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Abstract 

Daily rates of infections and deaths collected in 

several countries during the first SARS-CoV2 

(COVID-19) pandemic are approximated by Gaussian 

functions of the time elapsed since the dates of first 

occurrence in each country. This representation 

reveals designating consistently the time evolution of 

the country-specific daily rates and of the 

corresponding total duration of the epidemic. 

Moreover, the appropriate choice of scale units 

transforms case numbers and time instances to 

dimensionless quantities and leads to condensing data 

from twenty-three countries on two master Gaussian 

curves (infections/deaths). Thereby, data deviations 

from the average Gaussian behavior are quantified via 

error bars integrating the effects of local epidemic 

specificities, of counting errors and of low statistics. 

The Gaussian master representation helps fixing 

unambiguously the epidemic peaks and anticipates the 

duration of the epidemic while discriminating country 

data that abnormally depart from the average 

behavior. Finally, this method builds a basis for 

investigating the evolution of the epidemic in 

different countries and for establishing comparisons 

between country-specific public health policies. 

 

Keywords: Epidemic evolution; SARS-CoV2; 
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1. Introduction 

Statistical analyses combined with mathematical 

modeling of epidemic data are considered by health 

organizations as substantial tools for developing 

prevention policies to limit the propagation of an 

epidemic while sustaining health systems and 

contributing to lower human and economic losses [1-

5]. 

 

The emergence of COVID-19 has motivated several 

modeling studies for predicting the virus spreading 

and the basic reproduction factor, R0 with aim to 

identify how public policies influence the epidemic 

evolution [6-16]. With this motivation epidemic data 

from different countries were also statistically 

analyzed by means of distribution functions capable 

of localizing in time the epidemic peak via 

phenomenological extrapolations or machine learning 

and network analysis techniques [17-22]. 

Nevertheless, modeling is difficult because data 

collected by health organizations and other 

information channels [23-25] are affected by large 

fluctuations, especially close to the epidemic peak.  

 

Additionally, cardinal numbers of affected population 

sets and space and time distributions of primary 

infectious seeds are country-specific, hindering 

thereby the comparative assessment of the 

corresponding public health policies [26-28]. 

However, exploring the data and the social 

countermeasures intended to limit the virus spreading 

over the time interval encompassing the first epidemic 

wave reveals features common to most countries. 

These features are as follows: (i) the time evolution of 

the per country cumulated numbers of 

infections/deaths is sigmoidal in shape, (ii) the 

corresponding time derivatives look therefore 

reasonably Gaussian, (iii) the daily number of new 

infections is underestimated in absence of generalized 

and systematic tests. Indeed, during the period of the 

first epidemic wave this study focuses on, recorded 

daily rates identify principally individuals who 

claimed medical assistance and their contacts (iv) 

unlike infections, daily rates of deaths are closer to 

reality despite possible classification and counting 

errors whereas in absence of vaccination during the 

period of time covered by this study these are not 

influenced by causes other than that intrinsic to the 

virus spreading and, (v) similar countermeasures were 

applied such as confinement, lockdown, quarantine 

and travel restrictions. 

 

The phenomenological model developed in the 

present work incorporates all these features in contrast 

with current epidemic modeling. Thereby the 

otherwise difficult task of comparing the evolution of 

the epidemic in different countries becomes possible.  

 

In the following, the model and the associated 

methodological and computational details are first 

presented. Then we report the results of a model-

guided statistical analysis, the conclusions reached 

thereby and shortly comment on the limitations of the 

adopted method. Finally main conclusions are listed 

together with directions for future work. 

 

2. Model, Data, Methods and Computations 

2.1 The Gaussian model 

The present work relies on the already published 

phenomenological observation that the numbers of 

daily new cases, n(t), infections or deaths, evolve as 

Gaussian functions of the time, t, elapsed since the 
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occurrence of the first case [18] (common features i 

and ii above): 

𝑑𝑛(𝑡)

𝑑𝑡
 = 𝐴0𝑒

−
(t−τ𝑚 )2

2𝜎2
   (1) 

where, τm locates in time the epidemic peak, σ is the 

standard deviation and A0 corresponds to the 

maximum of daily cases at t= τm. Integration of eq. 

