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Abstract
Neurological disorders, such as Alzheimer’s disease, Parkinson’s 
disease, epilepsy, spinal cord injuries, and traumatic brain injuries, 
represent substantial global health challenges due to their chronic and 
often progressive nature. While allopathic medicine offers a range 
of pharmacological interventions aimed at managing symptoms and 
mitigating disease progression, it is accompanied by limitations, 
including adverse side effects, the development of drug resistance, and 
incomplete efficacy. In parallel, phytochemicals—bioactive compounds 
derived from plants—are receiving increased attention for their potential 
neuroprotective, antioxidant, and anti-inflammatory properties. This 
review will explore the therapeutic landscape of neurological diseases by 
providing a comprehensive overview of prevalent conditions and the current 
allopathic treatments available. Furthermore, this review will investigate 
specific phytochemicals, including flavonoids, alkaloids, and terpenoids, 
that exhibit promise in modulating various disease pathways. Emphasis 
will be placed on the interactions between plant-derived compounds and 
prescription medications, highlighting both potential synergistic effects 
and possible adverse interactions. A thorough understanding of these 
interactions is essential for the development of integrative treatment 
approaches that enhance therapeutic efficacy while minimizing harm. By 
bridging traditional herbal medicine with contemporary pharmacotherapy, 
this review aims to promote a more holistic perspective on the management 
of neurological diseases, while also encouraging further research into safe 
and effective combinatory therapies.
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Introduction
Neurological diseases, as defined by the World Health Organization, are 

central and peripheral nervous disorders. The central nervous system includes 
the brain and spinal cord, while the peripheral nervous system is a network of 
nerves that extends throughout the head, neck, and body. These diseases can 
be grouped into several categories, such as neurodegenerative disorders (e.g., 
Alzheimer's and Parkinson's), neuromuscular conditions, brain disorders (like 
epilepsy), and spinal cord conditions. They often lead to progressive damage 
that affects memory, movement, and overall daily activity.

While allopathic medicine, conventional Western medical treatment, 
primarily uses pharmaceutical drugs and procedures to manage these 
conditions, it may not have long-term solutions or help address the underlying 
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causes. In contrast, phytochemicals, naturally occurring 
compounds in plants known for their potential health 
benefits, have become of interest. These substances are found 
in fruits, vegetables, herbs, and other plant sources, which 
may influence brain function and protect nerve cells. It is 
essential to study how phytochemicals interact with modern 
allopathic treatment, as it may reveal complementary effects, 
reduce side effects, and help create more effective treatments 
for neurological diseases. 

Overview of Neurological Disease
Neurological disorders encompass a wide range of 

conditions that affect the brain, spinal cord, and nerves. These 
diseases can be progressive, episodic, or chronic, and they 
often result in a combination of cognitive, motor, behavioral, 
and sensory impairments. Among the most prevalent and 
impactful neurological conditions are Alzheimer’s disease, 
Parkinson’s disease, epilepsy, and traumatic brain injury 
(Figure 1). Each of these disorders exhibits distinct etiologies 
and pathologies, yet many share overlapping features of 
neuronal damage, neuroinflammation, and neurodegeneration.

Alzheimer’s Disease
Alzheimer’s disease (AD) is the most prevalent form of 

dementia, accounting for an estimated 60–80% of cases 
globally. It is a progressive neurodegenerative condition 
characterized by memory loss, disorientation, and impaired 
reasoning. The hallmark pathological features include 
extracellular amyloid-beta (Aβ) plaque accumulation 
and intracellular neurofibrillary tangles formed from 
hyperphosphorylated tau protein. These abnormalities 
lead to synaptic dysfunction, neuronal death, and cerebral 
atrophy, particularly in the hippocampus and cortex [1].

Cognitive deficits are often preceded by mild cognitive 
impairment (MCI), which may progress over years. 
Neuroinflammation and oxidative stress are central to the 
pathogenesis, with microglial activation playing a dual role 
in both clearing amyloid and propagating damage. Genetic 
factors, such as mutations in APP, PSEN1/2, and the APOE 
ε4 allele, increase disease risk [2,3].

Parkinson’s Disease
Parkinson’s disease (PD) is the second most common 

neurodegenerative disorder after Alzheimer’s, primarily 
affecting motor control. It is marked by the degeneration 
of dopaminergic neurons in the substantia nigra pars 
compacta, leading to dopamine deficiency in the striatum. 

 
Figure 1: Classification and overview of various neurological diseases.
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Neuropathologically, PD is associated with Lewy bodies—
cytoplasmic inclusions composed mainly of misfolded alpha-
synuclein protein [4,5].

Clinical symptoms begin insidiously, with tremor at 
rest, bradykinesia, rigidity, and postural instability. Non-
motor manifestations—including depression, anosmia, sleep 
disturbances, and cognitive impairment—often precede 
motor symptoms and can dominate the disease burden [6,7].

Although the etiology is multifactorial, genetic mutations in 
SNCA, LRRK2, and PINK1, as well as environmental exposures 
to toxins like pesticides, have been implicated. A growing body 
of evidence links gut microbiota and alpha-synuclein misfolding 
as early contributors to pathogenesis [8].

Epilepsy
Epilepsy is a neurological disorder marked by the 

tendency for recurrent, unprovoked seizures due to abnormal, 
excessive neuronal activity in the brain. It is a heterogeneous 
condition with multiple subtypes classified based on seizure 
type (e.g., focal, generalized), etiology, and electroclinical 
features [9].

Seizures can range from subtle lapses in consciousness 
(absence seizures) to dramatic convulsions involving the 
entire body (tonic-clonic seizures) [10]. Depending on the 
brain region involved, seizures may present with sensory 
disturbances, automatisms, motor abnormalities, or behavioral 
changes. The underlying causes of epilepsy include genetic 
mutations, brain injury, infections, developmental disorders, 
and metabolic conditions. In many cases, the etiology remains 
idiopathic [11].

Traumatic Brain Injury
Traumatic brain injury (TBI) results from an external 

mechanical force that causes brain dysfunction. TBIs can 
range from mild concussions to severe brain damage and are 
categorized based on the mechanism (blunt or penetrating), 
severity, and the affected brain region [12].

The pathophysiology of TBI involves both primary 
injury, which occurs at the moment of impact, and secondary 
injury, which evolves over time due to processes like cerebral 
edema, ischemia, excitotoxicity, and neuroinflammation 
[13,14]. TBI can cause diffuse axonal injury, contusions, 
hemorrhages, and disruption of the blood-brain barrier.

Clinical manifestations vary widely and may include loss 
of consciousness, confusion, amnesia, headache, dizziness, 
behavioral changes, and cognitive impairment. Severe TBIs 
are associated with long-term neurological deficits and an 
increased risk of developing neurodegenerative conditions 
like Alzheimer’s disease and Parkinson’s disease [15,16].

Additionally, repetitive mild TBIs—such as those 
sustained in contact sports—are linked to chronic traumatic 

encephalopathy (CTE), a degenerative brain disease 
marked by behavioral abnormalities, mood disturbances, 
and cognitive decline. Studies also show that TBI may 
precipitate late-onset psychiatric conditions and accelerate 
neurodegenerative processes [17].

Phytochemicals
Phytochemicals, also termed phytonutrients, encompass 

a structurally diverse group of secondary metabolites 
synthesized by plants via complex biosynthetic pathways. 
Unlike essential micronutrients, these compounds are not 
required for human survival but exhibit significant bioactive 
properties, including antioxidant, anti-inflammatory, 
antimicrobial, anticancer, and neuroprotective activities. Their 
diversity, spanning polyphenols, flavonoids, carotenoids, 
alkaloids, terpenoids, glucosinolates, and saponins, reflects 
extensive structural and functional heterogeneity [18]. 

Polyphenols form one of the most abundant and researched 
categories, including flavonoids, phenolic acids, stilbenes, 
and lignans. Flavonoids—such as flavonols (quercetin, 
kaempferol), flavanols (catechins), flavones, isoflavones, 
and anthocyanins—are particularly notable for their C6–
C3–C6 structural motif that influences antioxidant behavior 
and interaction with cellular signaling pathways [19]. 
Anthocyanins, common in berries, red cabbage, and purple 
corn, contribute visual pigmentation and have demonstrated 
cardioprotective and anti-inflammatory properties [20].

