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Abstract
Traumatic brain injury is an important priority in intensive care, 

particularly in paediatrics. Many brain biomarkers, particularly serum glial 
fibrillary acidic protein, S100 calcium-binding protein B and ubiquitin 
C-terminal hydrolase L1, have been proposed to improve sensitivity and 
specificity of diagnosis and management. This is particularly important for 
identifying clinically significant mild traumatic brain injury in paediatric 
patients, as it could potentially reduce unnecessary hospitalisations and 
neuroimaging scans. This manuscript focuses on recent clinical guidelines 
and research on clinical chemistry tests for various biological fluids, 
particularly saliva. The text discusses biomarkers in adults and children, 
highlighting their application in blood and saliva, focused on studies  
published between January 2021 and June 2025. Firstly, we report on the 
characteristics of brain biomarkers and the relevance of serum biomarkers 
of mild traumatic brain injury in paediatric population, as well as the its 
epidemiology in paediatric and adult populations. Then, we focuses on six 
important areas: a) Diagnostic guidelines and the rationale for biomarkers: 
a) Neuroanatomical and functional vulnerabilities in paediatric traumatic 
brain injury; b) Molecular mechanisms of injury and inflammation in 
paediatric traumatic brain injury; c) Saliva as an emerging matrix for 
traumatic brain injury biomarkers; e) Analytical, biological and clinical 
challenges in biomarker use; f) Experimental biomarkers: exosomes and 
non coding RNAs.

Research and their potential clinical applications is promising. However, 
many challenges remain in controlling for biological variability and 
potential pre- and analytical confounding factors in order to obtain 
reference values and cut-offs, particularly for salivary biomarkers, and to 
implement them in paediatric clinical practice.

Keywords: Biomarker; GFAP; S100; UCHL-1; Saliva; Pediatrics; Traumatic 
brain injury (TBI); Guideline; Exosomes; Reference values; Cut-offs

Abbreviations
AAMR: Age-adjusted mortality rates 

Alb: albumin 

AD: Alzheimer’s Disease 

aTBI: adult TBI

APOE: Apolipoprotein E 

AQP: Aquaporin
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BBB; Blood-Brain Barrier 

BDNF: Brain-derived neurotrophic factor

CBF: Cerebral Blood Flow 

CDSS: Clinical Decision Support System

CE-IVD: in vitro diagnostic CE marked products

CGRP:calcitonin gene-related peptide 

circRNA: Circular RNA

GCF: gingival crevicular fluid

CLIA: Chemiluminescence Immunoassay

CMIA: Chemiluminescent Microparticle Immunoassay

CN: Cranial Nerve

CNI: Cranial Nerve Injury 

CRP: C-reactive protein 

CRP/Abl: C-reactive protein to albumin ratio 

CT: Computed Tomography                  

CV: Coefficient of Variation 

ECLIA: Electrochemiluminescence Immunoassay

ED: Emergency Department

ELISA: Enzyme-Linked Immunosorbent Assay

EIA: Enzyme Immunoassay

EV: extracellular vesicles

Hb: Hemoglobin 

HPA: hypothalamic-pituitary-adrenal

FDA: Food and Drug Administration, USA

FGFR: Fibroblast Growth Factor Receptor

GCS: Glasgow Coma Scale 

GFAP: Glial Fibrillary Acidic Protein

LDH: lactate dehydrogenase 

lncRNA: Long non-coding RNA

miRNA: microRNA

MRI: Magnetic Resonance Imaging

mTBI: mild Traumatic Brain Injury 

mTBIS: mild Traumatic Brain Injury Symptoms

MVBs: multivesicular bodies 

MW: Molecular Weight

ncRNA: non coding RNA

NI: neuroimaging

NSE: Neuron-specific enolase

NT-proBNP: N-terminal pro-B-type natriuretic peptide 

PACAP-38: pituitary adenylate cyclase-activating 
polypeptide-38 

PCS: post-concussion syndrome

PICO: Population, Intervention, Comparison, Outcome

PPCS: Persistent Post-concussive Symptoms

PTT: partial thromboplastin time 

RAGE: Receptor for Advanced Glycation Endproducts

sAA: salivary α-Amylase 

SG: salivary gland

S100B:S100 calcium-binding protein B

SP: substance P 

SS. Sjögren’s Syndrome 

TBI: Traumatic Brain Injury

TJ: Tight Junction

PPCS: Persistent Post-concussive Symptoms 

pH: hydrogen ion concentration index 

pTBI: paediatric Traumatic Brain Injury

UCH-L1:Ubiquitin c-terminal Hydrolase L1

uSFR:  unstimulated salivary flow rate

VIP: vasoactive intestinal peptide 

WHO:  World Health Organization

YLL: Years of Life Lost

Introduction
In Italy, current national guidelines lack specific 

recommendations on good laboratory, clinical, and healthcare 
practices for the diagnosis and monitoring of traumatic brain 
injury (TBI), particularly with regard to the use of biological 
biomarkers [1].This research is based on a critical synthesis 
of recent systematic reviews [2-16], original studies [17-30],  
and commentaries [31,32], as well as the latest guidelines 
[33-38] on TBI diagnosis and prognosis in the paediatric 
and adult populations, with a particular focus on mild TBI 
(mTBI), concussion [35], and the use of diagnostic biomarkers 
[3,4,6,10,11,15,21,23,25-30].TBI represents an important 
priority in intensive care due to the associated health problems 
and economic costs (estimated at $400 billion annually in 
the USA). It is projected to become a leading cause of death 
and disability by 2030 [2,39], primarily resulting from acute 
trauma such as road accidents, falls, sports-related injuries, 
and violence [35]. In children, over half (55.5%) of TBI cases 
are related to sports or recreational activities, and 62.4% 
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of these patients receive medical evaluation, underscoring 
the need for rapid and accessible diagnostic strategies in 
paediatric settings [40]. Globally, the incidence rate of 
moderate-to-severe TBI was 182.7 per 100,000 population 
in 2019, accounting for over half of all TBI cases, with falls 
and road traffic accidents as leading causes. The Italian age-
standardized incidence was notably higher, at 377 (95% UI: 
319-451) per 100.000 [41]. In comparison, recent data from 
the United States indicate that 3.0% of the population reported 
a TBI in the past year, including 2.2% of children aged ≤17 
years (40). Epidemiological data from Huang et al. highlight 
age- and sex-related differences in TBI patterns, potentially 
relevant to diagnostic approaches [41].  The Centers for 
Disease Control and Prevention (CDC) report that children 
aged 0-17 years account for approximately 4.1% of all TBI-
related deaths [35]. This is particularly relevant given that  
paediatric TBI (pTBI) is the leading cause of death in this 
age group [42]. Furthermore, pTBI has been shown to impact 
brain development and cognitive abilities [35,43,44].

To date, neither a single objective laboratory test [31,45] 
nor harmonised neuroimaging (NI) protocols [46,47] are 
considered a gold standard for TBI management [48]. In 
fact, inconsistent findings have been reported when different 
biomarkers are associated with specific imaging phenotypes 
including diffuse axonal injury, cerebral oedema, and 
intracranial hemorrhage. These findings suggest a low level 
of diagnostic specificity and may reflect the complex and 
heterogeneous nature of TBI, underestimated biological 
variability and pre-analytical and analytical issues [6,9-
11,24,26-30]. Diagnosing and predicting the outcome of  pTBI 
remains particularly challenging, especially in cases of mild 
TBI (mTBI) and post-concussion syndrome (PCS) [49,50]. 
PCS is characterized by the persistence of symptoms following  
mTBI [51,52]. A recent review explored the diagnostic 
challenges of PCS and proposed strategies to improve both 
research design and clinical practice, including the use of 
salivary biomarkers [15]. In addition, several studies and 
reviews have investigated brain function biomarkers in both 
paediatric and adult populations [3,4,6,10,11,15,17,21,23,25-
30,45,46,49,51,52]. Recent guidelines highlight the potential 
of TBI biomarkers to limit NI, particularly in the diagnostic 
workup of  pTBI using serum and saliva samples [5,12,15,17-
22,25,28,30,31,36-38,53,54]. In a recent multicentre 
observational study, 84.6% of children presented with mild 
neurotrauma, while 14.2%  and 1.2% displayed moderate 
and severe injuries, respectively [55]. Overall, the literature 
suggests that the diagnostic performances of biomarkers 
for TBI, particularly in terms of sensitivity and specificity, 
varies according to the type of biological fluid used (plasma, 
cerebrospinal fluid (CSF) or saliva) and across populations 
including adults, pediatric patients and athletes [3,12, 56-70].