(1) over the elapsed time interval [0, τ] yields the total 

number of cases expected at elapsed time τ: 

 

𝑛(𝜏)=𝐴0𝜎√2𝜋 {
1

2
[𝑒𝑟𝑓 (

𝜏𝑚

𝜎√2
) + 𝑒𝑟𝑓 (

𝜏−𝜏𝑚

𝜎√2
)]}  (2a) 

 

Whenever 
𝜏𝑚

𝜎√2
≥ 2 the relation, 𝑒𝑟𝑓 (

𝜏𝑚

𝜎√2
) ≥

0.9953 holds and 𝑛(𝜏) is quite accurately given by: 

 

𝑛(𝜏) ≈ 𝐴0𝜎√2𝜋 {
1

2
[1 + 𝑒𝑟𝑓 (

𝜏−𝜏𝑚

𝜎√2
)]} (2b) 

 

With 𝑁0 = 𝐴0𝜎√2𝜋 the total number of cases 

reached upon vanishing of the epidemic at elapsed 

time, 𝜏𝑒𝑛𝑑 . It is worth noting that the above 

inequality is always verified, which is further 

commented on in section 2.3 (Methods and 

Computations).  Eqs. (1, 2a-2b) are referred 

hereafter to as the Gaussian model.  

 

By introducing the reduced variables, τ* = (
𝜏−𝜏𝑚

𝜎√2
) 

and n*(τ*) = 
2𝑛(𝜏)

𝑁0
− 1, eqs. (1) and (2b) transform 

respectively in to the following dimensionless 

expressions: 

𝑑𝑛∗(𝜏∗)

𝑑𝜏∗ =
2

𝐴0 √𝜋

𝑑𝑛(𝜏)

𝑑𝜏
=

2

√𝜋
exp (−𝜏∗2

)   (3) 

n*(τ*) = 
2𝑛(𝜏)

𝑁0
− 1 = erf(𝜏∗)    (4) 

 

Eqs. (3, 4) are referred hereafter to as the Master 

representation of the epidemic evolution. Relying 

on these parameter-free equations, the comparison 

of the epidemic evolution in countries with different 

populations, public health systems, epidemic 

reproduction factors, daily rates of cases and 

adopted countermeasures, becomes feasible. These 

aspects are accounted for by the parameters defining 

the reduced variables, (𝐴0
𝛼 , 𝜏𝑚

𝛼 , 𝜎𝛼)𝑘  where indices, 

k (k=1-23) and 𝛼 (𝛼 = 𝑖𝑛𝑓, 𝑑𝑒𝑎𝑡ℎ) represent 

respectively the country datasets and their kinds, 

infections or deaths. Least-squares fits of eq. (4) to 

the data provides optimal values of the parameters 

for any considered country (section Methods and 

Computations). 

 

Unlike this separate processing of individual 

datasets yielding country-specific information 

(epidemic, lower scale), merging the reduced 

country datasets produces four dimensionless, 

graphical representations (eqs. (3-4), 

infections/deaths). These Master representations 

allow for comparing the epidemic evolution in 

different countries (pandemic, upper scale), whereas 

eqs. (3-4) describe the average pandemic behavior. 

In the context of mobility restrictions, reduced new 

daily cases, [
𝑑𝑛∗(𝜏∗)

𝑑𝜏∗
]

𝑘
, and cumulants of cases, 

[𝑛∗(𝜏∗)]𝑘  (k=1-23), can be viewed as the 

realizations of independent random variables 

relating to the same stochastic process operating in 

any country and lying beneath the epidemic 

spreading (common feature v). Describing the 

distribution of infections via the Gaussian model 

deserves particular attention because the evolutive 

and differentiated between countries testing policies 

strongly influence the numbers of observed cases 
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(common feature (iii)). Conversely, the model is 

applicable to the distribution of death cases with 

more confidence (common feature iv). 

 

Cardinal numbers of the reduced datasets produced 

by merging country-specific information increase 

linearly with the number of considered countries. 

Thereby, the statistical treatment of data dispersion 

around the Master representations becomes 

possible and confidence intervals for the mean can 

be computed at any reduced time instance, 𝜏∗, by 

assuming that deviations around the mean are 

normally distributed. 

