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Abstract 

The theory of surface phenomena in the production 

of micro- and nanocylinder for important cases is 

considered. The case of a nanocylinder is 

considered, when its diameter is greater than, equal 

to, or less than Tolman's length. We found a 

correspondence between the Gibbs – Tolman –

Konig – Buff and linear Van der Waals theories. 

But for a nonlinear theory, this correspondence is 

absent. 

Keywords: Tolman length; Gibbs – Tolman –

Konig – Buff theory; Van der Waals theory  

1. Introduction 

Recently the demand for much attention has been 

devoted to nanomaterials, which is related to their 

wise use in rapidly developing nanotechnology. An 

important role in these technologies is assigned to 

the study of surface phenomena. 

The surfaces energy [1–5] appears in many 

equations of nanotechnology physics. The surfaces 

tension determines such parameters and 

phenomena as the capillary pressure, wetting 

(contact) angle, saturated vapor pressure, 

adsorption, capacitance of the double electrical 

layer, work spent on the formation of critical 

nuclei, length of capillary waves, etc. We will 

consider isothermal processes. 

In 1949 Tolman [6], on the basis of the Gibbs 
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thermodynamics description, obtained the formula 

(also see below form (6)). 

( )    σ σ / 1 2δ / ~ σ 1 2δ /R R R + −
(1) 

where 0 is the Tolman length parameter (

is surface tension in limit 0 → ) [1–6], 

δ ,e sr r= −                               (1a) 

rs is the radius of the tension surface (rs= R), re is 

the radius of the equimolecular separating surface. 

The radius microwire coincides with the true size R 

of the separating surface (in the Gibbs model, when 

the separating surface has no thickness). 

Approximate formula (1) has the simplest 

dimensional dependence of surface tension. 

Let's carry out a simple derivation of Tolman's 

formula. The radius microwire coincides with the 

true size R of the separating surface (in the Gibbs 

model, when the separating surface has no 

thickness). Approximate formula (1) has the 

simplest dimensional dependence of surface 

tension. 

The surface tension acts on a separating surface. 

Excess pressure is provided by the Laplace 

equation [1-5]: 

=p ,                   (2) 

where  is the surface tension,  determines the 

mean curvature of the surface? Differential of 

excess pressure can be written in the form of 

 ddpd += )( .  (2a) 

To determine the surface tension, let us apply the 

Gibbs equation that can be written in the form of  

)( pddd −=−=  ,  (3) 

where  is the Gibbs adsorption,  is the 

chemical potential, 0 is a non-negative 

parameter characterizing the thickness of the 

interfacial layer (the Tolman length in (1) – (1a)) is 

used as a parameter  which is equal to the 

distance between the surface of tension and 

equimolar surface. The numerical values of 

parameter  are in the range from 0.1 to 10 nm 

(see [1-10]). When writing the equation (3) we 

have taken into account that the differential for the 

chemical potential and the Gibbs adsorption are 

equal ~ ( ) /d d p n   , and ~ n  , 

where n is the substance concentrations 

difference in interfacial phases. Equation (3) holds 

for any smooth interfacial phase irrespective of its 

geometrical shape. In what follows we assume the 

Tolman length parameter,  , does not depend on 

the curvature radii. This assumption is considered 

acceptable if the curvature of the surface is not too 

large compared with 1/δ [1-10]. Substituting (2) 

into (3) we can obtain the equation (

const  ) 









d

d

+
−=

1
.    (4) 

Having integrated (4) we can find 






+
=



1

)(

.                               (5) 

Where 
)( is a flat surface tension as 0→

.For arbitrarily curved surface 

21 /1/1 rr += , where 1r and 2r are the 
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principal radii of curvature of the surface [7] 

therefore from (5) we finally obtain 

( )

1 2

1 1
1

r r








=
 

+ + 
 

,        (6) 

(or) 

( )

1 2

1 1
~ 1

r r
  

  
− +  

  
.              (6a) 

The resulting formula (6a) represents a linear 

dependence for ri > δ ( 0 ) [1-10]. 

2. Methods 

2.1 The equation Gibbs–Tolman– Konig–Buff 

for microwires A Small Long Cylinder  

The radii of the equipotential (R) and equimolar (R 

+ δ) surfaces should play an important role in 

obtaining the equation Gibbs–Tolman– Konig–Buff 

(GTKB) for micro- and nanowires. By using 

auxiliary functions that involve these radii, one can 

calculate the formula for the energy of surface 

tension. We introduce these auxiliary functions (see 

[7] for more details): 

1). The geometric characteristic of nanoparticles 

(NPs) [7]: 

( )

( )
,

S r
f

V r


=


                                    (7) 

The geometric characteristic of nanoparticles also 

determines form factor K that can be estimated 

from expression [7]: 

K ~ rf .                                                   (7a) 

2). The adsorption level (associated with geometric 

considerations) can be determined through the 

following function [7]: 

( )

( )

,δ
,

V r
g

S r


=

                              (8) 

Where 

( ), δ ,e sV r V V = −
        (9) 

is a quantity directly dependent on the Tolman 

parameter? 

Using these characteristic functions based on the 

Gibbs theory [1–6], one can obtain the GTKB 

equation in the most general form (for the 

derivation of the equation in more detail, see [7]): 

( )ln σ δ
.

ln 1

rgf

r gf

 
=

 +
                 (10) 

The formal solution of this fairly simple-looking 

equation can also look quite simple. However, the 

formal solution is not informative without 

specifying auxiliary functions because in the 

concrete calculation of an integral, it is always 

necessary to take into account the form of 

polynomials that arise from the form of 

characteristic functions. This is connected with the 

fact that it is necessary to find an analytical branch 

that corresponds to the required physical solution. 

