

Short Communication

Portal Vein Pulsatility, A Better Indicator of Volume Status in COVID-19?

Filipe Gonzalez^{1*}, Duarte Martins², Jacobo Bacariza¹, Rui Gomes¹, Antero Fernandes¹

*Corresponding author: Filipe Gonzalez, Department of Intensive Care, Hospital Garcia de Orta, Avenida Torrado da Silva, 2805-267 Almada, Portugal, Tel: (+351) 917932502; E-mail: filipeandregonzalez@gmail.com

Received: 20 September 2020; Accepted: 28 September 2020; Published: 20 November 2020

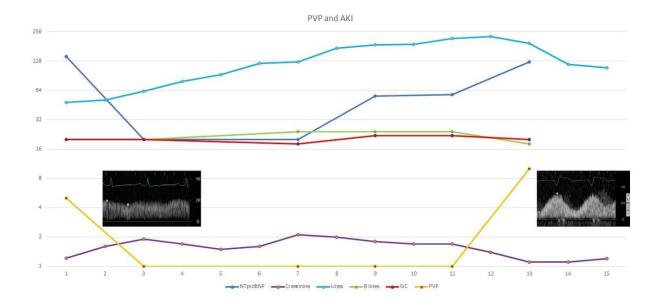
Citation: Filipe Gonzalez, Duarte Martins, Jacobo Bacariza, Rui Gomes, Antero Fernandes. Portal Vein Pulsatility, A Better Indicator of Volume Status in COVID-19?. Cardiology and Cardiovascular Medicine 4 (2020): 715-717.

Abbreviations: AKI: Acute kidney injury; RRT: Renal replacement therapy; VEXUS score: Venous EXcess UltraSound; ICU: Intensive Care Unit; US: UltraSound; IVC: Inferior vena cava; PVP: Portal vein pulsatility; NT-proBNP: N-terminal-pro hormone B-type Natriuretic Peptide

Acute kidney injury (AKI) is common among critically ill patients with COVID-19, affecting approximately 20-40% of patients admitted to intensive, of whom 20% require renal replacement therapy (RRT) [1,2]. Little is known about the cardiovascular consequences of COVID-19 of admission. patients requiring **ICU** Still. hemodynamic management plays an important role, as the need for vasopressor support in 95% of mechanically ventilated patients was reported in NEJM [3]. Recently, the VEXUS score (Venous EXcess UltraSound) has gained some visibility as a congestion score combining multiple ultrasound markers to evaluate systemic venous congestion [4]

In our Intensive Care Unit (ICU), we evaluated the first seven patients with COVID-19, with particular focus on ultrasound (US) evaluation, including lung, heart, inferior vena cava (IVC), and portal vein. All of them were mechanically ventilated; five were men, five had AKI, of which one needed RRT, and none died. Figure 1 is a representative graph showing a median of the seven patients for each of the variables displayed (in the y-axis) throughout the time (days on

¹Department of Intensive Care, Hospital Garcia de Orta, Almada, Portugal


²Department of Pediatric Cardiology, Hospital de Santa Cruz, Centro Hospitalar Lisboa Ocidental, Lisboa, Portugal

the x-axis). A quick and straightforward interpretation of this graph: as patients get hypovolemic with furosemide, creatinine and urea increases, and portal vein pulsatility (PVP) and N-terminal (NT)-pro hormone B-type Natriuretic Peptide (NT-proBNP) decreases; IVC variation and B-lines in lung US don't change significantly.

Also, we followed this seven patients for seven days and fit a linear mixed-effects model fit by maximum likelihood with normalized creatinine as the outcome variable, with fixed effects of PVP, time and NT-proBNP and random slopes for PVP, time and NT-proBNP (B-lines was not fitted in this model, as there was no correlation in the primary analysis). We found that for each 10% increase in PVP we estimate an increase of 0.5 mg/dL in creatinine (β -coefficient - 0.054, SD 0.017, p=0.0044), as opposed to the non-significant effect of IVC variation (β -coefficient -

0.15, SD 0.137, p=0.287) and the marginal effect of NT-proBNP (β -coefficient 0.0016, SD 0.0006, p=0.095).

As lung disease progresses towards more severe forms like ARDS, the pressure to stay dry can lead to a hypovolemic status, worsening further AKI. Some indirect measures, like IVC variation and the number of B-lines, can help define and guide volume status. But maybe these measurements are not the best on COVID-19 patients, as IVC dilatation and lack of variability can result from the parenchymal and vascular lung involvement and superimposed high pressures from aggressive mechanical ventilation, and B lines can solely represent interstitial viral inflammation, more than fluid overload. Although this is a small number of patients, PVP could be a better conceptual marker of the volume status in COVID-19 patients.

Figure 1: A representative pulsed-wave doppler of the portal vein can be seen at the beginning with a monophasic flow, indicating non-hypervolemia (possible hypo- to normovolemia), and at the end with a biphasic flow, indicating venous congestion (possible hypervolemia). PVP: Portal Vein Pulsatility; AKI: Acute Kidney Injury; NTproBNP: NT terminal of the pro-brain natriuretic peptide; IVC: Inferior Vena Cava variation.

References

- Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting Characteristics, Comorbidities, and Outcomes among 5700 Patients Hospitalized with COVID-19 in the New York City Area. JAMA - J Am Med Assoc (2020).
- Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet (2020).
- Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, et al. Clinical Characteristics of Covid-19 in New York City. N Engl J Med (2020).
- 4. Beaubien-Souligny W, Rola P, Haycock K, Bouchard J, Lamarche Y, Spiegel R, et al. Quantifying systemic congestion with Point-Of-Care ultrasound: development of the venous excess ultrasound grading system. Ultrasound J (2020).

This article is an open access article distributed under the terms and conditions of the <u>Creative Commons Attribution (CC-BY) license 4.0</u>