 

It is worth underlining that merging together 

reduced data from different countries makes sense 

whenever the respective epidemic rates are 

uncorrelated, which sounds reasonable because 

countries with travel and low mobility restrictions 

holding assimilate to closed and non-interacting 

systems (common feature v).  

 

2.2 Data 

Raw data in the form of time series of cumulated 

numbers of infections/deaths, updated on a daily 

basis, have been collected from official sources for 

23 selected countries experiencing the endemic 

since January 22, 2020 [23-25]. 

 

These time series of cumulated events display 

fluctuations of uncertain origin, in violation of the 

expected monotonic increase of total cases as 

functions of elapsed time. Although smoothing 

through sliding averages over a few days interval 

greatly reduces such fluctuations, raw unbiased data 

have been used throughout this study. 

 

Epidemic data for Australia and China from Ref. 23 

are split in several regional files. These were 

merged here in to a single file with the numbers of 

infections and deaths obtained as cumulants of the 

corresponding regional data. 

 

It should be noted that before the chosen starting 

date, no epidemic events were announced in the 

countries entering the present study but China, 

which epidemic starting date is still ambiguously 

known. For each country data were considered over 

a time period ∆T long enough to ensure that the first 

epidemic peak has been crossed unambiguously. 

This condition fixes the parameters of the 

homothetic transformations yielding the Master 

representations (section 2.1). 

 

This information is displayed in Table 1, whereas 

the columns labeled 𝑆ℎ𝑖𝑓𝑡𝑖𝑛𝑓  and 𝑆ℎ𝑖𝑓𝑡𝑑𝑡ℎ  list per 

country the number of days elapsed since the time 

origin (January 22, 2020) till the occurrence of the 

first cases, infections and deaths respectively. 
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Country 

 

ΔΤ 

(days) 

𝑁𝑝𝑟𝑒𝑑
𝑖𝑛𝑓

(𝜏𝑒𝑛𝑑) 𝑁𝑜𝑏𝑠
𝑖𝑛𝑓

(𝜏𝑒𝑛𝑑) τ𝑚
𝑖𝑛𝑓

 

(days) 

𝑆ℎ𝑖𝑓𝑡𝑖𝑛𝑓 
(days) 

𝑁𝑝𝑟𝑒𝑑
𝑑𝑡ℎ (𝜏𝑒𝑛𝑑) 𝑁𝑜𝑏𝑠

𝑑𝑡ℎ(𝜏𝑒𝑛𝑑) τ𝑚
𝑑𝑡ℎ 

(days) 

𝑆ℎ𝑖𝑓𝑡𝑑𝑡ℎ 

(days) 
 

(days) 

 
(days)

 