Many biomarkers have been proposed for evaluating 
TBI. These are categorized based on their characteristics as 

follows: brain cell proteins (mainly S100 calcium-binding 
protein B (S100B), glial fibrillary acidic protein (GFAP) 
and  ubiquitin c-terminal hydrolase L1(UCH-L1)); stress 
marker (cortisol) [17]; nerve proteins (lectin-binding glycan 
molecules) [23]; enzymes (α-amylase, lactate dehydrogenase 
(LDH) [20,71]; messengers within the immune system 
(cytokines); cellular integrity proteins (protein tau and 
amyloid β) [72]; neuropeptides (plasma calcitonin gene-
related peptide (CGRP), pituitary adenylate cyclase-activating 
polypeptide-38 (PACAP-38), vasoactive intestinal peptide 
(VIP), and substance P (SP)); natriuretic peptide (N-terminal 
pro-B-type natriuretic peptide (NT-proBNP);  acute phase 
proteins (C-reactive protein to albumin ratio (CRP/Alb) [71]; 
transport proteins (hemoglobin (Hb) and serum albumin 
(Alb); blood clotting (PTT test) [73,74];  functional and non-
coding (nc) RNA (i.e. miRNAs, circRNAs, lncRNAs)); nano-
sized, membrane-bound particles that act as  messengers 
in cell-to-cell communication (extracellular vesicles (EV)) 
[5,15,22,25]; lipid and lipid transport (apoE genotype) 
[75,76]; epigenetic mechanism (BDNF gene expression) 
[77]; and acid/base balance (pH index) [73]. Cerebrospinal 
fluid (CSF) is the biofluid that most accurately reflects brain 
functions [70], but its use is discouraged due to several 
limitations, including the difficulty, pain and safety concerns 
related to sample collection, the complexity of CSF biomarker 
interpretation in paediatric neurological disorders, challenges 
in laboratory standardization, and the limited feasibility of 
CSF use in large-scale or emergency settings [11,78].  As 
a result, blood-derived biofluids and saliva are considered 
more suitable matrices for paediatric biomarker analysis.The 
presence of brain-derived proteins in peripheral fluids (blood, 
saliva, urine) relies on their ability to cross the blood-brain 
barrier (BBB) and vascular endothelium, particularly when 
injured [79,80]. These proteins can subsequently be detected 
in gingival crevicular fluid (GCF) and saliva, through both 
exocrine as well as non-exocrine pathways [81]. The high 
vascularisation of salivary glands enables the transfer of 
blood-derived components, including brain proteins, into 
saliva, an exchange largely influenced by the molecular size 
of these proteins [79].

Saliva is expected to play a key role in the future diagnosis 
of pTBI, giving several operational advantages, including 
easy collection, transport, and storage, and is suitable for use 
in emergency settings and point-of-care testing [11,12,82]. 
Saliva testing is non-invasive and well accepted in pediatric 
population, particularly when repeated sampling is needed. 
Several devices  are available for whole saliva collection, 
including those specifically designed for infants. More 
recently, wireless biosensors for analytes like glucose and 
electrolytes have been integrated into saliva collection 
devices (e.g. glucose-tracking wireless pacifiers) [83,84]. 
The diagnostic potential of using saliva is partly explained 
by the close physiological relationship between saliva 
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production and central nervous system regulation [81]. The 
production and composition of saliva are subject to constant 
and variable influences by peripheral sensory inputs and 
circadian rhythms. The fine regulation of secretion depends 
on both the parasympathetic and orthosympathetic systems. 
Finally, a growing body of evidences supports the idea that 
neurodevelopmental disorders may be linked to the oral–
brain axis, partly through mechanisms mediated by the oral 
microbiome [81,85,86]. Consistently, proteomic data indicate 
that proteins associated with neurodegenerative disorders are 
equally abundant in saliva (n°38; 2.5%) and plasma (n°37; 
2.6%) (87). However, S100B, GFAP and UCH-L1, three well 
established TBI biomarkers, were absent from the top 1,000 
blood-derived salivary proteins identified using the manifold 
ranking method [88,89], suggesting limited detectability in 
saliva. 

Our work first outlines the key features of brain 
biomarkers and the clinical relevance of serum biomarkers in 
pediatric mild TBI (pmTBI), as well as the epidemiology of 
this condition in adult and paediatric populations. Then, we 
explore six key thematic areas:

a)	 Diagnostic guidelines and the rationale for biomarkers

b)	 Neuroanatomical and functional vulnerabilities in pTBI

c)	 Molecular mechanisms of injury and inflammation in 
pTBI

d)	 Saliva as an emerging matrix for TBI biomarkers

e)	 Analytical, biological and clinical challenges in biomarker 
use

f)	 Experimental biomarkers: exosomes and nc RNAs

This work aims to support the planning of well-designed 
clinical trials to validate current biomarker-based best 
practices in the paediatric population. Establishing reliable, 
evidence-based reference ranges and diagnostic cut-off values 
could reduce the reliance on NI in cases of pmTBI[15,31].

Materials and Methods
Focused Question

What is the diagnostic value of serum and salivary 
biomarkers in paediatric patients with mild traumatic brain 
injury (mTBI)?

Search Strategy
Given the novelty and evolving nature of the topic, 

we adopted a narrative review approach, with a particular 
focus on the translational potential of salivary biomarkers. 
Although narrative synthesis is less common in this domain, 
we considered it more appropriate than conducting an 
additional systematic review, given the number of recent high 
quality systematic and umbrella reviews already published 
[3-7,10-16,36,43-46,48,52,52,57-59,61,63-65,66,68,87]. 

Nevertheless, to ensure methodological rigor, we structured 
the research according to the PICO model (Table 1) 
(Population, Intervention, Comparison, and Outcome) and 
conducted a literature search of the PubMed (MEDLINE) 
and Scopus databases, based on the following three aspects: 
population, concept, and context.

The following keywords and MeSH terms were 
used in various combinations with Boolean operators 
(OR, AND):"traumatic brain injury", "neuroimaging", 
"neurodegenerative diseases", "children", "adolescent", 
“adult”, "patient safety",  "disease prediction", "biomarkers", 
"astrocyte injury”, "neuronal cell injury", "salivary gland 
tumors", "GFAP",  "S100B",  "UCH-L1", biological functions, 
"serum", "saliva", "blood", "brain derived extracellular 
vesicles", "blood biomarkers", "saliva biomarkers", " 
laboratory parameters”, “diagnostic indicators", sensitivity", 
"specificity",  “diagnostic accuracy”. "reference values", 
"salivary gland", “salivary flow”, salivary flux”, “pre-
analytical phase”, “molecular weight”, ”half-life/kinetics, 
”isoelectric point”, “salivary gland filtration”, “blood-brain 
barrier”, “systematic and narrative review”, “sport”, “brain 
anatomy”. 

Approximately the point of insertion of the table 1.

Inclusion and Exclusion Criteria
The following inclusion criteria guided our analysis:(I) 

English language; (II) full text available;  (III) published 
on-line firsts between January 2021 and June 2025; (IV) 
studies conducted in high- and middle-income countries (to 
limit salivary variability due to malnutrition); (V) studies on 
COVID-19 patients (when relevant to salivary biormarker 
analysis). References were excluded for: (I) absence of a 
described methodology; (II) duplications; (III) irrelevant 
scope; (IV) content redundancy; (V) studies without freely 
accessible full text; (VI) abstract-only publications; (VII) 
Outdated reviews when updated or more recent versions are 
available.

Research
This paper represents an original translational research, 

focusing on the evaluation of TBI biomarkers (particularly 
GFAP, S100B and UCH-L1) among different biological fluids 
(serum, plasma, saliva). The literature search was conducted 
via PubMed (MEDLINE), Scopus, and Google Scholar 
for studies published between January 2021 to June 2025. 
The final search was conducted on June 30, 2025, and data 
extraction spanned approximately six weeks. Subsequently, 
bibliographic material from the papers has been used in order 
to find other or older appropriate sources in relation to specific 
topics and operative problems. Cochrane sources (reviews, 
protocols, clinical answers) were reviewed to identify 
pharmacological interventions in TBI management. Two 
independent, reviewers (L.B. and A.B.) screened titles and 
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abstracts in a blinded fashion. Discrepancies were resolved by 
discussion or, if needed, by consultation with a third reviewer 
(M.V.). A total of 354 articles were initially identified. After 
applying inclusion and exclusion criteria, the final number 
on included references was 202. The heterogeneity of study 
designs and outcome measures prevented quantitative meta-
analysis, especially for salivary biomarkers and pre-analytical 
variables.