Carotenoids, including β-carotene, lutein, and lycopene, 
are isoprenoid pigments that function in photoprotection and 
oxidative stress modulation. They are precursors to vitamin 
A and exhibit protective effects against chronic eye and 
cardiovascular diseases. Terpenes and terpenoids, structurally 
derived from five-carbon isoprene units, include compounds 
such as artemisinin, menthol, and saponins—exhibiting 
antimalarial, antimicrobial, and lipid-lowering activities [21].

Alkaloids, nitrogen-containing molecules like morphine, 
caffeine, and berberine, occur predominantly in medicinal 
plants and are well-documented for pharmacological 
activities in traditional and modern medicine [22]. 
Glucosinolates, characteristic of Brassicaceae vegetables, 
degrade into biologically active isothiocyanates—potent 
agents for chemoprevention through epigenetic modulation 
and detoxification enzyme activation [23].

Despite compelling in vitro and in vivo preclinical data, 
the translational potential of phytochemicals is frequently 
constrained by issues of solubility, absorption, metabolism, 
and bioavailability. Strategies to overcome these limitations 
include nanoformulation, prodrugs, complexation with 
cyclodextrins, and co-administration with absorption 
enhancers. Phytochemicals have shown efficacy in the 
chemoprevention and adjunct treatment of various cancers, 
neurodegenerative diseases, and metabolic disorders. 
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with donepezil to target both cholinergic and glutamatergic 
dysfunctions [26,27].

In terms of disease-modifying therapies (DMTs), the 
recent introduction of anti-amyloid monoclonal antibodies 
represents a significant advancement. Aducanumab, a 
monoclonal antibody targeting aggregated amyloid-β 
(Aβ42), preferentially binds to fibrillar deposits and was 
the first FDA-approved DMT in June 2021 for early-stage 
AD patients with confirmed amyloid pathology. Despite 
controversies regarding its clinical benefit and approval 
process, aducanumab marked a paradigm shift in AD 
management by targeting pathophysiological mechanisms 
rather than symptoms alone [28,29].

Lecanemab, another FDA-approved monoclonal 
antibody, selectively binds to soluble Aβ protofibrils. It was 
derived from the mouse mAb158 and received accelerated 
FDA approval in January 2023, followed by full approval 
in July 2023. Lecanemab is indicated for patients with mild 
cognitive impairment or mild AD dementia and confirmed 
amyloid pathology. Its biweekly intravenous regimen and 
well-defined targeting profile make it a promising DMT 
option, although concerns remain about amyloid-related 
imaging abnormalities (ARIA) and long-term safety [30].

Overall, while agents like donepezil, galantamine, and 
memantine offer symptomatic relief, monoclonal antibodies 
such as aducanumab and lecanemab represent an emerging 

Common Allopathic Treatments for Neurological 
Diseases

Allopathic medicine combines neurological diseases 
with pharmaceutical drugs and specialized therapies. These 
treatments are for managing symptoms, slowing disease 
progression, and improving quality of life. 

Alzheimer's Disease
Alzheimer’s disease (AD) is managed using a spectrum 

of pharmacological agents aimed at alleviating symptoms 
and modifying disease progression. The various classes of 
allopathic drugs used are illustrated in Figure 2.

Cholinesterase inhibitors (ChEIs) such as donepezil and 
galantamine are commonly prescribed to enhance cholinergic 
neurotransmission by inhibiting acetylcholinesterase 
(AChE), thereby increasing acetylcholine levels in synapses. 
Galantamine, notably derived from Amaryllidaceae plants, 
also exhibits nicotinic receptor allosteric modulation and 
contains bioactive alkaloids that may contribute to its efficacy 
[24,25].

The NMDA receptor antagonist memantine is another 
cornerstone treatment, particularly for moderate-to-severe 
AD. Memantine modulates glutamatergic activity by 
antagonizing NMDA receptors, thereby preventing excitotoxic 
neuronal damage caused by excessive glutamate—a hallmark 
in AD pathology. It is well-tolerated and often combined 

 
Figure 2: Categories of allopathic drugs used in the management of Alzheimer’s Disease.
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Overall, pharmacologic management of PD requires a 
tailored approach that evolves with disease progression. 
Combination therapies, such as dopamine agonists with 
levodopa or adjunctive MAO-B inhibitors, are commonly 
employed to mitigate motor complications and enhance 
therapeutic efficacy.

Epilepsy
The management of epilepsy primarily involves long-

term administration of antiepileptic drugs (AEDs) aimed 
at stabilizing neuronal excitability and preventing seizure 
recurrence. The various classes of allopathic drugs used for 
epilepsy are illustrated in Figure 4.

A major class of AEDs—sodium channel blockers—
includes phenytoin and lamotrigine, which stabilize neuronal 
membranes by promoting the fast inactivation of voltage-
gated sodium channels. Newer agents, such as lacosamide 
and eslicarbazepine acetate, act on the slow inactivation phase 
of sodium channels, potentially improving tolerability and 
reducing cognitive side effects at therapeutic doses [37,38].

Older drugs like phenytoin and carbamazepine remain 
effective but are often limited by enzyme induction and 
complex pharmacokinetics, prompting a shift toward newer 
agents with favorable safety profiles [39].

Modulstors of gamma amino butyric acid (GABA), 
including valproic acid and phenobarbital, exert their 
antiepileptic effect by enhancing GABAergic inhibition. 
These compounds increase chloride influx into neurons via 
GABA-A receptor activation, producing hyperpolarization 
and reducing neuronal excitability. Additional agents such 
as tiagabine (a GABA reuptake inhibitor) and vigabatrin (an 
irreversible inhibitor of GABA transaminase) offer alternative 
means to elevate synaptic GABA levels, contributing to 
seizure control—particularly in refractory or infantile 
epilepsy settings [40,41].

Another mechanistically distinct class includes modulators 
of synaptic vesicle glycoprotein 2A (SV2A), typified by 
levetiracetam, which bind to the SV2A. This membrane 
protein regulates calcium-dependent neurotransmitter release, 
especially of GABA and glutamate [42]. SV2A dysfunction 
has been implicated in epileptogenesis and developmental 
epileptic encephalopathies. Levetiracetam’s precise binding 
to SV2A facilitates broad-spectrum seizure control with 
minimal drug-drug interactions, making it a preferred option 
for both monotherapy and adjunctive use [43,44].

Spinal Cord-Related Diseases
Treatment of spinal cord-related disorders primarily targets 

inflammation, spasticity, and neuropathic pain to improve 
function and quality of life. The various classes of allopathic 
drugs used for spinal cord injury are illustrated in Figure 4. In 
acute spinal cord injury (SCI), high-dose methylprednisolone 

strategy focused on modifying disease progression. However, 
clinical application necessitates early diagnosis, amyloid 
positivity confirmation, and monitoring for adverse effects—
highlighting the evolving landscape of Alzheimer’s disease 
therapeutics [31,32].

Parkinson's Disease
Parkinson’s disease (PD) is a neurodegenerative disorder 

characterized by the progressive loss of dopaminergic neurons 
in the substantia nigra. The various classes of allopathic drugs 
used for PD are illustrated in Figure 3.

The first-line treatment remains levodopa, often 
administered with carbidopa to inhibit peripheral metabolism 
and enhance central nervous system delivery. Levodopa 
acts as a dopamine precursor and significantly improves 
motor symptoms such as bradykinesia, rigidity, and tremor. 
Although generally well tolerated, levodopa-carbidopa 
therapy may induce long-term side effects including 
dyskinesias, hallucinations, and gastrointestinal disturbances 
[33].

 
Figure 3: Categories of allopathic drugs used in the management of 
Parkinson’s disease. MAO, monoamine oxidase.