The auxiliary functions for cylinder the have the 

following functional dependencies: 

LRV 2= , 2S R L= ,                (11) 
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where R and L are the radius and height of the 

cylinder. 

Using (7) - (10) allows one to obtain the equation 

Gibbs – Tolman – Konig – Buff for micro- and 

nanowires. 

2.2. Solution for Gibbs – Tolman– Konig – Buff 

equation to microwires 

In well-known monographs [1–5], and fundamental 

works [6–10] it is stated that the surface tension 

must decrease upon decreasing microwires radius. 

Let us consider this problem in greater detail. 

The Gibbs–Tolman–Konig–Buff (GTKB) 

differential equation [1–6] (for cylinder) is used to 

describe the surface tension of microwires surfaces 

[7] 

2

2

2
2

2

ln

ln









++









+

=

RR

RR

Rd

d






(12) 

where R is the microcylinder (microwires) radius, 

0 (The Tolman length) is a non-negative 

parameter characterizing the thickness of the 

interfacial layer. In surface thermodynamics the 

Tolman length is used as a parameter  which is 

equal to the distance between the surface of tension 

and equimolar surface. The numerical values of 

parameter  are in the range from 0.1 to 10 nm. 

To solve (12), we introduce dimensionless variable 

x = r/δ.  














++

+
−=






/

23)( 22

12
ln

R

dx
xxx

x
.  (13) 

The integral in (13) can be exact [7]. The final 

result has the form: 

( )

2

2 1
/ exp arctg

2( / ) 2 / 1 1 2 /

R

R R R
 

   


  

= −  
+ + +  

(14) 

The well-known Tolman formula is in special case 

R for this formula (14)  

( ) 1
/ ~

1
R

 




+

(15)

Figure. 1: Functions graphs of solution (14) (see [7]). 

The first term in expansions (13) – (14) into series 

in powers of x (if R  ) represents the 

Rusanov linear formula [5]: 

( ) )0.645/ ~ /(R  
                           (15a) 

for the cylindrical surface. 
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2.3. Liner Van der Waals theory 

The articles [11 - 17] have considered a general 

approach to the relationship between the GTKB 

theories and Van der Waals theories. It is proposed, 

at first, to solve an equation for the introduced 

order parameter, similar to the Lagrange–Euler 

equations (LEe) that can be presented in the 

following form: 

(16) 

where L is the dimension of space (or the number 

of components of the order parameter, in case 

cylinder L=2), whereas the indicated polynomial 

( ),ρF a   represents an analytic function that is 

determined for each specific case. 

Parameter 
1

cca r−= that is, it is a parameter that 

determines the size of NPs. Equation (16) can be 

obtained based on the most general principles [11 - 

17]. 

The basic equation of the linear Van der Waals 

theory of an inhomogeneous medium can be 

written in the form:

2

1
( ) 0o

n
n n n

r 


 + − − = ,   (17) 

where n (x) is the function when proportional to the 

volume density N(x) (x = r/δ, no=const.). 

The physical solution to Eq. (17) has the form: 

1 0n(x) c (x)c K= + ,                      (18a) 

where 0 (x)K are modification Bessel functions 

(see Figure. 2). 

Figure. 2: Functions graphs of 0 (x)K , and volume density function, N(r/δ). 

We will accept for the volume density function, 

N(r/δ). We get:  

( ) (0) ( ) 1/N n n Rr  →  = , 

( ) ( ) 0N n+ → + = .   (18b) 

Substituting solution (18a) into expression (18b) 

and integrating, we obtain: 
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            (19) 

Solution (19) can be used for calculating 

adsorption, which is defined as the excess number 

of atoms or molecules in the surface layer of the 

nanoparticle per unit area: 

1

0 0

( )

( )

K x

K x
→ ,                             (20)  

(x = r/δ, x0 = R/δ).   

Taking into account adsorption (20), we obtain the 

differential equation. 

0 1 0

ln 1

ln { ( ) / ( )} 1

d

d x x K x K x


=

+
.       (21) 

if х  1 

( )

( )
0

1 0

1
K x

K x
→ (21a) 

we obtain 

1

1

ln

ln

+
=

xxd

d 
,                                    (22) 

(See formula (15) and (12)); 

and if x  1 

( )
( ) x

x
xK

xK



2
ln

1

0                                     (23) 

where  = 1,781 is Euler constant, we obtain 

ln 1

2ln
ln 1

d

d x
x

x





=

+
                           (24) 

This equation is integrated numerically. 

2.4. Nonlinear Van der Waals theory  

The nonlinear equations of the Van der Waals 

theory can be written in the form 

1 1 12

1

1 1
n n exp{ n } 0

r 

 + − − =   (25a) 

2 2 22

1

1 1
n n exp{n } 0

r 

 + − =      (25b) 

Physical solution (25) can be presented 

2

1n 2ln[1 ]i X=  −                      (26) 

1 1r (2 2 )X =

The simple volume density function, N, may be 

determined: 

2

11 2ln[1 ]N X= + −                    (27) 

1 1r (2 2 )X =

The resulting density profile (see Fig. 3 and (27)) is 

very different from the results of the linear theory 

(see Fig. 2 and (19)), and therefore the GTKB 

theory (see (14)). 

Figure 3: Functions graphs of (27). 
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The results obtained have a physical meaning only 

as long as the function N is positive. 

3. Conclusions 

(i) If equations (25a, b) can be compared with its 

linear analogue (17), then solution (25a, b) is not 

reduced to linear analogs. The solution has a highly 

non-linear character. This nonlinearity cannot be 

described by perturbation theory, starting from a 

linear result. 

(ii) If the formation of nanoparticles is determined 

by nonlinear processes, then there is a suspicion of 

an incorrect description of it within the framework 

of the classical theory of nucleation. 
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