Results and Discussion
TBI represents a major cause of disability and mortality 

in the paediatric population, with clinical presentation, injury 
mechanisms, and outcomes differing substantially from those 
observed in adults [51]. While neurological examination and 
neuroimaging (primarily head CT) remain the cornerstone of 
diagnosis, their limited specificity [90], particularly in cases 
of  mTBI [91], often leads to overuse of imaging procedures 
with associated risks, especially in children. This scenario has 
prompted increasing interest in the use of circulating brain-
derived biomarkers to improve risk stratification and guide 
decision-making [30,35-38,92].

Biomarkers released into blood or other bodily fluids, 
following brain cell injury, may offer additional diagnostic 
and prognostic value.  However, their integration with 
clinical and radiological data remains an evolving field 
[4,39,54,61-66,71,73,78,93]. Table 2 summarizes the key 
characteristics of the most studied brain biomarkers in 
TBI, including their biological properties and limitations 
[4,16,30,57,62,65,79,94-105]. Recently, some reviews and 
papers have been published, reporting interesting findings on 
biomarker application from relevant paediatric case studies 
[3,6,9-11,24,26-30,71,78,106-111] (Table 3) [6,9-11,24,26-
30,71,110-111]. Additional epidemiological and comparative 
data between adult and pediatric TBI are provided in 
Supplementary Material S1-S2.

Diagnostic Guidelines and the Rationale for 
Biomarkers

Recent international guidelines have refined the 
diagnostic criteria for mTBI, placing increasing emphasis on 
clinical evaluation and selective use of NI [2,30,32,33,35,37-
39]. The World Health Organization (WHO) defines mTBI 
by the presence of transient neurological dysfunction and a 

Population Children, adolescents, pediatric 
patients, adults with TBI

Intervention/exposure
Role and limitations of serum and 
salivary biomarkers (particularly, 
GFAP, S100B and UCH-L1)

Comparison/control Use of NI or reference to normal  
brain function

Outcomes Role and limitations of biomarkers in 
biological fluids to reduce NI use

Table 1:Summary of the PICO framework applied.

Glasgow Coma Scale (GCS) score between 13 and 15 at least 
30 minutes after trauma. Conditions such as intoxication, pre-
existing neurological disorders, or co-morbid injuries must 
be excluded [50,112]. The CDC recommends combining 
clinical signs and risk factors [35]  to determine the necessity 
of NI, though it acknowledges the limitations of CT scans: 
up to 95% of children with suspected mTBI undergoing 
CT have no detectable intracranial injury [39]. Importantly, 
CT does not exclude the presence of structural brain injury, 
as demonstrated by MRI findings in up to 30% of children 
with normal CT results. Moreover, 20–40% of patients with 
normal CT scan may experience long-lasting post-concussive 
symptoms [113]. In addition, CT is often poorly accepted in 
paediatric populations due to the need for sedation, radiation 
exposure, limited accessibility in peripheral hospitals, and 
associated healthcare costs.The recently modified Brain 
Injury Guidelines (mBIG) [114,115], while reaffirming 
the relevance of CT scan in pediatric TBI, advise against 
routine repeat imaging in low-risk patients (mBIG 1 and 
2), a recommendation supported by recent studies [90,116]. 
In parallel, recent evidence highlights the clinical value of 
measuring plasma levels of GFAP and UCH-L1 in the early 
management of both adult and paediatricmTBI (pmTBI). 
Early sampling, within 3 to 12 hours post-injury, has been 
associated with increased diagnostic power. Combining 
GFAP and UCH-L1 has been shown to improve sensitivity in 
detecting clinically significant TBI in children aged 16 years 
or younger [30]. Moreover, biomarker-based risk stratification 
models, including the use of S100B as a screening tool, have 
been proposed to reduce unnecessary CT scans and adopted 
by the Scandinavian guidelines; while French guidelines 
adopted the use of GFAP and UCH-L1 [14,36,37,96,117,118] 
(Table 4) [36,37,96].

The development of biomarker-based Clinical Decision 
Support Systems (CDSS) represents a significant advancement. 
Some models propose scoring systems based on panels 
including S100B, GFAP, UCH-L1, NfL, and tau, stratifying 
patients into low, moderate, and high risk categories. While 
promising, these models require validation in children under 
five due to physiological differences in biomarker expression. 
Summary of the main recommendations are provided in table 
4. Other recommendations are provided from evidences 
by meta-analysis and modeling [14,117,118],and further 
technical details are included in table 3 and Supplementary 
Material S3.The integration of biomarkers into TBI 
classification systems remains challenging. Reference 
ranges must account for age, sex, and developmental stage, 
and must correlate with advanced NI and clinical outcomes 
[9,24,28,30,94,107-109]. Studies on mTBI in animal 
models will enhance translational research and deepen our 
understanding of neurodevelopmental changes in humans 
(Supplementary Material S4).

Moreover, TBI pathophysiology involves both primary 
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Biomarker
acronym and 

characteristics
(name; molecular weight; pHi)

Function in brain / 
Biological role Expression and detection Kinetics Diagnostic value & 

limitations

GFAP 
(Glial Fibrillary Acidic Protein; 

~49.8 kDa; pHi 5.4–5.8)

Major intermediate 
filament protein of mature 

astrocytes, structural 
component of the 

cytoskeleton, contributing 
to cell shape and stability. 

Supports bidirectional 
fluid exchange across 

CNS barriers and serves 
as a marker of astrocyte 
damage and astrogliosis

mRNA: ~10-fold higher in brain 
vs salivary gland. Protein: brain 

~4 Log10 ppm; 
saliva ~3 Log10 ppm. 
Ratio saliva/blood: 0

Half-life 24–48 h

Specific for astrocyte injury, 
but also elevated in elderly 

and orthopedic patients. 
Interference from oral 

health status (see “Saliva 
in pTBI”).

UCH-L1 (Ubiquitin 
CarboxylTerminal Hydrolase 

Isozyme L1; 26–28 kDa;  
pHi ~5.3) 

Neuronal protein 
degradation enzyme; 

maintains axonal stability, 
regulates synaptic function; 
marker of neuronal injury

mRNA: ~10-fold higher in brain 
vs salivary gland. Protein: brain 

3–4 Log10 ppm; plasma and 
salivary gland ~2.2 Log10 ppm; 

saliva unknown. 
Ratio saliva/blood: 0.1

Half-life in patients 
with TBI:

CSF=7 (0.1–55) h
Serum=9 (2–55) h

Reflects neuronal damage; 
unstable marker (levels 

fluctuate with BBB 
integrity). Also expressed in 
PNS, endocrine and cancer 

cells; mutations linked to 
Parkinson disease.

S100B
(S100 Calcium Binding 

Protein B;, 10.5 kDa; pHi 
4.1–4.5)

Astrocytic protein with 
neurotrophic and cytokine 
functions; regulates cell 

cycle, differentiation, Ca2+ 
fluxes; marker of astrocyte 

activation and BBB 
disruption

mRNA: ~10-fold higher in brain 
vs salivary gland. Protein: 

brain/CSF ~3–3.2 Log10 ppm; 
salivary gland/epithelium ~2.1 
Log10 ppm; saliva unknown. 

Ratio saliva/blood: 0.8

30-90 min.
25 min in patients 
without ongoing 

brain injury

Sensitive but non-specific: 
increased after extracranial 

trauma, burns, pediatric 
age. Also expressed 
in non-neural tissues 

(adipocytes, melanocytes, 
lymphocytes, tumors). 

Oral health may confound 
salivary detection.

NSE 
(Neuron Specific Enolasw; 46 

kDa; pHi 4.5)

Glycolytic enzyme, 
abundant in neurons/
neuroendocrine cells; 
high levels promote 

neuroinflammation, ECM 
degradation

mRNA: ~7-fold higher in brain 
vs salivary gland. Protein: brain 

3.2–3.4 Log10 ppm; salivary 
gland ~1.3 Log10 ppm; oral 
epithelium ~2 Log10 ppm. 

Ratio saliva/blood: unknown

Half-life ~24 h

Difficult to detect due to 
minimal plasma levels, 

rapid metabolism, 
high protein binding. 