In early or fluctuating stages of PD, dopamine agonists 
such as pramipexole and ropinirole are often employed. These 
agents selectively activate D2-like dopamine receptors and 
can delay the initiation of levodopa therapy. Pramipexole and 
ropinirole have demonstrated significant efficacy in reducing 
motor symptoms and improving quality of life, although they 
are associated with adverse effects such as impulse control 
disorders, orthostatic hypotension, and sleep disturbances 
[34,35].

Another key pharmacological approach includes 
monoamine oxidase-B (MAO-B) inhibitors, specifically 
rasagiline and selegiline. These agents inhibit the enzymatic 
degradation of dopamine, thereby prolonging its synaptic 
availability. Rasagiline, in particular, has been shown to exert 
greater potency than selegiline and has demonstrated disease-
modifying potential in early PD when used at 1 mg/day [36].
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has historically been used to reduce inflammation and limit 
secondary neuronal damage, although its routine use is now 
controversial due to mixed outcomes and adverse effects 
[45]. Muscle relaxants, especially GABA-B receptor agonists 
like baclofen and tizanidine, are frequently used to manage 
spasticity associated with spinal cord injury or multiple 
sclerosis (MS). These drugs act centrally to inhibit excitatory 
neurotransmission at the spinal level, effectively reducing 
muscle tone and spasm frequency [46,47].

Traumatic Brain Injury
Traumatic brain injury (TBI) is a leading neurological 

disorder resulting from external mechanical forces such 
as impact, acceleration, or blast injuries [52]. It presents 
a spectrum of clinical manifestations, ranging from mild 
concussion to severe brain damage, and is associated with 
substantial morbidity and mortality globally. Allopathic 
treatment strategies for TBI are multifaceted and aim to 
prevent secondary injury, promote neuroprotection, and 
manage long-term cognitive, motor, and psychiatric sequelae 
(Figure 5). In the acute phase, the priority is stabilization of 
vital functions using Advanced Trauma Life Support (ATLS) 
protocols. Airway protection, ventilation, and hemodynamic 
stabilization are critical. Intracranial pressure (ICP) 
management is central to initial care, with hyperosmolar 
agents such as mannitol and hypertonic saline commonly used 
to prevent cerebral herniation and further neuronal injury. 
These agents reduce cerebral edema and improve perfusion 
pressure, a determinant of outcomes in severe TBI cases [53].

Sedation and analgesia using agents such as propofol and 
midazolam reduce cerebral metabolic demand and prevent 
agitation, which can worsen intracranial hypertension. In 
cases of refractory ICP elevation, therapeutic options include 
induced barbiturate coma and decompressive craniectomy. 
Antiepileptic drugs (AEDs), especially levetiracetam and 
phenytoin, are often administered prophylactically in the 
first week post-injury to reduce early post-traumatic seizures, 
although their role in preventing long-term epilepsy remains 
inconclusive [54]. Pharmacological neuroprotection has 
received increasing attention, particularly in the subacute and 
chronic phases of TBI (Figure 5). Agents such as amantadine, 
an NMDA receptor antagonist with dopaminergic activity, 
have shown benefits in enhancing recovery of consciousness 
and functional outcomes in moderate to severe TBI [55]. 
Methylphenidate, commonly used in attention-deficit 
disorders, is employed to improve attention span and cognitive 
processing speed in TBI patients experiencing cognitive 
fatigue [56]. Similarly, melatonin has been studied for its 
antioxidant and anti-inflammatory properties in reducing 
neuronal damage and enhancing post-injury neurocognitive 
function [57].

The inflammatory cascade following TBI, characterized 
by microglial activation, cytokine release, and disruption of 
the blood-brain barrier, presents another therapeutic target. 
While corticosteroids such as methylprednisolone were 
historically used to blunt neuroinflammation, large-scale trials 
like CRASH have revealed increased mortality associated 
with their use, leading to a shift away from corticosteroid-
based therapies. Research is now focused on specific cytokine 
inhibitors and biologics that modulate immune responses 
without systemic immunosuppression [58,59]. Cognitive 
and neuropsychiatric symptoms following TBI—including 
depression, emotional dysregulation, agitation, and anxiety—

 

 
Figure 4: Categories of allopathic drugs used in the management of 
Epilepsy and Spinal cord injury. GABA, gamma amino butyric acid; 
MS, multiple sclerosis; SCI, spinal cord injury; SV2A, synaptic 
vesicle glycoprotein 2A. 

For neuropathic pain, particularly post-SCI, gabapentin 
and pregabalin—structural analogs of GABA—are frontline 
agents. They bind to the α2δ subunit of voltage-gated 
calcium channels, inhibiting excitatory neurotransmitter 
release. These agents are effective in managing pain and 
paresthesia, though they require dose titration to balance 
efficacy with side effects such as dizziness or sedation [48]. A 
distinct and debilitating complication, complex regional pain 
syndrome (CRPS), often arises after peripheral nerve trauma 
and is characterized by central sensitization, autonomic 
dysregulation, and neuroimmune inflammation. Dysregulated 
C-fiber signaling and increased adrenergic receptor 
expression contribute to symptoms such as allodynia and 
hyperalgesia [49]. Pharmacologic interventions in CRPS may 
include ketamine infusions (an NMDA receptor antagonist), 
bisphosphonates, low-dose naltrexone (an opioid receptor 
modulator with neuroinflammatory effects), and botulinum 
toxin A for regional pain relief. Ketamine has shown 
efficacy even in later stages of CRPS, while naltrexone's 
immunomodulatory properties are gaining recognition in 
chronic pain management [50,51]. Ultimately, optimal 
outcomes require multidisciplinary approaches that integrate 
pharmacotherapy with physical rehabilitation, psychosocial 
support, and interventional techniques to mitigate the long-
term burden of spinal cord-related diseases.
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are often managed with selective serotonin reuptake inhibitors 
(SSRIs) such as sertraline and escitalopram [60,61].

Recent research has explored novel pharmacologic agents 
for TBI management. Statins have shown anti-inflammatory 
and endothelial stabilizing effects in animal models, with early-
phase human trials suggesting potential benefits in reducing 
cerebral edema [62]. Progesterone and erythropoietin, though 
promising in preclinical studies for neuroprotection and 
myelin repair, have failed to demonstrate efficacy in large 
randomized controlled trials [63]. Cannabinoids, particularly 
cannabidiol (CBD), are being investigated for their potential 
to reduce anxiety, neuroinflammation, and seizure risk, 
although robust clinical data in TBI populations remain 
scarce [64].

Many of these natural compounds exhibit antioxidant, anti-
inflammatory, neuroprotective, and cognitive-enhancing 
properties. As conventional treatments often focus on 
symptom management, phytochemicals offer promising 
complementary or alternative strategies for targeting the 
underlying mechanisms of neurological diseases (Figure 6).

Alzheimer’s disease
Phytochemicals—naturally occurring plant-based 

compounds—have emerged as promising multi-target 
agents in the prevention and management of AD. Unlike 
synthetic drugs that largely provide symptomatic relief, 
phytochemicals exert disease-modifying effects by acting 
on key pathological hallmarks such as amyloid-β (Aβ) 
aggregation, tau hyperphosphorylation, neuroinflammation, 
oxidative stress, mitochondrial dysfunction, and synaptic 
loss. These compounds are chemically diverse and can be 
broadly categorized into polyphenols, alkaloids, terpenoids, 
and volatile phytochemicals.

Polyphenols 
Resveratrol, a stilbene polyphenol found in grapes and 

red wine, exhibits antioxidant, anti-inflammatory, and anti-
amyloid effects by modulating signaling pathways involved 
in Aβ aggregation and tau phosphorylation. A phase II clinical 
trial confirmed its efficacy in reducing cerebrospinal fluid 
biomarkers of neuronal injury and inflammation in AD patients 
[65,66]. Its analog polydatin, with superior bioavailability, 
showed cognitive and biochemical improvements in aluminum 
chloride-induced AD rat models [67].

To improve delivery, chitosan-coated bovine serum 
albumin nanoparticles (CS-RES-BSANPs) were developed 
for intranasal administration, demonstrating enhanced 
brain penetration and behavioral outcomes [68]. Similarly, 
dihydro-resveratrol (DHR), a microbial metabolite, improved 
cognition in AD mouse models by enhancing mitophagy via 
the ULK1-Bnip3 pathway [69].

