor D, predominantly expressed in the lungs, interacting with ACE2, with an, 

important role in the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) by its 

properties to increase vascular permeability [20,21]. Extracted genes bearing common variants delineate different 

groups of “pathogenicity”. For example, TLR3 p.Leu412Phe (MAF 29,79%) confers reduced inflammatory response 

(reduced TNFa) and reduced autophagy [11]. The effect is enhanced in males because the TLR3 is down regulated by 



Cardiol Cardiovasc Med 2021; 5 (6): 673-694       DOI: 10.26502/fccm.92920232 

 

Cardiology and Cardiovascular Medicine                           Vol. 5 No. 6 – December 2021. [ISSN 2572-9292]                     685 

 

 

testosterone. In these patients hydroxychloroquine, which inhibits autophagy, is particularly dangerous. Most 

importantly, we defined a new genetic method for modelling COVID-19 severity (Figure 2). The proposed method has 

a number of innovative approaches. To arrive at this model based on this formula, first the clinically modified WHO 

outcome scale was combined with the subjects’ age, providing the main “non genetic” factor influencing clinical 

outcome. Subjects were divided into three categories: those having a clinical outcome as expected solely according to 

age, those having either a worse than expected according to age, and those having a better clinical outcome than 

expected according to age. The last two were selected as extreme ends of phenotype and used for selecting relevant 

genes. Second, the method is gene based and processes the genes in a Boolean manner, i. e., having or not having 

variants. For both common and rare variants, the Boolean classification was repeated three times in order to correspond 

with subjects having at least the heterozygous genotype (dominant modes), having the homozygous genotype (recessive 

model), or having the hemizygous genotype (X-linked model) for genes on chromosome X in males and heterozygous 

genotype for gene on chromosome X ( X-linked dominant model) in females. 

 

Not rarely, genes have more than one coding polymorphism (3413 in the cohort). Various coding changes may move 

the functioning of a protein either in the same direction (for example lowering or increasing the function) or in the 

opposite direction, potentially cancelling the effect of juxtaposed genes. We used a “coding haplotype” approach for 

classifying polymorphic variability in a Boolean manner: we counted the most common combinations (not all 

theoretical combinations were present due to linkage disequilibrium) and assigned a value of 1 to each gene if the 

specific combination is present or 0, if the combination was absent. Again, the Boolean classification was repeated three 

times, corresponding to having at least the heterozygous genotype, having homozygous genotype, or having 

hemizygous (in males) or heterozygous (in females) genotype for genes on chromosome X. The method treats males 

and females separately. This represents a first approach to translating into practice sex medicine. As previous studies 

have borne out, male patients affected by COVID-19 undergo a more severe clinical course. Finally the method we used 

for gene selection, based on Lasso regularization for a logistic regression classifier, is indirectly confirmed by the 

association rules produced using a different method.  

 

The proposed method accounts for the role of both common and rare variability, individually and combined. To our 

knowledge, this is the first method that has been able to synthesize a holistic approach across variabilities, which up 

until now have been treated separately in host genome research. By using the polygenic score derived from the GWAS 

approach for the common variability and Mendelian model for rare variability we arrived at a combined approach that 

significantly outstips the possibility of each of the earlier methodologies approached separately. The introduction of the 

IPGS formula proved determinative for a significant empowerment of host genome analysis. We call this method the 

“post-Mendelian model”.  

 

This new method now requires further investigation and refinement. For example, the method treats each gene as 

having the same weight among common as well as among rare variants. Furthermore, a number of genetic variabilities 

are missed in the model. These include i) non biallelic common polymorphisms, such as polyamino acid repeats, which 

are known to contribute to COVID-19 [10]; ii) variability due to germline CNV; iii) variability due to somatic 

mutations, both CNV and SNP [22, 23]; and iv) very rare variants or private variants whose frequency is too low to be 

detected by LASSO logistic regression. Further studies that take into account the above reported variability and that 

increase prediction performances are needed to improve the precision of the model. 



Cardiol Cardiovasc Med 2021; 5 (6): 673-694       DOI: 10.26502/fccm.92920232 

 

Cardiology and Cardiovascular Medicine                           Vol. 5 No. 6 – December 2021. [ISSN 2572-9292]                     686 

 

 

 

5. Conclusion 

In conclusion, we were able to identify a set of genes in which common polymorphisms confer either severity or 

mildness in relation to COVID-19 presentation and development. We also identified another set of genes in which rare 

variants confer either severity or mildness to COVID-19 disease. We have finally defined a new post-Mendelian genetic 

model, based on a combined analysis of common and rare variants that appears to explain severity in COVID-19 with a 

high degree of confidence. 