Interference from 
erythrocytes and cancer 

cells.

Cortisol
(Steroid hormone; 0.36 kDa; 

362.46 g/mole)

Stress hormone produced 
by adrenal gland; regulates 

metabolism, immunity, 
HPA-axis circadian rhythm

Passes blood–saliva barrier as 
free cortisol (biologically active 

fraction)

Half-life 70–120 
min

Non-specific marker; 
elevated after stress/

trauma. Imbalances linked 
to Cushing’s and Addison’s 

disease.

Table 2: Main characteristics of selected biomarkers for TBI [16,30,57,62,65,79,94-105].

Study / Year Design / Sample Biomarkers Main findings
Marzano 2022 [6] Systematic review 

(56 studies, n=798 <19 yrs)
S100B, NSE, GFAP, 

UCH-L1
S100B most studied; higher levels linked to worse outcome; 
GFAP and UCH-L1 differentiate TBI severity. Panels of 
biomarkers more informative than single measures.

Oris 2023 [9] Review 
(12 studies)

S100B Age-specific reference ranges established; levels decline with 
age; important for interpretation in infants.

Malhorta 2024 [11] Meta-analysis 
(32 studies, n=4743)

S100B, GFAP, UCH-L1, 
NSE, tau, IL-6

Variable diagnostic performance across studies; AUC ranges: 
S100B 0.67–1.0, GFAP 0.41–0.85, UCH-L1 0.59–0.83.

Morello 2024 [10] Systematic review  
(10 studies, n=1616)

S100B Pooled sensitivity 98%, specificity 45%; excellent NPV (99%), 
limited PPV.

Chiollaz 2024 [26] Prospective cohort 
(n=302 mTBI, 74 controls)

S100B, GFAP, heart 
fatty-acid binding protein 

(HFABP)

At 100% sensitivity, specificity, to rule out the need of CT 
scans,low (~35–40%). 
GFAP slightly better than S100B.

Table 3: Recent evidence published on pTBI using serum biomarkers [6,9-11,24,26-30,71,110-111].
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Tabor 2024 [28] Cohort 
(n=154 concussions, 695 

controls)

GFAP,  UCH-L1, NfL, 
total tau 

Compared to uninjured patient levels GFAP increased by 17% 
(males and females), UCH-L1 by 43% (females); NfL and tau 
elevated subacutely. 
Reliability concerns due to assay variability.

Puravet 2024 [30] Multicentre trial 
substudy(n=1249)

GFAP, UCH-L1 Combined GFAP+UCH-L1: sensitivity 100%, specificity 67%; 
useful to reduce CT scans.

Pereira 2024 [24] Prospective study 
(n=15 TBI, 19 controls)

GFAP, NfL, UCH-L1, 
S-100B, tau, p-tau181

All biomarkers increase in severe TBI vs ctrls; some 
differentiate severity even in mild/moderate cases.

Mayer 2025 [29] Case-control 
(n=59 pmTBI, 41 controls)

GFAP, NFL, Tau, pTau 
181 and UCH-L1 

GFAP and UCH-L1 not different vs ctrls  at 7d; NfL elevated 
up to 4 months. 
Timing critical.

Chiollaz 2024 [27] Prospective multicenter 
cohort n=285 paediatricmTBI 

(≤24 h), n=74 controls

IL6, IL8, IL10 IL-6 and IL-10 significantly increased in mTBI vs controls. 
Within mTBI, IL-6 was higher in CT+ than CT− or observation 
groups. With sensitivity set at 100% (no CT+ missed), IL-6 
specificity 48% for identifying CT−/observation; IL-8 not 
significant.

Kilinc 2025 [110] Case-control 
(n=40 mTBI, 26 controls)

CGRP, PACAP-38, VIP, 
and SP 

All increased in TBI, esp. CT+; potential emerging biomarkers.

Chiollaz 2025 [111] Prospective multicenter 
cohort; (n=419 mTBI, n=99 

controls (≤24 h)

IL6, NfL, NTproBNP, 
GFAP, IL10, S100b, and 

HFABP.

IL-6 was the strongest single marker: at 100% sensitivity, 
specificity 47.6%. 
Duplex panels: IL-6+NfL 61%, IL-6+NT-proBNP 60%, IL-
6+GFAP 57% (all at 100% sensitivity). Age correlation: GFAP, 
IL-10 and S100B decreased with age; IL-6 and NT-proBNP 
were not age-dependent.

Wei 2025 [71] Retrospective (n=532) Broad lab panel, NT-
proBNP, IL-6, CRP/Alb

Prognostic model (AUC ≈0.8) combining lab markers + ML 
approaches shows promise.

structural damage and secondary neuroinflammatory 
mechanisms, each associated with distinct temporal and 
molecular biomarker profiles [15,35,43,61,119-123]. This 
complexity is further compounded by biological variability 
[10,26,28,29,92,95], biomarkers extracranial origin (e.g. 
fracture, neurodegenerative disorders) (Table 2), biological 
matrix (e.g. plasma, serum, CSF,  saliva) [3,12,56-65,92,114], 
sampling time (Tables 2-4), assay differences [95,96], and 
interference from autoantibodies or pharmacological agents 
[96,118,119] (Supplementary Material S5). Anticoagulants 
use usually result in a CT scan for TBI at medium and high 
risk; however, only the French recommendation limits CT 
scan in cases of medium and low levels of S100B, GFAP and 
UCH-L1 (Table 4). 

Finally, although blood remains the preferred matrix, 
alternative fluids, particularly saliva, have emerged as 
promising in paediatrics due to their non-invasiveness and the 
possibility of repeated sampling. However, salivary biomarker 
analysis requires rigorous control of pre-analytical variables 
and a deep understanding of the biological mechanisms 
underlying secretion. Factors such as salivary flow rate, age-
related variability, and swallowing dysfunction, common in 
children or adults with acquired brain injuries, may influence 
biomarker concentrations [124-126]. These aspects are 
further discussed in dedicated sections below.

Neuroanatomical and Functional Vulnerabilities 
in pTBI

The paediatric brain presents unique anatomical and 
physiological features that increase its vulnerability to TBI. 

Factors such as a larger head-to-body ratio, underdeveloped 
neck musculature, higher water content, and lower 
myelination contribute to a different biomechanical response 
to trauma compared to adults [127]. As a result, injury 
patterns differ, with children exhibiting a higher proportion of 
diffuse brain injuries and different lesion topographies [127].
This increased prevalence of diffuse brain injuries in children 
is partly explained by their open basal cisterns, which allow 
for a different redistribution of traumatic forces [46].

Neuroimaging findings also differ significantly: while 
most acute lesions involve haemorrhages, injuries in children 
often affect extracerebral structures, including the skull and 
facial bones [127]. Despite clinical suspicion, CT scans are 
frequently negative, normal in up to 78% of paediatric cases, 
even when other injuries are present [55] (Supplementary 
material S2a). Skull fractures are reported in approximately 
5% of mild and up to 50% of severe pTBIcases, and are 
associated with poorer clinical outcomes [128]. Beyond its 
traditional mechanical role in trauma, emerging evidence 
suggests that skull bone marrow may contribute to the 
neuroinflammatory response, potentially influencing 
secondary injury mechanisms [128] (Supplementary 
Materials S4). Moreover, mild TBI can disrupt age-related 
brain development, leading to long-term reductions in both 
grey and white matter volumes and associated neurocognitive 
impairments [129].

The brainstem, which coordinates vital functions such 
as respiration, blood pressure, sleep, and swallowing, is 
particularly susceptible to injury in children due to its 
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Author CT Scan 
required

Biomarker use
and its levels Clinical criteria Risk and 

Recommended action

French Guidelines 
[96] NO Not recommended 

-GCS 15
-Asymptomatic patient without 

medium or high risk criteria

- Low risk.
- Discharge patient with oral and written 

instruction for home monitoring

NO

-S100B within 3 hrs
-GFAP+UCH-L1 within 

12 hrs

-S100B < 0.10μg/L or
GFAP and UCH-L1 < 

cut-off

-Trauma with high kinetic
-Retrograde amnesia 30 min 

before injury
-GCS<15 within 2 h post injury 

with intoxication
-Age ≥65 yrs and antiplatelet 

therapy

- Medium risk.
- Discharge patient with oral and written 

instruction for home monitoring.