Another key polyphenol, Curcumin, the main bioactive 
compound in Curcuma longa (turmeric), has demonstrated 
potent antioxidant, anti-inflammatory, anti-amyloid (Aβ), and 
anti-tau properties in Alzheimer’s disease (AD) models [70]. 
To address its low solubility and poor bioavailability, several 
nanocarrier-based delivery systems have been developed. 
These include MWCNT-COOH-PEG, which enhances brain 
targeting and provides sustained release [71]. curcumin-silver 
nanoparticles with notable acetylcholinesterase inhibition and 
antioxidant activity [72]. BP-PEG-Tar@Cur, which reduces 
Aβ aggregation and oxidative stress in AD mice [73]. C3/
TPP-EXO-CUR, an engineered exosome system targeting 
damaged mitochondria to lower tau phosphorylation and 
neuronal apoptosis [74], and EXO-Cur+MB, a co-delivery 
exosomal system with methylene blue that effectively inhibits 
tau hyperphosphorylation via the AKT/GSK-3β pathway 
[75].

 
Figure 5: Categories of allopathic drugs used in the management of 
traumatic brain injury (TBI).

In post-acute and chronic stages, pharmacotherapy 
is complemented by comprehensive neurorehabilitation. 
Botulinum toxin A injections are used to manage focal 
spasticity, while oral muscle relaxants like baclofen and 
tizanidine alleviate central hypertonicity. Beta-blockers and 
clonidine may be used to control paroxysmal sympathetic 
hyperactivity, a syndrome of autonomic instability seen in 
some severe TBI cases. In summary, the allopathic approach 
to TBI incorporates a range of evidence-based interventions 
aimed at stabilizing acute injury, reducing secondary damage, 
and managing long-term complications. While no single 
pharmacologic agent has demonstrated universal efficacy in 
reversing TBI pathology, a symptom-targeted, multimodal 
strategy integrating pharmacological and rehabilitative 
interventions remains the current standard. Ongoing 
research into inflammatory modulators, neurostimulants, 
and regenerative therapies may further enhance recovery and 
quality of life in individuals living with TBI.

Phytochemicals That May Help in Neurological 
Diseases

Phytochemicals—bioactive compounds derived from 
plants—have gained considerable attention for their 
potential therapeutic effects in neurological disorders. 
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This system improved gut–liver–brain axis regulation and 
cognitive outcomes through microbiota modulation and gut 
barrier restoration [85].

Another promising polyphenol, Dip-1 from Dipteris 
wallichii, was identified as a potent BACE1 inhibitor, 
exhibiting high BBB permeability and a low IC₅₀ value, 
supporting its role in Aβ pathology suppression [86].

Alkaloids 
Berberine (BBR), an isoquinoline alkaloid extracted 

from Berberis vulgaris, offers neuroprotection through dual 
mechanisms: central anti-inflammatory and anti-amyloid 
effects, and peripheral modulation of the gut–brain axis. In 
AD models, it reduced Aβ plaques, enhanced spatial memory, 
and improved gut microbiota diversity and barrier function 
[87]. Importantly, berberine reversed D-ribose-induced 
cognitive impairment by demethylating the PINK1 promoter, 
restoring mitophagy via the PINK1–Parkin pathway [88]. A 
meta-analysis of 19 animal studies confirmed its efficacy in 
improving cognition and downregulating APP expression 
[89].

Terpenoids
Ginsenoside Rb1, a triterpenoid saponin from Panax 

ginseng, has shown therapeutic efficacy in reducing Aβ 
burden, tau hyperphosphorylation, oxidative stress, and 
neuronal apoptosis. It modulates apoptotic signaling by 

 Figure 6: Classification of phytochemicals commonly used in the management of neurological diseases.

Further strategies included curcumin-enriched 
mesenchymal stem cell exosomes (CUR-MSC-EXO), 
which modulated microglial polarization and improved 
memory [76], and curcumin-selenium nanoemulsions, which 
reduced oxidative stress and tau/Aβ burden [77]. Diagnostic 
approaches using [18F]-DiFboron-8, a PET imaging probe 
derived from half-curcumin, enabled non-invasive Aβ plaque 
detection [78], while ophthalmoscopy using curcumin contrast 
identified retinal Aβ deposits, aiding early AD diagnosis 
[79]. A chemically modified curcumin derivative, Derivative 
27, activated the Nrf2 pathway and significantly reduced 
hippocampal Aβ burden and inflammation, demonstrating 
enhanced efficacy at lower doses [80].

Quercetin, a flavonoid abundant in apples, onions, 
and leafy greens, exerts neuroprotective effects through 
oxidative stress inhibition, tau dephosphorylation, and anti-
inflammatory activity. Encapsulated as nanostructured 
lipid carriers (QC-NLCs), quercetin improved brain uptake 
and decreased Aβ deposition in rat models [81]. It also 
inhibited early stress-induced AD pathology via NLRP3 
inflammasome modulation [82]. and acted synergistically 
with donepezil to reduce tau and BACE1 expression while 
restoring miRNA-124 levels [83]. Additionally, quercetin 
modulated P2X7 receptors, implicated in ATP-mediated 
neuroinflammation [84]. To enhance gut delivery and systemic 
efficacy, quercetin-decorated selenium nanoparticles (QUE@
SeNPs) within chitosan/PVP nanofibers were developed. 
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decreasing Bax and cleaved caspase-3 while increasing Bcl-
2 expression, leading to improved cognitive and memory 
functions in AD models [90,91]. Ginkgolide, a diterpenoid 
lactone from Ginkgo biloba, demonstrated anti-inflammatory 
and anti-amyloid properties. In APP/PS1 mice, it attenuated 
Aβ accumulation, reduced activation of the NLRP3 
inflammasome, and lowered pro-inflammatory cytokines 
such as IL-1β and ROS, underscoring its potential in halting 
AD-associated neuroinflammation [92].

Volatile Phytochemicals and Lignans 

Several volatile compounds exhibit anti-amyloid and anti-
tau actions. Cinnamaldehyde, phenylethyl alcohol, α-asarone 
(ASA), and β-caryophyllene (BCP), sourced from aromatic 
plants, prevented Aβ(25–35) fibrillation and reduced β-sheet 
content, as confirmed by spectroscopic and microscopic 
analyses [93]. ASA and BCP also disassembled pre-formed 
tau fibrils and protected neuroblastoma cells against tau-
induced toxicity [94].

Among lignans, secoisolariciresinol diglucoside 
(SDG) from flaxseed demonstrated cognitive benefits in 
transgenic female AD mice. SDG suppressed Aβ deposition 
and neuroinflammation, enhanced GPER-CREB/BDNF 
signaling, and modulated gut microbiota, linking its action to 
gut-brain communication [95].

Parkinson’s Related Phytochemicals
These compounds target various pathological mechanisms 

of PD including oxidative stress, mitochondrial dysfunction, 
α-synuclein aggregation, and neuroinflammation. This 
section outlines key classes of phytochemicals that show 
promise in PD management, focusing on specific compounds 
and their mechanisms of action.

Flavonoids

Flavonoids, a major class of phytochemicals, exhibit 
neuroprotective effects primarily through antioxidant and 
anti-inflammatory mechanisms. Baicalein, derived from 
Scutellaria baicalensis (Chinese skullcap), targets apoptotic 
and oxidative stress-related pathways. It interacts with key 
proteins such as MAPK1, EP300, and CREBBP [96], and 
in a 6-hydroxydopamine (6-OHDA) PD model, activates 
mitochondrial autophagy via the miR-30b-5p/SIRT1/AMPK/
mTOR axis, reducing neuronal apoptosis [97]. Its metabolite 
baicalin also exerts neuroprotection by activating Nrf2 and 
suppressing NLRP3 inflammasome signaling in both in vitro 
(α-syn/MPP⁺) and in vivo (MPTP) PD models [98].