 

The current version of the is robust enough to extract relevant genes from a specific patient and identify the main 

pathogenic pathways that are accessible to current personalized co-adjuvant treatment flanking the current use of 

cortisone. Even in its present stage of development, this post-Mendelian model is strongly capable of identifying 

candidate genes that can explain with confidence the presentation and development of COVID-19 in patients with mild 

and severe disease. The proposed model should, however, not be employed immediately as a predictive tool, as it 

requires more testing, preferably in independent cohorts of patients across various population sets. This model allows us 

the possibility to summarize and critically evaluate the enormous amount of information now available from sequencing 

experiments. The immediate link demonstrated here between the gene variants extracted by the automatic analyses and 

their possible biological roles in COVID-19 supports the idea that this approach to the analysis of genetic information 

can lead to useful conclusions for COVID-19 diseases management. It is also promising for the further development of 

this post-Mendelian model with reliable predictive capabilities. 

 

By better understanding the role of host genetics in COVID-19 susceptibility and disease severity, we are also in a 

stronger position to identify public health measures that will may curb the impact of the disease on society as a whole. 

This should help us to genetically screen already affected patients as well as, eventually, individuals who may 

potentially be patients in order to predict those who are more or less susceptible to developing COVID-19 post-

infection, especially the more severe cases. It should further help us in, not only reassigning therapeutics or developing 

new interventions (including vaccines), but also in decision-making regarding therapeutics and vaccine allocations. 

Beyond what this post-Mendelian method can help us understand regarding the role of host genetics in COVID-19 

susceptibility and the potential implications for clinical and public health responses, the model also has strong potential 

for understanding the role of host genetics in other complex disorders. As we move into an era of precision, patient-

centric medicine - an era being propelled by the lurking ubiquitous character of COVID-19 - this post-Mendelian 

method can help us tailor treatments to the specific needs of individual patients.  
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Supplementary figures and tables 

 

Figure S1 Common polymorphisms and rare variants selected by LASSO Logistic Regression. Comparison of 

extreme ends of phenotype: subjects of class 1 (red in Fig.1) versus class 0 (green in Fig. 1) as defined by ordered 

logistic regression.  

Common (>1%) bi-allelic polymorphisms (coding haplotypes) considering heterozygous variants plus homozygous 

variants versus wt genotype and using both males and females (S1a) or only males (S1b) or only females (S1c); 

Common (>1%) bi-allelic polymorphisms (coding haplotypes) considering homozygous variants versus heterozygous 

variants plus wt genotype and using both males and females (S1d) or only males (S1e) or only in females (S1f) 

Common (>1%) bi-allelic polymorphisms (coding haplotypes) considering hemizygous variants (only genes on 

chromosome X) versus wt genotype and using males only (S1g) or females only (S1h); 

Rare variants (<1%) considering considering heterozygous variants plus homozygous variants versus wt genotype 

(dominant model) and using both males and females (S1i) or only males (S1l) or only females (S1m); Rare variants 

(<1%) considering homozygous variants versus heterozygous variants plus wt genotype (recessive model) and using 

both males and females (S1n) or only females (S1o). For males (S1p) the performances are below the random guess; 

Rare variants (<1%) considering hemizygous variants (only genes on chromosome X) versus wt genotype (X-linked 

model) and using males only (S1q) or only females (S1r). Features are gene-based representations of Genotypic 

Combinations (GC) of common polymorphisms. The histograms (weights) represented by importance of each feature 

(genes), inlcuding age and sex, for the classification task (Upper Panel). The positive weights reflect a susceptible 

behaviour of the gene to the target COVID-19 disease, whereas the negative weights a mildness action. Down Panel: 

Cross-validation accuracy for the grid of LASSO regularization parameters; the error bar is given by the standard 

deviation of the average ROC-AUC within the 10 folds; the red point corresponds to the parameter chosen for the fitting 

procedure.  

Supplementary Table 1. Common features extracted in males obtained after 82 bootstraps 

Supplementary Table 2. Common features extracted in females obtained after 82 bootstraps 

Supplementary Table 3. Rare features extracted in males obtained after 82 bootstraps 

Supplementary Table 4. Rare features extracted in females obtained after 82 bootstraps 
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