YES
within 8 h

-S100B after 3 hrs
GFAP+UCH-L1 after 

12 hrs

-S100B > 0.10μg/L or
GFAP and UCH-L1 

>cut-off

See above

-Medium risk.
-If the first CT scan is normal, discharge 
patient with oral and written instruction 

for home monitoring

YES
within 1 h Not recommended 

-GCS<15 within 2 h post injury
-Focal neurological deficits
-Post traumatic convulsion

-Clinical signs of skull fracture
-Repeated vomiting

-Anticoagulant intake or 
Antiplatelet therapy

-Congenital haemorrhagic 
disease

-High risk.
- Admission for observation  ≥24 h
-Consultation with neurosurgeon

-Repeat CT scan if neurological and/or 
GCS deterioration

Scandinavian 
Guidelines [96] NO Not recommended GCS 15

-Minimal risk
-Discharge patient with oral and written 

instruction for home monitoring

NO
-time injury-S100-B 

sampling < 6h
-100B < 0.10 μg/L

-GCS 14
-GCS 15 + suspected/confirmed 

loss consciousness
-GCS 15 + repeated vomiting (≥ 

2 episodes)

-Low risk
-Discharge patient with oral and written 

instruction for home monitoring

YES 
-Time injury-S100-B 

sampling > 6h
-S100B > 0.10 μg/L

See above

-Mediun risk
-If  CT scan is normal, discharge patient 
with oral and written instruction for home 

monitoring

YES
-Time injury-S100-B 

sampling > 6h
-S100B > 0.10 μg/L

-GCS 14-15 and 
-Age ≥65 yrs and antiplatelet 

therapy

-Medium risk
-If  CT scan is normal, discharge patient 
with oral and written instruction for home 

monitoring

YES Not recommended

-GCS 14-15 and
-Focal traumatic seizures

-Clinical signs of depressed or 
basal skull fracture

-Shunt-treated hydrocephalus
-Therapeutic anticoagulants or 

coagulation disorders

-High risk
-Admission for observation  ≥24 h
-Consultation with neurosurgeon

-Repeat CT scan if neurological and/or 
GCS deterioration

Mavoudis 
et al. 2025

[36]
NO

-S100B<0.1 μg/L 
-GFAP within normal 

limits
-No neurological symptoms

-Low risk
-Safe discharge with symptoms 

monitoring instructions and 
follow-up care if needed

YES,  if 
symptoms 
worsen or 
a history 

of multiple 
concussions

-Moderately elevated 
levels

-GFAP> 626pg/mL
-UCH-L1>
225 pg/mL

-Mild neurological symptoms
-Moderate risk

-Closer observation and a clinical 
reassessment within a few hours. 

Table 4: Main recommendations using biomarker-based risk stratification of TBI to minimize unnecessary CT scans [36,37,96].
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anatomical orientation [61]. This is clinically relevant, as 
brainstem damage may influence salivary secretion and the 
release of brain-derived biomarkers into saliva [81]. Cranial 
nerves (V, VII, IX, X, XII), which regulate salivation and 
swallowing, are affected in pTBI (cranial nerve injury: 6.5% 
(CI 5.0-8.3)  and 4.7% in 1-15 yrs of age, respectively) and 
may contribute to secondary dysfunctions [130,131].

In children, blood–brain barrier (BBB) disruption 
typically affects the microvascular compartment [132], 
influencing the passage of molecules into the bloodstream 
and possibly saliva. Mechanisms allowing the passage of 
brain-derived molecules into saliva, such as cranial nerve 
transport, exosomal pathways, and the glymphatic system 
[5,15,22,25,81,82,87,133-137], are discussed in dedicated 
sections below and in more detail in Supplementary Material 
S2. Finally, age-dependent variability in cerebral blood flow 
may further modulate biomarker kinetics, although its precise 
impact on biomarker levels remains unclear [138].

Molecular Mechanisms of Injury and 
Inflammation in pTBI

Paediatric TBI triggers a multifactorial cascade of 
molecular events that contribute to progressive cellular 
damage beyond the initial mechanical insult [61,120]. These 
include excitotoxicity, calcium overload, oxidative stress, 
mitochondrial dysfunction, and neuroinflammation. Gene 
expression studies in animal models have revealed altered 
regulation of pathways involved in energy metabolism, signal 
transduction, cell adhesion, and transcription [4,7,120].
The characteristics of each fluid brain biomarker (Table 2) 

influence its ability to reflect primary versus secondary injury 
mechanisms. Interpretation is further complicated by pre-
analytical factors (e.g., sampling time), biological variability 
in paediatric patients (Table 3), analytical variability, and 
potential extracranial confounders (Table 2) [139]. A wide 
range of fluid biomarkers have been proposed for mTBI, 
including indicators of astrocytic injury (e.g., S100B, 
GFAP), neuronal and axonal damage (e.g., NSE, UCH-L1, 
αII-spectin, tau proteins, neurofilaments), blood–brain barrier 
disruption (e.g., occludin) [140], and neuroinflammation (e.g., 
IgA, ILs, MMPs, S100A12) [141]. Neuropeptides including 
CGRP, PACAP-38, VIP, and substance P were significantly 
elevated in young children with mTBI, particularly in those 
with CT-positive findings, suggesting diagnostic utility 
[110]. Emerging markers such as exosomes and miRNAs are 
under investigation, but currently lack specificity regarding 
injury severity or anatomical localization. Genetic factors, 
including single nucleotide polymorphisms in APOE, BDNF, 
COMT, and ion channel genes (e.g., CACNA1A, ATP1A2), 
may contribute to individual susceptibility and outcomes 
in pTBI [7,142]. The APOE genotype, particularly the ε4 
allele, has been associated with pTBI outcomes, although 
its prognostic impact appears time-dependent and may differ 
from that observed in adults [143,144]. While the molecular 
consequences of concussion and subconcussive impacts 
remain poorly defined, elevated levels of brain-enriched 
proteins such as NfL, GFAP, and autoantibodies, persisting 
months after injury, have been associated with long-term 
complications and may support extended monitoring [13]. 
Salivary IgA-related immune responses are also being 
explored as potential biomarkers of asymptomatic brain 

YES,
immediate

-S100B significantly 
elevated

-GFAP and UCH-
L1highly elevated

-Persistent or worsening 
neurological symptoms

-High risk
-Possible hospitalization

Not indicated

-Persistently elevated 
NfL and tau protein 
levels, those have 

been associated with 
chronic post-concussive 

symptoms and 
neurodegenerative risk

-Observation of persistent 
symptoms beyond

four weeks

-Unknown risk
-Neurology referral,

cognitive rehabilitation,
and long-term monitoring for long-term 

prognosis

Manley 
et al. 2025

[37]

Very low risk of 
CT - detectable 

intracranial injury 
with sampling 

up to  24hr after 
injury

GFAP
-Upper reference  range 
(97.5th) in healthy adults: 

51-71 pg/mL
-Cut off : 22-65 pg/mL

Not indicated Not indicated

UCH-L1
-Upper reference  range 

(97.5th)  in healthy 
adults:157-459 pg/mL

-Cut off : 327-400 pg/mL

Not indicated Not indicated

S100B
-Upper reference  range 
(95th) in healthy adults: 

0.105 μg/L
-Cutoff : 0.105 μg/L

Not indicated Not indicated
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injury [141]. A machine learning-based prognostic model 
for pTBI has been proposed, combining clinical parameters 
(e.g., GCS, pupillary response, location of the head 
haematoma) and a risk score based on laboratory indicators 
(e.g., LDH, NT-proBNP, pH, Hb, Alb, CRP/albumin ratio) 
[71]. Although coagulopathy is a recognized complication in 
TBI, paediatric data on the predictive value of biomarkers, 
such as copeptin, S100A12, the neutrophil to lymphocytes 
ratio, IL-33 and galectin-3, for coagulopathy and progressive 
haemorrhagic injury remain limited [139,145]. Beyond 
structural and metabolic pathways, inflammatory mediators 
have received increasing attention. Cytokines such as IL-1β, 
IL-6, TNF-α, IL-10, and IFN-γ orchestrate both local and 
systemic immune responses involving resident CNS cells 
and circulating immune cells. In pTBI, the pro-inflammatory 
response appears more intense and prolonged than in adults. 
IL-6, in particular, has pleiotropic effects in the CNS, 
including modulation of acute-phase proteins, immune cell 
activation, blood–brain barrier permeability, and cerebral 
oedema through aquaporin-4 upregulation [4,146]. Recent 
studies have reported elevated serum levels of  IL-6, IL-8, 
and TNF-α in pmTBI patients compared to healthy controls 
[27,147,148]. Extracellular vesicle–associated IL-6 was 
significantly increased within hours after injury in adolescent 
athletes [149]. Preliminary evidence also suggests that 
combining IL-6 with other biomarkers—such as NfL, GFAP, 
or NT-proBNP— may help rule out intracranial injuries, 
potentially reducing unnecessary CT scans and observation 

stays [111]. Conversely, general inflammatory indices (e.g., 
systemic immune-inflammation index or neutrophil-to-
lymphocyte ratio) currently lack validation in this context 
[106,150].