Epigallocatechin gallate (EGCG), a catechin from green 
tea, protects dopaminergic neurons through antioxidant and 
mitochondrial-stabilizing effects [99]. In 6-OHDA-induced 
SK-N-AS cells, it enhances viability, inhibits caspase-3, and 
reduces IL-1β [100]. Liposomal EGCG formulations (PC/PS-
based, vitamin E-coated) improved uptake and suppressed 

LPS-induced neuroinflammation in PD rats [101], while in 
rotenone-induced models, EGCG preserved neurotransmitter 
levels and mitochondrial integrity [102].

Quercetin, found in apples, onions, and cocoa husk 
(GuaCa extract), alleviates motor and non-motor symptoms 
in PD. It reduces hippocampal IL-6, preserves dopaminergic 
neurons, enhances BDNF, and activates PI3K/Akt/GSK-3β 
signaling [103-105]. Nanoformulations, such as QAE NPs 
and quercetin-loaded niosomes, facilitate intranasal delivery, 
improving mitochondrial homeostasis and M2 microglial 
polarization [106,107]. Additionally, quercetin inhibits 
NLRP3 inflammasome activation in vitro (e.g., from Cola 
acuminata) [108].

Apigenin, from Campsis grandiflora, promotes 
chaperone-mediated autophagy, clears α-synuclein 
aggregates, and activates Nrf2. It modulates PI3K/Akt/NF-
κB pathways and reduces caspase-3 activity [109,110]. In 
MPTP-induced mice, apigenin normalized cytokine profiles 
and ameliorated histological damage [111]. Docking studies 
confirm its binding affinity to PD-relevant targets including 
α-synuclein [112].

Rutin, a glycoside flavonoid found in Berula erecta and 
other sources, improves motor and gastrointestinal functions 
via modulation of enteric glial reactivity and nitric oxide 
signaling [113]. It also restores neurotransmitter balance and 
cognitive function in rotenone-induced models [114].

Polyphenols and Stilbenes

Resveratrol, a stilbene from grapes and berries, enhances 
lifespan, motor function, and oxidative balance in transgenic 
Drosophila expressing α-synuclein [115]. In MPP⁺-treated 
SH-SY5Y cells, resveratrol-loaded neural stem cell-derived 
exosomes (RES-hNSCs-Exos) restored mitochondrial 
function and suppressed NLRP3 via AMPK-Nrf2 activation 
[116]. Leptin/transferrin-decorated nanoparticles co-loaded 
with resveratrol and ceftriaxone targeted dopaminergic 
neurons and modulated pathways like MAPK/ERK and 
α-synuclein [117]. Solid lipid nanoparticle microneedle 
patches improved resveratrol bioavailability, antioxidant 
capacity, and behavior without skin irritation [118]. In 
A53T PD mice, resveratrol restored mitochondrial VDAC1 
function, reducing α-synuclein–VDAC1 interaction and 
calcium imbalance [119].

 Oligomeric stilbenes (OSs) from Alpha grape stems (e.g., 
vitisin A, trans-vitisin B) showed antioxidant neuroprotection 
in vitro [120], while α-viniferin, a resveratrol trimer, exhibited 
potent MAO inhibition, dopamine enhancement, and motor 
improvement without toxicity in Drosophila and murine 
models [121].

Alkaloids

Alkaloids, a diverse class of nitrogen-containing 
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phytochemicals, have shown promising neuroprotective 
potential in Parkinson’s disease (PD) by modulating 
neurotransmission, inhibiting neuroinflammation, and 
supporting neuroplasticity. Harmine and harmaline, alkaloids 
from Peganum harmala, act as MAO-A inhibitors, increasing 
serotonin, dopamine, and noradrenaline levels. They also 
activate Nrf2, suppress NF-κB, and enhance BDNF/TrkB, 
improving PD-related behavioral and oxidative parameters in 
stress-induced rats [122].

Humulus japonicus water extract (HJW) countered 
scopolamine-induced cognitive decline by inhibiting 
acetylcholinesterase and activating CaMKIIα-CREB and 
AKT-GSK3β pathways, supporting neuroplasticity [123]. 
Although synthetic, PZKKN-94, a 5-HT1B agonist/5-HT6 
antagonist, mimics phytochemical serotonergic activity 
seen in agents like resveratrol and curcumin, providing 
neuroprotection, antidepressant-like effects, and cognitive 
enhancement in PD models [124]. A blend of safflower seeds 
(Carthamus tinctorius) and dandelion (Taraxacum coreanum) 
extracts (CTS-TC) improved cognition and reduced 
neuroinflammation in scopolamine-treated models. HPLC 
identified active constituents including N-feruloylserotonin, 
chicoric acid, and chlorogenic acid with antioxidant and 
neuromodulatory properties [125].

Phenolic Acids

Phenolic acids, especially hydroxycinnamic acids, target 
α-synuclein aggregation and neuroinflammation. Sinapic 
acid and chlorogenic acid inhibit α-synuclein fibrillation 
and suppress its β-sheet conversion, even post-aggregation, 
demonstrating utility at various PD stages [126]. Ferulic acid 
(FA), found in grains and fruits, improves dopaminergic 
survival, mitochondrial gene expression, TH levels, and 
reduces α-synuclein, oxidative stress, and NF-κB activity 
in MPTP and rotenone-induced models [127,128]. Caffeic 
acid, abundant in Brassica juncea and Eucommia ulmoides, 
preserves dopaminergic neurons and regulates autophagy 
(e.g., LC3b, ATG7, α-syn) through 4E-BP1 activation [129]. 
Embedded in hydrogels like OACDP, it offers controlled 
delivery and mitigates neuroinflammation and oxidative 
injury [130]. Caffeic acid-derived carbon quantum dots 
(CACQDs) protect against paraquat-induced toxicity via 
free radical scavenging and anti-aggregation properties 
[131]. Synthetic phenolic derivatives based on proline and 
GABA scaffolds show multitarget effects, including lipid 
peroxidation inhibition, anti-inflammatory activity, and mild 
acetylcholinesterase inhibition—relevant to PD pathology 
[131].

Epilepsy-Related Phytochemicals
Phytochemicals offer promising alternatives for managing 

epilepsy, particularly drug-resistant forms, through diverse 
mechanisms including modulation of neurotransmission, 

anti-inflammatory activity, antioxidant defense, and gut-
brain axis regulation. These compounds are broadly classified 
into cannabinoids, monoterpenes, alkaloids, flavonoids, 
polyphenols, and saponins.

Cannabinoids

Cannabidiol (CBD), a non-psychoactive compound from 
Cannabis sativa, is FDA- and EMA-approved for seizures 
in tuberous sclerosis and under investigation for broader 
neuropsychiatric symptoms [133]. Multiple preclinical 
studies reinforce CBD’s anticonvulsant efficacy. Preclinical 
models (e.g., zebrafish, SE) show its anticonvulsant 
effects and glutamate modulation [134,135]. Clinically, 
CBD significantly reduces seizure frequency in drug-
resistant epilepsy (DRE), with up to 50% responder rates, 
though higher doses may cause side effects [136-138]. 
Mechanistically, CBD suppresses reactive astrocytes and 
neuroinflammation, while pharmacokinetic studies highlight 
interindividual variability and the need for liver function 
monitoring [139,140]. Therapeutic drug monitoring (TDM) 
studies reveal significant pharmacokinetic variability in CBD 
and its metabolite 7-hydroxy-CBD, emphasizing the need 
for individualized dosing and liver function monitoring due 
to moderate ALT elevations [140]. A review of 47 clinical 
trials confirmed CBD’s anticonvulsant effects, particularly 
in Dravet and Lennox-Gastaut syndromes, while stressing 
the need for standardized dosing and trial protocols [141]. 
Additionally, non-cannabis analogs such as Magnolia spp.-
derived magnolol and honokiol, and amorfrutin 2 from 
Amorpha fruticosa, inhibit T-type calcium channels, offering 
cannabinoid-independent anticonvulsant activity [142].