AU 110 6850 (-0.7%) 6894 68 5 92 (-7.1%) 99 78 40 10.4 77 

BE 110 51042 (-10.6%) 57092 80 14 8574 (-9.0%) 9430 85 50 11.8 88 

CN 110 82234 (1.7%) 80860 19 0 3892 (-19.0%) 4633 27 0 11.6 86 

DE 110 170760 (-6.7%) 182922 73 6 9241 (4.9%) 8807 90 48 14.9 111 

ES 110 217417 (-5.8%) 230698 73 11 25204 (-9.8%) 27940 76 42 12.1 90 

FR 110 212636 (17.2) 181410 84 3 25560 (-9.3%) 28167 81 25 10.8 81 

GR 110 2620 (-7.6%) 2836 71 36 145 (-15.2%) 171 76 50 12.8 95 

HU 110 3385 (-15.7%) 4014 87 43 441 (-21.1%) 559 93 54 13.9 103 

IR 110 100602 (-36.2%) 157562 73 29 6345 (-20.1%) 7942 73 29 16.3 121 

IT 110 213024 (-8.4%) 232664 71 10 29918 (-11.0%) 33601 75 31 15.9 118 

JP 110 18219 (3.9%) 17530 87 1 849 (-12.7%) 972 98 23 16.6 123 

KR 110 10621 (-0.7%) 10694 44 1 246 (-5.4%) 260 66 31 13.1 97 

NL 110 43801 (-8.6%) 47903 80 37 6018 (-0.7%) 6059 85 45 16.0 119 

PL 110 16349 (-47.3%) 31015 88 43 1080 (-24.9%) 1438 97 51 16.6 124 

SE 110 24864 (-57.8%) 58918 86 11 4042 (-23.4%) 5280 94 49 17.7 130 

TR 110 137268 (-15.8%) 163103 86 50 3866 (-16.1%) 4609 89 56 12.0 89 

UK 110 212925 (-19.7%) 265321 86 10 33007 (-15.1%) 38861 88 45 14.1 105 

US 130 1723655 (-37.3%) 2750689 93 1 107132 (-17.4%) 129708 95 39 18.7 140 

       Averages 14.2±0.6 105±4 

AR 300 1436646 (-35.2%) 2218425 252 42 45861 (-17.3%) 55449 263 47 45.6 339 

BR 230 5206951 (-43.4%) 9204731 192 36 182165 (-18.9%) 224504 192 56 49.5 368 

IN 300 10681470 (-13.8%) 12392260 242 9 143624 (-10.1%) 159755 230 50 52.3 389 

PK 180 318755 (2.7%) 310275 149 35 6702 (3.6%) 6466 151 57 26.9 200 

RU 200 791131 (-28.4%) 1105048 131 10 14807 (-32.5%) 21939 149 58 30.3 225 

       Averages 40.9±5.2 304±38 

 

Table 1: Model and data related parameters per country are identified via the ISO 3166-2, alpha-2 country codes. In column ΔΤ are reported the intervals of time elapsed since January 22, 2020 covered by 

this study, chosen to include within this time period the first epidemic peak in each country; 𝑁𝑝𝑟𝑒𝑑 
𝑖𝑛𝑓

, 𝑁𝑝𝑟𝑒𝑑 
𝑑𝑡ℎ  𝑁𝑜𝑏𝑠 

𝑖𝑛𝑓
, 𝑁𝑜𝑏𝑠 

𝑑𝑡ℎ  are  predicted resp. observed [23-25] cumulated numbers of infections/deaths at 𝜏𝑒𝑛𝑑 

upon vanishing of the first wave (see text) whereas values between parentheses represent signed relative deviations between predicted and observed values; 𝑆ℎ𝑖𝑓𝑡𝑖𝑛𝑓 ,  𝑆ℎ𝑖𝑓𝑡𝑑𝑡ℎ  designate time intervals 

separating the chosen time origin (January 22, 2020) from dates of first infection resp. death cases and, τ𝑚
𝑖𝑛𝑓

, τ𝑚
𝑑𝑡ℎ are predicted time instances of maximal daily rates. Time distributions of daily rates of 

infections and deaths hold common the standard deviation, σ (see text) and thus the conventional duration of the first wave, 𝛿𝜏 (rounded to the nearest integer). 
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2.3 Methods and computations 

First derivatives of cumulated numbers of events 

were determined numerically via the central 

difference scheme working at order O(h3). The sets 

of parameters, (𝐴0
𝛼 , 𝜏𝑚

𝛼 , 𝜎𝛼)𝑘 , have been 

numerically calculated for each country, k (k=1-23, 

𝛼 = 𝑖𝑛𝑓, 𝑑𝑒𝑎𝑡ℎ) by a least-squares fit of eq. (4) on 

the numbers of cases. Within any country k 

common values were assigned to 𝜎𝑘
𝛼 , a decision 

based on the empirical observation that separate fits 

yield almost similar values, 𝜎𝑘
𝑖𝑛𝑓

≈ 𝜎𝑘
𝑑𝑡ℎ , that 

reduces the free parameters of the model to five per 

country. The minimization scheme consisted in 

defining the following objective function, which 

closest to zero value corresponds to the optimal 

model parameters: 

𝑓𝑜𝑏𝑗 (𝑛∗(𝜏𝑗
∗), 𝑛𝑝

∗ (𝜏𝑗
∗)) = ∑ ∑ 𝑤𝑗

𝑚
𝑖=1 (1 −

𝑛∗(𝜏𝑗
∗)

𝑛𝑝
∗ (𝜏𝑗

∗)
)

2

𝛼 (6) 

where, the index, j runs over the events of a given 

country dataset, wj are dimensionless weights with 

values, wj =10 if |τ∗ j|>1 and wj =1 otherwise, and 

𝑛∗(𝜏𝑗
∗), 𝑛𝑝

∗ (𝜏𝑗
∗) are respectively the observed and 

predicted numbers of events expressed in reduced 

units (Eq. (4), section 2.1). The minimization 

procedure relied on a home-made program 

interfacing MERLIN [29], a public domain multi-

dimensional minimization package. Upon 

convergence, the procedure yields optimal values of 

the model parameters for each country (Table 1). 