Saliva as an Emerging Matrix for TBI 
Biomarkers

Recent studies have explored the use of saliva as a matrix 
for detecting biomarkers of mTBI, both in adults and children 
(Table 5; Supplementary Material S6) [5,12,15,17-23,25,151-
155]. In pTBI, the focus has been on brain-specific proteins 
such as S100B, GFAP, and UCH-L1, as well as non-specific 
biomarkers including Beclin1, IL-6, IL-8, D-dimer, miRNA, 
mitochondrial DNA, and soluble NCAM [15,92]. In adults, 
saliva has been investigated as a potential source for detecting 
cortisol, EVs, GFAP, NF-L, S100B, t-tau, UCH-L1, and 
CRP (Supplementary Material S6). Although these findings 
support the feasibility of salivary testing, the detectability 
of brain biomarkers in saliva varies markedly. This is partly 
due to differences in molecular weight, which affects their 
diffusion or transport from blood to saliva. For instance, 
GFAP and UCH-L1 show low saliva/blood ratios, whereas 
S100B reaches a ratio of approximately 0.8, indicating more 
efficient passage or different release mechanisms (Table 
2). Notably, these differences are not solely attributable to 
molecular size, as local release from inflamed oral tissues, 
altered salivary flux, salivary gland AQP, and altered oral 
functions may also play a role as reported in details below.

Authors,
publication 

yrs (ref)
Study Patients and controls Biomarkers Saliva sampling, 

storage and methods Main evidence

Ewing-Cobbs 
et al, 2017

[17]

prospectivecohortstudy 
to evaluate post-

traumatic stress after 
6 months 

55 children with TBI (8–
15 yrs), 29 extracranial 

injury, 33 healthy 
controls; GCS:3-8:36%; 
9-12:  11%; 13-15:53%

Cortisol, 
salivary 

α-Amylase 
(sAA)

Saliva sampling (by polyolefin 
swabs) before and after the 

TSST-C.
Frozen samples ( −20˚ C). 

Analytics using  commercially 
available assay. Intra- and 
inter-assay coefficients of 

variation were, on average, 
less than 10% and 15% 

respectively.

Injured children showed 
higher cortisol; TBI 

children had elevated 
cortisol, adolescents 
elevated α-Amylase. 

Altered stress reactivity 
associated with PTSS.

Fedorchak 
et al,

(2021)
[19]

multicenter study

112 mTBI (8–24 yrs).
Sample collection: 

≤14 days post-injury 
≥21 days post-injury

nc RNAs

Non-fasting saliva samples 
(n=505) collected using 

OraCollectSwabs;
RNA sequencing

Machine learning 
model with 16 ncRNAs 

predicted persistent post-
concussion symptoms 
(AUC 0.86). Combined 

ncRNAs, balance, 
cognition best predicted 

recovery.

Ebraimi et al, 
2022
[20]

cross-sectional 
descriptive study

150 mTBI patients 
(mean 33 yrs; mostly 

adults)

Salivary 
α-amylase 

(sAA)

Unstimulated  saliva 
sample (1-2 mL) collected  
immediately after patient 

arrival at ED. Use of amylase 
assay kit for serum

Higher salivary amylase 
in patients with CT 
abnormalities; no 

correlation with age, 
sex, or consciousness 

level.

Table 5: Recent evidence published on mTBI and pTBI using salivary biomarkers [5,12,15,17, 19-23,25,152,153].
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Tabor et al, 
2023
[153]

cohort study in
paediatric ice hockey 

players.

233 ice hockey players; 
165 baseline, 68 post-

SRC; adolescents
cortisol Saliva

Post- sport-related 
concussion athletes had 
significantly lower cortisol 

vs. baseline. Cortisol 
not correlated with 

symptoms, but females 
reported more and more 

severe symptoms.

Hicks et al.,
2022
[22]

prospective multi-
center study 

251 concussion patients 
(mean age 18±7 yrs; 57% 

male)

22 salivary 
miRNAs

Saliva swabs collected in a 
non-fasting state.

See details of molecular 
methods.

Identified 10 clusters; 
pathways involved 

adrenergic, estrogen, 
fatty acid metabolism, 
GABAergic, synaptic 

vesicle, TGF-β signaling.

Hiskens et al.,
2022

[5]
systematic review

9 studies, 2018–2021, 
heterogeneous 

population 
(athletes, hospital 
patients, children, 
adults).5 articles 

( pediatric population).

188 salivary 
miRNAs, 13 
consistent 
across ≥2 

studies

- by saliva expectoration into 
a container   plus  sample 
preservation (5 studies)
- by designed sponge (3 

studies)
- both methods (1 study) 

Heterogeneity precluded 
meta-analysis; 13 
candidate miRNAs 
showed consistent 

directionality (e.g., let-7i-
5p, miR-107, miR-181a-
5p up; miR-182-5p, miR-

26b-5p down).

Ewing-Cobbs 
et al, 2023

[21]

study with prospective 
cohort design

74 TBI, 35 EI, 51 controls 
(8–15 yrs), 7 months 

post-injury

Cortisol, 
salivary 

α-Amylase 
(sAA)

As in ref (17)

Altered sAA but not 
cortisol reactivity; sAA 

linked with emotion 
dysregulation and sex 
differences (greater in 

girls).

Kvist et al, 
2023
[23]

small prospective study 28 pediatric mTBI (mean 
age 8 yrs), 30 controls

lectin-binding 
glycan 

Saliva (1-2 mL), . collected 
at least 1 h after eating. 

saliva collection: - in children 
aged ≤4 years by using a 

syringe without a needle from 
the sublingual space in the 

mouth; - in patients >4 years 
by rinsing their mouths twice 
with pure water and then to 

spit saliva into a clean plastic 
cup.

Lectin-bound glycan levels 
were measured by a 

biochemical glycan-binding 
analysis and by fluorescence.

Significant changes in 9 
salivary glycans in TBI 
vs. controls; high inter-

individual variability.

Mavroudis  
et al, 2023

[15]
review

12 studies, 83% 
published in 2020-2022,.
only 5 articles concern 

the pediatric population.

S100B, NfL, 
miRNA, EVs saliva

Research promising 
but insufficient; need 

validation. Pediatric data: 
S100B higher in TBI 
(AUC 0.675); salivary 

miRNAs (e.g., miR-27a-
5p/miR-30a-3p ratio AUC 
0.81); mixed findings for 

S100B in sports.
Feinberg C  

et al.,
2024
[12]

review 29 studies, 1268 mTBI 
subjects

miRNA, 
cortisol, 

melatonin, 
others

saliva and urine

Identified 8 salivary and 
2 urinary biomarkers 

with diagnostic/
monitoring potential.

Ciancaglini  
et al.,
2024
[25]

a study with case-
control design

14 severe pediatric TBI, 
9 controls (mean ~6–10 

yrs)
miRNA 

Preliminary tap water rinse 
or oral hygiene regimen.
Collection of sub-lingual 

saliva  (by P-157 nucleic acid 
stabilization swabs) within 24 

h, 24–48 h and >48 h after 
injury. Samples stored at 

−20 °C and processed by a 
Genomic Sciences Facility.

Clear separation of TBI 
vs. controls by miRNA 

profiles; specific miRNAs 
up- or down-regulated; 
temporal changes post-

injury.



Barenghi L, et al., Dent Res Oral Health 2025
DOI:10.26502/droh.00100

Citation: Livia Barenghi, Alberto Barenghi, Matteo Vidali. Paediatric Traumatic Brain Injury: The Evolving Role of Blood and Salivary Biomarkers. 
Dental Research and Oral Health. 8 (2025): 109-132.

Volume 8 • Issue 4 120 

Analytical, Biological and Clinical Challenges in 
Salivary Biomarker Use

For what has been shown so far, saliva appears to 
have genuine potential as a diagnostic fluid in the context 
of traumatic brain injury, offering a non-invasive and 
physiologically meaningful alternative to blood-based testing 
[81,82]. However, caution should be exercised when using 
saliva for TBI biomarker detection, as it is associated with a 
range of biological, pre-analytical and analytical confounders 
that may limit its clinical applicability (Supplementary 
Material S7) [79,99].