Monoterpenes

Monoterpenes, volatile compounds primarily found 
in essential oils, exhibit strong anticonvulsant and 
neuroprotective effects. (+)-Borneol, from Dryobalanops 
aromatica, enhanced the potency and brain levels of 
retigabine, significantly reducing required doses in resistant 
seizure models [143]. Geraniol, present in Cymbopogon 
and Pelargonium, provided protection via GABAergic 
enhancement, oxidative stress reduction, and cytokine 
modulation [144]. Alpha-pinene, a major constituent of 
Pinus species, attenuated seizures in kainic acid models by 
downregulating NF-κB and ERK1/2 signaling and reducing 
glial activation [145].

Alkaloids

Alkaloids are nitrogen-containing compounds known for 
potent neuroactivity. Stachydrine, from Leonurus japonicus, 
showed dual inhibition of Notch1 and NMDA receptor 
pathways in PTZ-induced mice, reducing excitotoxicity, 
inflammation, and cognitive decline [146]. Berberine (BBR), 
from Berberis vulgaris, alleviated hippocampal damage 
and modulated the gut-brain axis by increasing beneficial 
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microbiota and altering SCFA and brain lipid profiles, 
highlighting microbiome-mediated anticonvulsant pathways 
[147].

Flavonoids

Flavonoids, abundant in fruits and herbs, act via 
antioxidant, anti-inflammatory, and GABAergic pathways. 
Quercetin, found in onions and apples, reduced seizure 
duration and preserved antioxidant enzymes when delivered 
via chitosan nanoparticles [148]. Extracts from Cyanthillium 
cinereum, rich in quercetin, kaempferol, and gallic acid, 
delayed seizure onset and improved oxidative status [149]. 

Luteolin, from Salvia miltiorrhiza, inhibited apoptosis 
and inflammation through MAPK/NF-κB and GADD45B 
targeting in kainic acid models [150]. Glabranin and 
3'-hydroxy-4'-O-methylglabridin from Glycyrrhiza glabra 
were identified via AI-guided modeling as AKT1 inhibitors 
[151]. Kaempferol, from tea and broccoli, showed high 
brain delivery via intranasal phospholipid magnesomes 
and sustained anti-seizure effects [152]. Apigenin, present 
in parsley and chamomile, raised seizure thresholds by 
increasing GABA-A receptor expression [153]. Naringin, 
a citrus flavonoid, reduced seizures and cognitive deficits 
by suppressing HMGB1-TLR4 signaling and enhancing 
neuroprotective factors like Klotho and ADAM-10 [154]. 

Polyphenols

Polyphenols offer antioxidant and anti-inflammatory 
benefits in seizure control. Caffeic acid, abundant in coffee, 
reduced seizures and neuroinflammation by inhibiting the 
PERK–NF-κB pathway via aconitate decarboxylase 1 binding 
[155]. In Origanum majorana, caffeic acid and quercetin 
delayed seizures through NMDA receptor interaction [156]. 
Curcumin and its analog mitocurcumin (MitoCur) reduced 
oxidative stress in zebrafish seizure models, with MitoCur 
displaying higher efficacy at low doses but pro-oxidant 
effects at higher levels [157]. Wogonin, from Scutellaria 
baicalensis, restored synaptic density and suppressed 
microglial overactivation via AKT/FoxO1 signaling [158]. 
Lippia multiflora, rich in polyphenols and flavonoids, 
improved seizure outcomes and normalized TNF-α, IL-1β, 
and IL-6 levels in chronic epilepsy models [159].

Saponins 

Saponins, particularly steroidal and triterpenoid 
forms derived from various medicinal plants, have shown 
significant antiepileptic potential by modulating neuronal 
excitability, neurotransmission, mitochondrial function, and 
inflammation. 

From Solanum torvum, steroidal saponins like 
torvosides A, X, Y showed strong activity in zebrafish via 
glycosylation at C-6 [160]. Saponins from Anemarrhena 
asphodeloides (AAS) mitigated hippocampal neuron loss 

and downregulated epilepsy-related proteins HSP90AB1 and 
YWHAB [161]. Ginsenoside Re (GRe) from Panax ginseng 
reduced mitochondrial oxidative stress and seizures, partly 
via IL-6/STAT3 signaling [162]. Diosgenin, from Dioscorea 
spp., improved gut microbiota, reduced glial activation, and 
modulated TLR4-MyD88 signaling, linking its effect to 
gut–brain axis regulation [163]. Saikosaponin-a (SSa), from 
Bupleurum spp., encapsulated in MePEG-PCL nanoparticles, 
enhanced brain delivery and significantly reduced seizures, 
neuronal apoptosis, and hippocampal damage while 
increasing GABA-A receptor levels [164]. 

Spinal Cord-Related Phytochemicals
SCI is characterized by an initial mechanical insult 

followed by a cascade of secondary injuries such as 
inflammation, oxidative stress, apoptosis, and autophagy, 
which worsen neuronal damage. Certain phytochemicals 
have demonstrated neuroprotective effects by modulating 
these secondary injury pathways.

Flavonoids

Flavonoids are plant-derived polyphenolic compounds 
known for their potent antioxidant, anti-inflammatory, and 
neuroprotective effects. Several studies have highlighted 
their therapeutic potential in managing spinal cord injury 
(SCI) and related neuropathies.

Corn silk extract (CSE) from Zea mays stigmas contains 
flavonoids such as maysin, apigenin, and luteolin. It 
demonstrated neuroprotective effects in paclitaxel-induced 
peripheral neuropathy (PIPN) by reducing oxidative stress, 
inflammation, and overactivation of the renin–angiotensin 
system. CSE preserved spinal cord and sciatic nerve structure, 
reduced demyelination, and downregulated NF-κB and ACE 
activity, supporting its use in multi-targeted neuropathic 
treatment [165]. 

Catechin, found in green tea (Camellia sinensis), 
cocoa, and fruits, showed efficacy in a chronic constriction 
injury model by reducing mechanical hyperalgesia and 
suppressing neuroinflammation. It inhibited iNOS, COX-2, 
and pro-inflammatory cytokines, while promoting an anti-
inflammatory M2 microglial phenotype via suppression of 
the TLR4/MyD88/NF-κB and MAPK pathways [166]. 

Calycosin, an isoflavone from Astragalus membranaceus, 
mitigated glial scar formation in SCI by inhibiting A1 
astrocyte activation. It reduced complement C3 expression 
and STAT3 phosphorylation, suggesting its regulatory effect 
on astrocyte-mediated inflammation [167]. 

Quercetin, widely present in Allium cepa, Malus 
domestica, and Camellia sinensis, inhibited ferroptosis 
in oligodendrocyte progenitor cells by blocking NCOA4-
mediated ferritinophagy. It preserved mitochondrial integrity, 
reduced lipid peroxidation, and maintained iron homeostasis, 
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indicating its protective role in SCI [168]. Quercetin also 
showed antinociceptive effects in a spinal cord hemi-contusion 
model when derived from Trifolium resupinatum essential 
oil, through modulation of NO-cGMP-K⁺ pathways and 
TRPV1/CB1 receptor interactions, along with suppression of 
inflammatory cytokines [169]. 

Baicalin, extracted from Scutellaria baicalensis, exerted 
anti-inflammatory effects in SCI by binding the TLR4/MD2 
complex on microglia and inhibiting PI3K/AKT/NF-κB 
signaling. It reduced glial activation and indirectly suppressed 
astrocyte-mediated inflammation by decreasing TNF-α, IL-
1α, and C1q levels [170].

Rutin, present in Fagopyrum esculentum, apples, and 
citrus fruits, improved locomotor recovery and reduced 
neuroinflammation in a distraction spinal cord injury model. It 
inhibited the P38 MAPK/NF-κB/STAT3 axis and attenuated 
neuronal apoptosis and demyelination. Molecular docking 
confirmed its interaction with MAPK13 [171].

Rosmarinic acid, a polyphenolic compound from 
Rosmarinus officinalis, Ocimum basilicum, and Origanum 
vulgare, promoted sciatic nerve regeneration after taxol-
induced injury. It inhibited NF-κB signaling, enhanced CGRP 
expression and axon number, although behavioral outcomes 
remained unchanged [172].

Alkaloids

Alkaloids, nitrogen-containing secondary metabolites 
commonly derived from medicinal plants, have demonstrated 
significant neuroprotective potential in spinal cord injury 
(SCI) through their antioxidant, anti-inflammatory, and anti-
ferroptotic properties.