With the values of 𝜏𝑚
𝛼 and 𝜎𝑘

𝛼  displayed in this table, 

the condition of validity of eq. (4), 
𝜏𝑚

𝜎√2
≥ 2 is 

systematically verified. 

 

The Master representations permit a statistical 

approach of the pandemic to be made, which is not 

feasible by only considering individually country-

specific data. Indeed, contributing countries 

generate per day equal in number reduced data, 

which deviations from the daily average behavior 

(eqs. 3-4) can be treated statistically. This can be 

accepted by assuming that the endemic evolves in 

different countries similarly whenever restrictions 

hold. In this context, the dispersion of the reduced 

data expresses local specificities including counting 

errors. The accuracy of the statistical analysis can 

be further increased via a coarse graining of the 

reduced time transforming daily data in to a 

histogram as follows: (1) the reduced time interval 

over which significant numbers of cases are 

observed is divided in i=50 contiguous bins of equal 

length, τ*≈0.12 for deaths and, τ*≈0.18 for 

infections, each containing respectively 42 and 53 

elements, (2) to the time instances of the bin 

centers, < 𝜏∗ >𝑖
𝛼  are attributed daily rates,  

<
𝑑𝑛

𝑑𝜏∗

∗
>𝑖

𝛼  and cumulated numbers, < 𝑛∗ > 𝑖
𝛼  

obtained as averages of the data contained in each 

bin, (3) confidence intervals for the mean are 

computed from data in the bins at a 99% confidence 

level with the usual assumption that errors are 

normally distributed and that Student’s  

t-distribution accounts for the small size of the daily 

datasets [30-31]. 

 

Finally, the phenomenological model yields a 

conventional estimate of the mean duration of the 

pandemic, 𝛿𝜏∗ = 𝛥√−𝑙𝑛(10−3) ≈ 2.628 defined 

as the difference between final and starting time 

instances when reduced daily rates amount 1‰ of 

the peak value. Country-specific values are given 

by, 𝛿𝜏𝑘 = 2√2𝜎𝑘𝛿𝜏∗ (Table 1) and, (𝜏𝑒𝑛𝑑 )𝑘
𝛼 =

(𝜏𝑚
𝛼 )𝑘 + √2𝜎𝑘𝛿𝜏∗. 
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3. Results 

3.1 Model validation and country specificities 

Application of the model to datasets from Italy, 

taken as a working example of a country that has 

passed the epidemic peak 110 days after January 20, 

2020 shows that predicted daily rates and cumulated 

numbers of infections fit the data satisfactorily 

within this time interval (Figure 1, dashed lines). 

Well after the peak the prediction increasingly 

underestimates the observed data, which is expected 

because of the emergence of COVID-19 variants, 

the generalization of testing and the weakening of 

mobility restrictions. Similar results are obtained 

with this modeling of the epidemic for all the 

countries considered in this work, suggesting 

thereby that Gaussian and error function forms 

designate consistently its evolution. The arrows in 

Figures 1a and 1c mark time instances with daily 

rates at 1‰ of the maxima of the theoretical graph 

(full line) and define conventional start and end 

dates of the first epidemic wave and its effective 

duration, δ. In Italy δ =118 days whereas values 

for other countries are reported in Table 1 (last 

column). These figures show also that on 

approaching the epidemic peak daily rates are 

increasingly scattered around the theoretical 

Gaussian graph, a finding common to all the 

datasets forming the country database used in the 

present work. The origin of the observed 

fluctuations and of their amplification near the 

epidemic peak are not clear though it is reasonable 

to admit that counting errors are superimposed to 

other causes, possibly intrinsic to the epidemic. 