The Influence of the Oral Health Status
Biological variability includes oral health status, age, 

and sex. Conditions such as gingivitis and periodontitis 
alter salivary concentrations of proteins such as S100 
proteins, GFAP, and NSE. For example, increased levels 
of salivary and GFC S100A8 and S100A9 have been found 
in individuals with active disease, whereas these proteins 
were downregulated in patients with gingivitis [156]. 
Accordingly, the expression of  GFAP and  amyloid beta 
peptides expression (which has antimicrobial effects on oral 
pathogens)  is increased in GCF from patients with gingivitis 
and periodontitis [157,158]. Moreover, increased levels 
of albumin and haemoglobin subunits in GCF and saliva 
of patients with gingivitis and periodontitis are consistent 
with damage to the gingival epithelial barrier, as well as the 
well- known presence of blood residues after tooth brushing 
[81,82,159-161]. NSE, being present in neurons but also in 
erythrocytes and platelets, lacks specificity for TBI when 
measured in saliva from inflamed oral environments.

Salivary cytokine concentrations, including IL-1β, 
IL-6, IL-8, and IL-10, have been shown to remain stable 
across age (4–18 years) and between sexes [162]. However, 
they are significantly influenced by periodontal health 
and salivary flow. Gingivitis, which is common during 
orthodontic treatment in children, leads to elevated levels 
of several cytokines [82]. Moreover, higher salivary flow 
rates are associated with lower cytokine concentrations, 
complicating their interpretation. A careful assessment of oral 
inflammatory status is therefore essential when interpreting 
salivary biomarkers in pTBI. Further studies are needed to 
better understand the possible links between oral microbial 
changes and cytokine levels in this context [85,86].

Regarding miRNAs, although several are promising 
as TBI biomarkers and appear unaffected by oral disease, 
their expression depends on collection timing, glandular 

origin, epithelial cell desquamation, and oral microbiota 
[163-165]. Some miRNAs associated with post-concussive 
symptoms overlap with those implicated in oral cancers (let 
7a-3p, miRNA 133 a-5p, miR 769-5p, miR21-5), orthodontic 
remodeling (Let 7a-3p), or cleft lip/palate, limiting their 
specificity [166,167].

Salivary Flux in Paediatric and Adult Population
Salivary flow rate varies with age, sex, body weight, 

type of stimulation, and neurological condition [81]. High 
flow rates are physiological in infants and typically decline 
with age [81]. Excessive drooling (>3.5 mL/min) becomes 
pathological after the age of 4 and may occur in children 
with cerebral palsy, TBI, or other neurodevelopmental 
disorders. In healthy children, stimulated saliva shows higher 
flow rates than unstimulated, with older children exhibiting 
greater differences [162].The mean salivary flow rate was 
0.8 ± 0.5 ml/min in children (7.8±2.4 years) and 1.5±0.8 ml/
min in adolescents (15.1±1.7 years) [162]. The median of 
unstimulated salivary flow rate was 0.87 (0.54, 1.11)  ml/
min for boys, 0.65 (0.37, 0.98) ml/min for girls and 0.76 
(0.49, 1.05) ml/min overall  [168].Obesity is associated with 
a modest reduction in stimulated flow, particularly during 
adolescence [169].

Neurological damage affects salivary gland innervation: 
parasympathetic input drives secretion, while sympathetic 
tone regulates duct contraction [170]. In this context, 
chronic sialorrhoea, though relatively rare, may indicate 
underlying neurological conditions, including TBI [171]. 
The hypothalamic-pituitary-adrenal (HPA) axis may be 
altered post-TBI [4]. While data in paediatrics are limited, 
adult mTBI is associated with a transient increase in salivary 
cortisol, despite preserved circadian rhythm [103]. Long-
term survivors of pTBI generally show normal or recovered 
HPA function. Chronic fatigue is frequently reported after 
TBI, but does not appear to be clearly associated with HPA 
axis dysfunction. In fact, morning salivary cortisone levels 
were higher in TBI survivors, who have a high prevalence of 
fatigue, compared to healthy controls. 

Although rare, chronic sialorrhoea [172] presents with 
recognizable clinical signs, including facial skin maceration, 
oral infections, and respiratory or fluid balance disturbances.

Effects of Drugs
Pharmacological agents may influence biomarker 

detection through several mechanisms, including upregulation 
or suppression of protein synthesis, modulation of salivary 
gland function and flow, drugs [173]. Drugs like aspirin, 

Miller et al,
2024
[152]

prospective cohort 
study 

60 children (11–17 yrs) 
with Persistent Post-

concussive Symptoms 
(PPCS) and controls

827 salivary 
miRNAs

Saliva (2 mL) to obtain 300 
ng of extracted RNA.
See paper for details.

13 miRNAs differed over 
time between PPCS 

vs. recovered children, 
suggesting prognostic 

role.
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clomipramine, curcumin, and methamphetamine affect GFAP 
expression; others like olopatadine, cocaine, and dopamine 
have been reported to effect S100B or UCH-L1 expression 
and then could interfere with the detection of S100B or 
UCH-L1 in saliva (97) (Supplementary material S5).

Pre-Analytical Factors
The timing of sample collection is one of the main 

confounding factors in TBI biomarker analysis. Available data 
indicate substantial heterogeneity: samples are collected on 
admission in 30.4% of cases, within 6 hours in 10.1%, within 
12 hours in 4.1%, within 24 hours in 28.7%, after 24 hours in 
16.6%, and are unspecified in 10.1% of cases [92]. This wide 
variability, especially in delayed sampling (ranging from <30 
minutes to 14 days), hinders the interpretation of biomarker 
kinetics, particularly for miRNAs, and makes it difficult to 
assess the effects of sex, diet, exercise, and circadian rhythm 
[5]. French guidelines recommend collecting serum samples 
within 3 hours for S100B and GFAP, and within 3 to 12 hours 
for UCH-L1 (Table 4; Supplementary Material S3) [96]. 
Other studies, such as Manley’s, have reported meaningful 
levels even at 24 hours post-injury [37]. According to the Oris 
group, S100B, GFAP, and UCH-L1 are robust biomarkers 
with good pre-analytical stability in serum or plasma EDTA. 
S100B is stable at room temperature for up to 8 hours or 
refrigerated for 48 hours; GFAP and UCH-L1 remain stable 
for at least 3 days at 4–5°C, and for several months when 
frozen at -20°C or -80°C [9,62,95,96]. S100B tolerates up 
to five freeze–thaw cycles [174]. From an endogenous 
interference standpoint, S100B and UCH-L1 are unaffected 
by haemolysis due to their absence in erythrocytes, while 
GFAP may be susceptible [96]. IFUs (Instructions for Use) 
for tests such as Liaison® (CLIA) and Abbott’s GFAP/
UCH-L1 recommend avoiding haemolysis, lipemia, buffy 
coat contamination, and mechanical stress (e.g., vortexing) 
[175,176].

For saliva, stability data are scarce [9,62,95,96]. 
Salivary proteins may undergo modification (e.g., extensive 
proteolytic cleavage, partial deglycosylation, and protein-
protein complex formation) and degradation by the oral 
microbiome. Importantly, common sample preservatives 
(e.g. sodium azide) may interfere with assays [82]. In 
addition to stability, sample collection protocols themselves 
remain poorly standardised. Collection methods, such as 
drool, swab, or unstimulated saliva, are heterogeneous and 
are seldom adapted to paediatric populations [82]. Important 
factors like circadian rhythm, flow rate, periodontal status, 
and, especially, centrifugation are often neglected. These 
aspects are less relevant in emergency settings for moderate/
severe TBI, but are critical in research and clinical use of 
salivary biomarkers in pmTBI.