Aloperine, a quinolizidine alkaloid from Sophora spp., 
improved locomotor function and preserved spinal tissue in 
a rat contusion SCI model. It reduced markers of apoptosis 
(Bax, cleaved caspase-3), oxidative stress (4HNE, MDA), 
and inflammation (NF-κB, TNF-α), while upregulating 
antioxidant enzymes (SOD1, GPx1) through activation of 
PI3K/AKT and inhibition of NF-κB pathways [173].

Berbamine, extracted from Stephania epigaea, alleviated 
neuropathic pain in a chronic constriction injury model by 
inhibiting the TMEM34/SGK1/FOXO3 axis, thus reducing 
astrocyte and neuron activation and behavioral signs of 
allodynia and hyperalgesia [174]. Tetrahydroberberine 
(THB), derived from Corydalis spp. (family Papaveraceae), 
significantly improved motor recovery and tissue repair in 
SCI mice by activating the Nrf2 pathway, reducing lipid 
peroxidation, and inhibiting ferroptosis. The protective effects 
were negated upon Nrf2 inhibition, confirming pathway 
involvement [175].

Tomatidine, a steroidal alkaloid from Solanum 
lycopersicum (tomato), promoted neuronal recovery, reduced 

apoptosis and inflammation in vivo and in vitro, and exerted 
its effects by downregulating CXCL10 and inhibiting the NF-
κB pathway [176].

Tetrandrine, a bis-benzylisoquinoline alkaloid from 
Stephania tetrandra, showed neuroinflammatory modulation 
in SCI therapy. Delivered via MPEG-PDLLA nanoparticles 
embedded in GelMA microgels, it suppressed neurotoxic glial 
crosstalk and enhanced spinal repair post-injection [177]. 

Tetramethylpyrazine (TMP), isolated from Ligusticum 
chuanxiong, improved motor function and reduced neuronal 
death in SCI by inhibiting ferroptosis. TMP activated the 
NRF2/ARE pathway to regulate antioxidant gene expression 
and maintain iron homeostasis [178]. 

Berberine (BBR), an isoquinoline alkaloid from Berberis 
vulgaris, mitigated SCI-induced ferroptosis by reducing 
lipid peroxidation, iron accumulation, and mitochondrial 
dysfunction. It activated the AMPK-NRF2-HO-1 pathway, 
and inhibition of AMPK reversed its protective effects, 
confirming mechanistic specificity [179].

PolyphenolsPolyphenols, widely distributed in 
plants, possess strong antioxidant, anti-inflammatory, and 
neuroprotective properties, making them valuable therapeutic 
agents in spinal cord injury (SCI).

Epigallocatechin gallate (EGCG), a major catechin 
derived from Camellia sinensis (green tea), has demonstrated 
neuroregenerative effects in SCI models. EGCG reduced 
oxidative stress by activating the Keap1/Nrf2/HO-1 pathway 
and upregulating antioxidant enzymes such as SOD1 and 
SOD2. Incorporated into stem cell sheets or fibrin scaffolds, 
EGCG enhanced cell viability, promoted angiogenesis and 
axonal regeneration, and improved functional outcomes in 
rats with SCI [180,181]. 

Resveratrol, a stilbene polyphenol found in Vitis vinifera 
(grape), Arachis hypogaea (peanut), and various berries, 
has been extensively studied for SCI therapy. In exosome-
based delivery systems, resveratrol targeted inflamed spinal 
tissues, inhibited reactive oxygen species (ROS), reduced 
glial scarring, and modulated A1 astrocyte activity [182]. 
Resveratrol also reduced pyroptosis by upregulating miR-
124-3p and downregulating DAPK1, thereby inhibiting the 
NLRP3/caspase-1/GSDMD pathway [183]. Additionally, it 
improved the anti-inflammatory effects and survival of bone 
marrow mesenchymal stem cells (BM-MSCs) by activating 
SIRT1 and suppressing NF-κB, resulting in enhanced 
neuroprotection and motor recovery [184]. Combined with 
calcium, resveratrol further showed promise in preventing 
SCI-induced osteoporosis through SIRT1/FOXO3a signaling, 
improving bone microarchitecture and resistance to fracture 
[185]. Moreover, polyphenolic extracts from grape stalks 
and Coffea arabica (coffee) reduced neuropathic pain and 
modulated neuroimmune pathways (CCL2/CCR2, CX3CL1/
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CX3CR1) in supraspinal regions, reducing glial activation 
and behavioral hypersensitivity in mice [186].

Curcumin, a polyphenol from Curcuma longa 
(turmeric), has shown diverse neuroprotective roles in SCI. 
When embedded in polydopamine-based scaffolds, curcumin 
attenuated inflammation and oxidative stress by inhibiting 
NF-κB and promoting JAK/STAT signaling, thus enhancing 
axonal regeneration [187]. It also reduced neuropathic pain, 
improved motor function, and increased antioxidant markers 
(SOD, catalase, GABA-A) while lowering lipid peroxidation 
and tissue damage in SCI rats [188]. A network pharmacology 
study identified matrix metalloproteinase-9 (MMP9) as a 
critical curcumin target, with curcumin downregulating its 
expression and conferring protection in cellular SCI models 
[189].

Traumatic Brain Injury
Traumatic brain injury (TBI) remains a critical cause 

of disability and mortality worldwide, leading to cognitive, 
emotional, and motor dysfunction [190]. While no definitive 
pharmacological therapy exists to reverse secondary brain 
damage, a growing body of evidence supports the role of 
phytochemicals as neuroprotective agents. These natural 
compounds, derived from plants, exhibit anti-inflammatory, 
antioxidant, anti-apoptotic, and neurogenic properties. Here, 
we explore the classification and mechanisms of action of key 
phytochemicals studied in the context of TBI.

Polyphenols

Polyphenolic compounds, particularly curcumin and 
resveratrol, exhibit strong neuroprotective effects in TBI by 
modulating oxidative stress, inflammation, apoptosis, and 
autophagy. Advanced formulations and derivatives enhance 
their bioavailability and therapeutic outcomes.

Curcumin, a major turmeric polyphenol, offers 
multifaceted neuroprotection in TBI by targeting oxidative 
stress and neuroinflammation. Nanoparticle formulations 
like CAQK-modified C-PPS/C enhanced brain targeting, 
reduced ROS and NF-κB activity, preserved BBB integrity, 
and improved neurological recovery [191]. Preventive 
use of turmeric extract in repetitive TBI reduced TNF-α, 
GFAP, p-Tau, and TDP-43 levels [192]. Derivatives such as 
bisdemethoxycurcumin (BDMC) and tetrahydrocurcumin 
(THC) further modulated autophagy and microglial 
polarization through the HSP90AA1/TFEB/Nrf2 and 
GSK3β/PTEN/PI3K/Akt pathways, respectively, reducing 
inflammation and apoptosis.

Resveratrol (RSV) also shows strong efficacy in TBI. 
Functionalized silver nanowire MXene biopatches combining 
RSV enabled real-time GFAP monitoring and reduced 
inflammation [195]. RSV downregulated ER stress proteins 
(CHOP, GRP78), pro-inflammatory cytokines (TNF-α, IL-
1β), and oxidative stress markers (MDA), while upregulating 
GSH and maintaining hippocampal architecture [196,197].

Terpenoids

Withaferin A (WFA) from Withania somnifera improved 
neurobehavior, reduced BBB disruption, edema, and 
endothelial apoptosis, while decreasing IL-1β, IL-6, TNF-α 
and microglial activation [198]. Ginkgolide A (GA) from 
Ginkgo biloba enhanced neurological function, decreased 
oxidative stress (MDA, 8-OHdG), and inhibited apoptosis, 
supported by increased SOD activity [199]. Ginsenoside Rg3, 
from ginseng, reduced brain edema, microglial inflammation, 
and hippocampal damage by activating SIRT1 and inhibiting 
NF-κB; its effect was blocked by SIRT1 inhibitor NAM, 
confirming pathway involvement [200].