Conversely, cumulated numbers of cases (Figures 

1b, 1d) are less affected by fluctuations, which 

justifies choosing equations (2b) or (4) for 

determining optimal, country-specific model 

parameters. 

 

Table 1 is divided in two parts on the basis of 

country-specific standard deviation values,  

defining two groups with averages, <σ>=14±0.6 

and <σ>=40.9±5.2, where uncertainties represent 

standard errors. In direct relation with , the first 

wave of the epidemic in countries of the second 

group lasted on average three times longer than in 

these of the first group. This has motivated 

collecting data over about 110 days for countries in 

the first group and a ≈2-3 time’s longer interval for 

these belonging to the second group (column T in 

this table). Reasons behind this finding are unclear 

in absence of an investigation of possible trends 

existing in the matters of social countermeasures 

and systems of public health that may differentiate 

the two groups of countries. 
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Figure 1: Model predictions (dashed lines) of daily rates of cases (a, c) and of cumulated global numbers (full lines, 

b, d) in Italy during the first epidemic wave. Full dots and lines represent data collected within the time interval 

covered by the present study (Table 1, 2nd column). The data scatter in (a, c) shows that locating the epidemic peak 

is difficult, whereas the model predicts its occurrence at about 71 days (resp. 75 days for deaths) after the chosen 

time origin (January 22, 2020). Conversely cumulated global numbers of infections are less affected by fluctuations 

(b, d). Arrows in (a) and (c) mark conventional start/end dates of the epidemic (see text, section 3.2). 

 

3.2 Master representations 

Having determined the parameters of the model 

(𝑁0
𝛼 , 𝜏𝑚

𝛼 , 𝜎𝛼)𝑘 , (k=1-23, 𝛼 = 𝑖𝑛𝑓, 𝑑𝑒𝑎𝑡ℎ) (Table 1), 

raw datasets have been converted in reduced 

coordinates and are displayed in Figures 2 (a-d) 

together with the theoretical predictions (Master 

representations, eqs. (3, 4)). It can be seen that 

reduced country-datasets of cumulated cases 

condense on the displayed graphs with little 

dispersion, confirming thereby the existence of the 

above foreseen intrinsic to the epidemic average 

behavior (Figures 2a, 2b). This suggests that strong 

similarities underly the evolution of the epidemic in 

different countries under the contextual conditions 

listed in the introduction (features iii and v). 
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Figure 2: Master representations of cumulated numbers of infections (a), deaths (b) and of the corresponding 

reduced daily rates (c, d). For the sake of readability only one every five datapoints are displayed in (a) and (b) 

whereas all datapoints (N=3210) are present in (c) and (d). Dashed lines represent the master curves (eqs. 3, 4). 

Datasets from China (open circles) deviate significantly from the average behavior (master curves dashed lines). 

 

Unexpectedly the figures put in evidence that data 

from China deviate markedly from the average 

epidemic behavior as is defined by the remaining 22 

countries. This is particularly visible in Figures 2 

(b-d). The origin of this finding is not yet clear and 

deserves further investigation well beyond the scope 

of the present work. Pragmatism has led to discard 

datasets for China from the statistical analysis. 
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However, this singular case illustrates the 

discriminating power of the present 

phenomenological analysis, which constitutes a 

main, significant result of this work: master 

representations enable for detecting countries  

where the virus spreading differs from the observed 

average behavior. This also constitutes a starting 

point for a comparative assessment of public health 

policies in different countries to be made. Finally, 

the master representations of daily rates show that 

transforming real in to dimensionless data does not 

damp fluctuations (Figures 2 c-d), which motivates 

for studying this noise statistically as is done below. 

 

 

Figure 3: Master plots with error bars: daily rates (a, 

b) and cumulated numbers (c, d) of infections and 

deaths as functions of the elapsed time (reduced 

units). Full dots represent coarse-grained data from all 

the countries considered in this work (see text, section 

3.2). Dashed lines correspond to the master 

representations (eqs.1, 2) and far outside the error 

bars characteristic of the average epidemic behavior 

to data from China (open circles in (d)). Aiming to 

minimize interference with the second pandemic wave 

data of the present analysis correspond to <3. 