Analytics 
A wide range of analytical methods has been employed 

for the quantification of brain-specific biomarkers, 
particularly S100B, GFAP, and UCH-L1, primarily in 
research contexts [2-5,6,10,12,16,18-22, 31,57,82,92,152]. 
Available techniques for blood-based detection include 
ELISA (most commonly used), ECLIA, LIA, IRMA, IFMA, 
each with distinct analytical characteristics [9]. The Oris 
group provided a comparative overview of commercial 
platforms in current use, reporting information such as 
manufacturer, analyser type, sample volume, reaction 
time, detection technique, and decision thresholds [96]. 
The analytical variability of GFAP and UCH-L1 assays in 
serum or plasma has also been documented, including the 
impact of autoantibodies (e.g., anti-GFAP, anti-S100B), 
which may lead to overestimation due to analytical 
interference [62,96,9,25,26]. The analytical performances 
of commercially available assays for S100B, GFAP, and 
UCH-L1 have been extensively evaluated and are generally 
considered acceptable for clinical use. Detailed comparative 
analytical data are reported in Supplementary Material S8. 
Although assays from different manufacturers showed strong 
correlation, they did not exhibit complete agreement, with 
systematic differences in both measured concentrations and 
decision thresholds. To date, all manufacturer-approved 
methods for these brain biomarkers are validated for use in 
serum or plasma, not saliva. Nonetheless, several exploratory 
techniques have been applied to saliva in pTBI, including 
immune enzymatic assays, proteomics, DNA fingerprinting, 
and RNA sequencing. However, the stability of biomarkers 
in saliva, especially when entrapped in EV, remains 
uncertain—as does the influence of salivary pH compared 
to serum (Supplementary Material S7). Currently, cortisol is 
the only salivary test that is CE‑IVD marked and validated 
for clinical use. Other salivary assays—such as those for 
α‑amylase, CRP, IL‑1, IL‑6, cytokine panels, secretory IgA, 
and markers of blood contamination like transferrin—remain 
confined to the research setting, with no regulatory approval 
for diagnostic application [82].

Additional Challenges in the Use of Saliva for 
Biomarker Assessment of pTBI in Clinical Settings

Here, we aim to discuss other factors that could influence 
specificity. Currently, the specificity is insufficient at 45% 
for S100B, 11–41% for GFAP and UCH-L1, even when 
serum samples are used [96,177]. Beyond analytical and 
pre-analytical challenges (Table 2; Supplementary Material 
S5), the interpretation of salivary biomarkers for pTBI is 
further complicated by a series of additional biological and 
physiological factors (Table 3-5; Supplementary Material 
S3). These include the potential extracranial origin of 
brain proteins [15,31,66], embryological overlap between 
neural and salivary tissues, protein release and clearance 
mechanisms, as well as individual variables such as 
periodontal status, renal function, or local inflammation (Table 
6) [82,86,95,96,99,122,137,174,177-195] (Supplementary 
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Material S9). Taken together, these elements introduce 
substantial variability and may confound the diagnostic 
interpretation of salivary measurements in both research and 
clinical settings.

Experimental biomarkers: exosomes and non-
coding RNAs

Non-coding RNAs (ncRNAs), particularly miRNAs, 
are highly expressed in the nervous system and play 
key roles in neuronal physiology, including protein 
regulation, synapse maturation, and neural circuit formation 
[5,57,66,68,100,149,196-199]. Their detection within EVs — 
including exosomes — is being explored in TBI as a means 
to monitor injury mechanisms and recovery [68,100,200]. 
EV may include brain-specific proteins (e.g., GFAP, NF-
L, UCH-L1), nucleic acids, and metabolites, potentially 
reflecting the cell of origin and ongoing pathological 
processes. However, clinical use remains experimental due 
to challenges in EV isolation, assay standardisation, and 
uncertainties about BBB passage [163,201]. In pTBI, elevated 
levels of exosomal GFAP and neurofilament light chains 
have been reported, along with marked changes in salivary 

EV RNA profiles [57,121]. In particular, upregulation of 
complement system mRNAs (e.g., C1QB, C4A, C1QA, 
C1S) has been observed in patients with acute post-traumatic 
headache, suggesting that salivary EV analysis may help 
monitor mTBI complications [54,202].

Conclusion
While the evidence surrounding blood and salivary 

biomarkers, particularly exosome miRNAs, in the diagnosis 
and management of pTBI is promising, current data remain 
insufficient to fully elucidate their roles. Saliva, especially 
in pediatric populations, offers distinct organizational 
advantages, including non-invasiveness and the potential for 
repeated sampling. However, further research is needed to 
establish standardized protocols and clarify whether salivary 
biomarkers simply reflect molecules already present in the 
blood, detect brain-derived molecules earlier than blood 
tests, or identify molecules that do not appear in blood at 
all. The biological significance of salivary biomarkers in 
pTBI remains unclear, and current findings do not provide 
a complete understanding of the extent to which salivary 
markers can enhance diagnostic precision. Furthermore, there 

Factors Key points and Rationale

Extracranial origin of 
brain proteins

S100B and other proteins can derive from extracerebral tissues (e.g., adipose tissue, melanocytes), reducing specificity 
[177]. Elevations may also occur after fasting, exercise, trauma without brain injury, or surgery (95). Despite this, 
increases after TBI mainly reflect BBB disruption [178].

Embyological overlap 
between neural and 
salivary tissues

Shared neural crest origin explains basal presence of GFAP, UCH-L1, S100B, RAGE, and AQPs in salivary glands [96]. 
Expression varies across glands and developmental stages (Supplementary Materials S9) [179].

Protein release 
and clearance 
mechanisms

GFAP, UCH-L1, NSE are released with cell damage; S100B also has extracellular functions. Entry into blood occurs 
via glymphatic flow, BBB disruption, or RAGE-mediated transport. Cytokines may further modulate permeability [99]. 
Similar tight-junction mechanisms regulate salivary glands [180]. 

Genes involved in brain protein transport or clearance (RAGE, AQP-4, AQP-4-AS1) are expressed in all salivary glands 
[179]. AQP-4 is localised in myoepithelial cells around salivary lobules and ducts, with reduced expression in primary 
Sjögren’s syndrome  [181,182].

Aquaporin expression 
in brain and salivary 
glands

AQP4 clears proteins in brain; AQP5 regulates saliva secretion. Expression ratios change with development and 
inflammation [179]. AQP genes (3, 4, 5, 8, AQP4-AS1) are linked to cerebral edema, salivary dysfunction, and 
neuropsychiatric conditions [183-186]. Their role in TBI remains under investigation.

Half-life of TBI 
biomarkers

In blood, half-lives range from 7–36 h; in saliva they are unknown. Simulations suggest  rapid S100B kinetics (peaks 
within 0.2–0.4 h) [178]. Stability may differ for free vs. EV-bound proteins, and is influenced by proteolysis and oxidative 
stress. Only in blood, three biomarker trajectories have been described: persistently high, persistently low, and reversal 
of decline (the latter predicting deterioration) [122]. 

Individual factors

Renal function Impaired renal clearance, especially in pediatric abusive TBI, elevates serum S100B. GFAP and UCH-L1 show poor 
correlation between serum and urine, suggesting limited renal elimination [99,137,139,187-189].

Periodontal disease

Gingivitis and periodontitis allow serum proteins to leak into saliva (82,159) and the first one affects up to 70% of 
those over seven years (190). Periodontal pathogens (e.g., Porphyromonas, a key drive of periodontal disease) can 
disrupt BBB and promote neuroinflammation [191-194]. Oral microbiome changes (Lactobacillus, Saccharomyces, 
Micrococcus) have been linked to symptom burden in pediatric mTBI [86].

Local inflammation Oral infections may downregulate AQP5, impairing salivary secretion and contributing to neuroinflammation and 
neurodegeneration [195].

Table 6: Additional biological and physiological factors influencing salivary biomarker interpretation [82,86,95,96,99,122,137,139,174,177-
195].
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is a pressing need to investigate the impact of biological, pre-
analytical, and analytical variability on salivary biomarker 
levels, including the influence of salivary flow rate, oral 
health, and circadian rhythms, which may all play a role in the 
variability observed in both clinical and research settings. To 
move forward, well-designed studies are required to establish 
robust pediatric reference intervals and cut-off values for 
salivary biomarkers, which remain a key area of uncertainty. 
Additionally, personalized monitoring of concussion in 
athletes or individuals with chronic conditions should be 
further explored to optimize the clinical utility of these 
biomarkers.The development of reliable serum and salivary 
tests for routine clinical use is still in its early stages, and 
cross-platform comparisons remain challenging. Emerging 
technologies such as wireless biosensors and AI-generated 
feature clusters for diagnostic, prognostic, and therapeutic 
applications hold great promise but require further validation. 
As research progresses, it is essential that both pre-analytical 
and analytical variabilities are well understood and controlled 
to ensure that future recommendations in clinical practice 
are evidence-based and applicable across diverse healthcare 
settings.
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