Alkaloids

Oxyberberine (OBB), a berberine derivative, formulated 
as nanocrystals (OBB-NC), attenuated neuroinflammation 
via HMGB1/TLR4/NF-κB pathway inhibition. It improved 
cognitive, anxiety, and depression-like behaviors post-TBI 
and suppressed oxidative stress and nitric oxide production 
[201].

Flavonoids

Quercetin, a common dietary flavonoid, demonstrated 
broad neuroprotection by targeting oxidative stress, 
inflammation, ferroptosis, and apoptosis. Network 
pharmacology identified hub genes (e.g., HIF1A, IL6, TP53), 
and pathways (HIF-1, PI3K-Akt, IL-17) as key mediators 
[202]. In vivo, quercetin suppressed microglial activation, 
reduced edema and neuronal death, and acted via the PGC-1α/
Nrf2 pathway while inhibiting HDAC3 nuclear translocation 
[203].

Phenolic Acids

Ferulic acid (FA), a key component of traditional formulas 
like Guanxin II and DCH, modulated the gut-brain axis, 
reduced GI dysfunction, and suppressed neuroinflammation 
through Ghrelin/GHSR signaling and inhibition of the TLR4/
NF-κB/NLRP3 pathway [204]. It also protected the BBB, 
decreased brain edema, and influenced HPA axis hormones 
including dopamine, serotonin, and BDNF, further validating 
its role in holistic neuroprotection [205].

Interactions between Phytochemicals and 
Allopathic Drugs

Natural compounds, including herbal medicines and 
dietary phyto-compounds, have increasingly been utilized 
for therapeutic synergy with conventional drugs used to treat 
various brain disorders. Such combinational approaches 
capitalize on antioxidant, anti-inflammatory, neuroprotective, 
and immune-boosting properties inherent to these natural 
substances. However, these combinations can also lead 
to unintended pharmacokinetic or pharmacodynamic 
interactions, significantly influencing therapeutic outcomes.
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Flavonoids such as quercetin and silymarin are prominent 
for modulating transporter proteins like P-glycoprotein (P-
gp), affecting the brain availability of several CNS drugs. 
High doses of quercetin inhibit P-gp, enhancing brain levels 
of medications like ritonavir and quinidine, while low doses 
may activate efflux mechanisms, decreasing uptake of agents 
such as vincristine [206-208]. Procyanidins from pine bark 
similarly inhibit P-gp at the blood-brain barrier (BBB), 
facilitating greater accumulation of chemotherapeutic drugs 
within brain tissues, which is particularly beneficial in 
managing brain tumors [209].

Curcumin, another polyphenol, notably boosts the delivery 
and efficacy of brain-targeted therapeutics when administered 
via nanoparticle systems. For example, curcumin-loaded 
nanoparticles significantly improve brain localization of 
doxorubicin, thereby enhancing its effectiveness against 
brain cancers through P-gp inhibition [210]. Additionally, 
curcumin demonstrates pharmacodynamic synergy with 
antiepileptic drugs, improving cognitive and neuroprotective 
outcomes without altering systemic drug levels [211].

Compounds like borneol, known for their membrane-
permeabilizing properties, have been used to enhance CNS 
drug delivery. When incorporated into nanoparticles or 
niosomes, borneol significantly increases the brain uptake of 
drugs like dopamine, ginkgolide B, and puerarin, suggesting 
an improved therapeutic potential in models of Parkinson’s 
disease [212,213].

Terpenoids in Ginkgo biloba (GB) extracts also influence 
drug metabolism. GB has shown dual effects—enhancing 
midazolam exposure while reducing carbamazepine plasma 
levels—likely due to the interplay between its terpene lactones 
and flavonol glycosides on CYP3A4 activity [214,215].

Compounds such as hyperforin from St. John’s Wort 
(SJW) induce both CYP3A4 and P-gp expression, leading 
to reduced plasma concentrations of drugs like amitriptyline 
and docetaxel, and thus diminishing their therapeutic effects 
[216,217]. Variations in SJW extract composition further 
impact interaction severity, underlining the importance of 
standardized formulations.

In contrast, grapefruit juice, rich in furanocoumarins, 
inhibits CYP3A4, notably increasing plasma levels of 
carbamazepine, a common antiepileptic. This interaction can 
enhance therapeutic outcomes but also raises toxicity risks 
if not monitored carefully [218]. Ginsenosides—particularly 
protopanaxadiol derivatives from Ginseng—demonstrate 
both pharmacodynamic and pharmacokinetic interactions. 
Co-administration with carbamazepine in liver microsome 
studies showed enhanced CYP3A4-mediated metabolism, 
potentially reducing therapeutic exposure [219]. These 
findings suggest caution in the simultaneous use of Ginseng 
products with drugs primarily metabolized by CYP3A4. 

Imperatorin, found in Angelica sinensis and Angelica 
dahurica, enhances diazepam levels by inhibiting its hepatic 
metabolism, reducing clearance, and increasing systemic 
exposure [220]. Similar effects are seen with Khat (Catha 
edulis), a CNS stimulant, which inhibits both CYP3A4 
and CYP2D6—enzymes critical for the metabolism of 
antipsychotics like aripiprazole and antidepressants such as 
clomipramine [221].

Melatonin exerts notable pharmacodynamic synergy 
with antiepileptic drugs such as carbamazepine and 
phenytoin. These effects are independent of melatonin's 
influence on drug plasma levels, pointing instead to its 
intrinsic neuroprotective and modulatory properties on 
neuronal excitability [222,223]. Caffeine, although widely 
consumed, may interfere with epilepsy management. It has 
been shown to diminish the anticonvulsant efficacy of several 
antiepileptics including carbamazepine, valproate, and 
topiramate, via pharmacodynamic mechanisms rather than 
alterations in systemic concentrations [224]. Quecertin stands 
out for its ability to boost the cytotoxic effects of doxorubicin 
and temozolomide in brain tumor models through inhibition 
of heat shock protein expression. This pharmacodynamic 
enhancement suggests promising avenues for adjunctive 
therapy in neuroblastoma and astrocytoma [225,226].

While the therapeutic synergy between phytochemicals 
and allopathic drugs holds considerable promise for 
treating neurological conditions, the associated interactions 
are complex and multifactorial. These effects depend on 
numerous factors, including dosage, compound structure, 
metabolic pathways, and individual variability. Therefore, it 
is essential to undertake more rigorous clinical evaluations, 
employ standardized plant extracts, and utilize advanced 
pharmacokinetic modeling to mitigate risks and maximize 
benefits. Such strategies will ensure the safe and effective 
integration of phytochemicals into neurological disease 
management protocols.

Conclusions
The intersection of phytochemicals and allopathic 

therapy presents a promising new frontier in the treatment 
of neurological diseases. Conditions such as Alzheimer’s 
disease, Parkinson’s disease, epilepsy, spinal injuries, and 
traumatic brain injuries continue to pose significant clinical 
challenges, often characterized by limited therapeutic efficacy 
and severe side effects. Although allopathic treatments 
provide essential symptom relief and disease management, 
they frequently lack the capacity for neuroprotection or 
regeneration.

Phytochemicals—natural compounds derived from 
plants, including flavonoids, alkaloids, and terpenes—
have demonstrated antioxidant, anti-inflammatory, and 
neuroprotective properties in both experimental and clinical 
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studies. These phytochemicals have the potential to augment 
pharmaceutical interventions, thereby enhancing therapeutic 
effects or mitigating undesirable side effects. However, the 
co-administration of phytochemicals may also introduce 
risks, such as adverse drug-drug interactions, alterations in 
drug metabolism, or reduced therapeutic efficacy. Therefore, 
a comprehensive understanding of phytochemical interactions 
with conventional neurologic medications is imperative.

The integration of plant-based agents into clinical 
therapy requires rigorous research, standardization, and 
meticulous consideration of their efficacy and safety. As the 
body of scientific evidence grows, an expanded holistic and 
integrative approach to neurologic therapeutics—utilizing 
the strengths of both phytotherapy and contemporary 
pharmacy—has the potential to transform therapeutic 
outcomes for patients and broaden the arsenal available for 
addressing neurodegenerative and neurotraumatic disorders.
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