Arch Clin Biomed Res 2021; 5 (5): 814-827        DOI: 10.26502/acbr.50170204 

 

 

Archives of Clinical and Biomedical Research  Vol. 5 No. 5 – October 2021. [ISSN 2572-9292].                                                         824 

3.3 Noise appraisal 

Figures 3 (a-d) display the theoretical master curves 

(dashed lines, eqs. 3-4) drawn together with coarse-

grained values (§2.3) of daily rates and of 

cumulated numbers of cases (full circles) plotted as 

a function of the reduced time, < 𝜏∗ >𝑖
𝛼  (i=1-50). It 

can be seen that these fit pretty well the master 

graphs and that the error bars reproduce faithfully 

the data scatter for τ*<0.8. Real time widths of the 

bins used for the coarse graining transformation 

amount, Δτ≈2-3 days, a period being large enough 

for drastically damping fluctuations. Since this 

delay is much shorter than any characteristic time of 

the epidemic (Table 1) the hypothesis is favored 

that counting modes of cases are principally 

responsible of the observed data scatter. However, 

the theoretical predictions appear systematically 

underestimating daily rates above τ*>0.8 (Figures 3 

a-b, full lines). This trend may originate from both 

the following reasons namely that the Gaussian 

description of daily rates is not fully adapted to the 

evolution of the pandemic and that emerging 

COVID-19 variants interfere with the first epidemic 

wave, which is not accounted for by the 

phenomenological model. 

 

4. Discussion and Conclusive remarks 

The present work relies on statistical datasets from 

twenty-three countries [23-25] and postulates that in 

all of them the number of daily new cases can be 

approximated by a Gaussian function of the elapsed 

time. This modeling is shown to faithfully estimating 

the time evolution of daily cases during the first 

manifestation of the epidemic (1st wave). Adopted 

country-mobility restrictions guarantee that countries 

are isolated and thus the model can be strictly applied 

over the corresponding duration. Moreover, 

observations are not affected in this case by causes 

external to the endemic such as massive testing and 

vaccination, which defines a strict context for the 

present discussion. 

 

Approximating daily cases via Gaussian functions is a 

central to the present work phenomenological 

assumption whereas any other bell-shaped functional 

form could have been employed as well. However, 

the shape, symmetry and sigmoidal forms of the time 

integrals of Gaussians are useful properties that have 

motivated their use for representing the dynamic 

evolution of the epidemic. These help in localizing the 

epidemic peak, despite the considerable fluctuations 

affecting daily data and yield the relaxation time 

intrinsic to the epidemic (standard deviation of the 

Gaussians). 

 

The choice has been made in the present work to take 

identical the standard deviations of the Gaussians 

modeling daily cases of infections and deaths. Besides 

reducing the number of independent model 

parameters, this helps in circumventing uncertainties 

of infection counts tightly depending on country-

specific testing policies. Indeed, these last do not 

influence the numbers of death cases and the 

corresponding standard deviation. Thereby, the 

aforementioned uncertainties are explicitly transferred 

in the daily rate amplitudes of infections cases, 

(𝐴0
𝑖𝑛𝑓)

k
. The predicted numbers of cases, N0

k 

underestimate almost systematically the values 

Nk
𝛼(𝜏end) observed at the conventional end of the 

epidemic. 

 

The imperfection of the Gaussian model, emerging 
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COVID-19 variants and the evolution in time of the 

countermeasures are among possible causes of this 

behavior. It is generally accepted that phenomenology 

serves in classifying and testing data for internal 

consistency rather than constituting a predictive tool. 

However, since country parameters become stationary 

once the epidemic peak is crossed the conventional 

dates can be defined, (𝜏𝑒𝑛𝑑)k
𝛼  and the associated 

duration of the epidemic δτk as well, thus granting the 

present model with a valuable, predicting power. 

Finally, error bars from the Master representations 

(Figure 3) can be converted for any given country in 

real units thereby offering estimation of the expected 

maximum daily rates and of cumulated numbers of 

cases at any time beyond the epidemic peak. 

 

The capability of the developed methodology to 

differentiate countries departing from the average 

behavior described by the Master representations is a 

significant result of the present work. However, the 

explanation of such singularities is not possible 

without additional investigations. 
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