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Abstract
Non-negative Matrix Factorization (NMF) is an algorithm that can 

reduce high dimensional datasets of tens of thousands of genes to a handful 
of metagenes which are biologically easier to interpret . Application of 
NMF on gene expression data has been limited by its computationally 
intensive nature, which hinders its use on large datasets such as single-
cell RNA sequencing (scRNA-seq) count matrices. We have implemented 
NMF based clustering to run on high performance GPU compute nodes 
using CuPy, a GPU backed python library, and the Message Passing 
Interface (MPI). This reduces the computation time by up to three orders of 
magnitude and makes the NMF Clustering analysis of large RNA-Seq and 
scRNA-seq datasets practical. We have made the method freely available 
through the GenePattern gateway, which provides free public access to 
hundreds of tools for the analysis and visualization of multiple ‘omic 
data types. Its web-based interface gives easy access to these tools and 
allows the creation of multi-step analysis pipelines on high performance 
computing (HPC) clusters that enable reproducible in silico research for 
non-programmers.
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Background
Non-negative matrix factorization (NMF) [1] has proved to be a very 

effective technique for decomposing array-based biological data into 
meaningful components. In gene expression analysis, NMF is used to describe 
the activity of tens of thousands of genes in a typical gene expression dataset 
in terms of a small number, k, of metagenes, i.e., positive linear combinations 
of genes [2]. Biological samples data can then be summarized as expression 
patterns of their metagenes. Compared with other dimension reduction 
techniques such as Principal Components Analysis (PCA), the components 
identified by NMF are more easily related to actual biological processes and 
mechanisms due to the non-negativity constraint.

However, the use of NMF has been limited by its computational 
requirements. NMF is a non-convex optimization problem that requires many 
iterations to converge to a solution, and the solution is not guaranteed to be 
a global minimum. Compounding this problem is that the optimal number 
of clusters, k, is seldom known in advance. Therefore, when NMF is used to 
cluster data, it is run many times with varying initial conditions over a range 
of values of k.
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Cluster stability metrics such as the cophenetic correlation 
coefficient [3] or the silhouette score [4] are then used to 
identify the value of k that corresponds to the most stable 
clustering.

The result is that on top of the computational complexity 
of NMF, to perform clustering it must be run many thousands 
of times for a given analysis. With the current NMF-based 
methods it is not unusual to encounter analyses that require 
days to run on a dataset as small as 1000 cells by 5000 
transcripts. For larger gene expression or single-cell RNA-
Seq (scRNASeq) datasets, use of NMF becomes impractical, 
requiring potentially weeks of computing time on large-
memory supercomputers.

Graphical Processing Units (GPUs) have become a 
popular and cost-effective way to speed up computation. 
GPUs are limited in memory compared to CPUs but are 
designed for processing large blocks of data in parallel and 
are particularly well-suited to matrix operations, which 
are the basis of the NMF algorithm. Via GPU application 
programming interfaces (APIs) such as the nVidia Compute 
Unified Device Architecture (CUDA) [5], general purpose 
algorithms can be executed in parallel using GPUs to speed 
computation. To further parallelize computation across 
multiple GPUs, parallel programs can be synchronized using 
the Message Passing Interface (MPI).

Mejía-Roa [6] demonstrated NMF-mGPU, a C-language 
implementation of NMF that used CUDA and MPI to perform 
multi-GPU computation of NMF. This implementation 
allowed processing up to 120 times faster than conventional 
single-CPU implementations and demonstrated the 
capability of processing matrices up to 54000 x 2000 in 
size. This implementation included the ability to split the 
NMF computation across multiple GPUs to permit the 
calculation to be performed on datasets larger than could 
be held in GPU memory. However, this program was not 
easily usable by many biomedical sciences researchers as 
it required specialized programming skills and access to 
an HPC cluster. .GenePattern [7], www.genepattern.org, is 
a gateway providing free access to cloud-based and HPC 
systems. GenePattern includes access to hundreds of analysis 
tools (modules) and visualization tools for multiple genomic 
data types without requiring any programming skills. It 
has a web-based interface to provide easy access to these 
tools and allows the creation of multi-step reproducible in 
silico research workflows. These can be implemented as 
GenePattern analysis pipelines, or alternatively as Jupyter [8] 
Notebooks via the GenePattern Notebook Environment [9]. 
The publicly available GenePattern servers currently support 
thousands of users and log up to tens of thousands of analyses 
each month which are executed on clusters in the AWS Cloud 
or on the Expanse [10] supercomputer cluster at the UC San 
Diego Supercomputing Center (SDSC). GenePattern has 

long included an R-language implementation of the NMF 
Clustering algorithm as described in Brunet et al. as the 
NMFConsensus GenePattern module. This implementation 
served as a baseline for performance comparison.

To bring the power of the Meija-Roja NMF-GPU 
implementation to non-programming investigators, we have 
reimplemented their algorithm using CuPy [11] an open-
source library for GPU-accelerated computing with Python. 
It is freely available on GenePattern as the NMFClustering 
module at https://genepattern.ucsd.edu and is also distributed 
as both open source code and as a Docker [12] container. 
For HPC clusters, the Docker container can be cross-
compiled into Singularity [13] if required. By wrapping this 
implementation in GenePattern, we have made it available 
to all investigators without the need for any programming 
skills and have also provided access to GPU cycles for the 
processing of their data.

Results
We illustrate the improved performance of NMFClustering, 

our CuPy based NMF-GPU implementation, relative to the 
previous generation of NMFConsensus implemented in the R 
programming language by demonstrating its ability to handle 
much larger datasets, and by demonstrating its improved 
performance on smaller datasets. It is not possible to do a true 
performance comparison on larger datasets as the R language 
NMFConsensus implementation requires in excess of 2 days, 
the time limit for GPU jobs on the Expanse HPC cluster, to 
analyze datasets larger than 1,000 cells/samples. We note that 
most single cell data sets are much larger than this.

For our test dataset, we use a single-cell RNA-Seq dataset 
derived from patient samples of gastrointestinal stromal 
tumors (GIST). The complete dataset is a count matrix of 
77020 cells and 28561 transcripts. To create datasets small 
enough to run on the R-language NMFConsensus, we 
subsetted this dataset, creating smaller versions with 5,000 
transcripts and cell counts between 20 and 1,000. Additional 
larger datasets with 8,000 to 32,000 cells were run through 
NMFClustering in a CUDA configuration using a single node 
and both single and 2 GPUs allocated. Finally two larger 
datasets of 64,000, and 77,020 (the complete dataset) cells 
were created and run using a CUDA configuration of 4 nodes 
and 4 GPUs.

Using these datasets we ran the NMFConsensus module 
on GenePattern’s public cloud based server, which launched 
AWS C5 compute nodes of various types through AWS 
Batch using the SPOT_CAPACITY_OPTIMIZED strategy. 
Datasets larger than 1,000 cells were not run using the 
CPU based algorithm as they were unable to complete the 
analysis below the 48 hour time limit for most jobs on the 
SDSC Expanse system. The Expanse GPU nodes have dual 
20 core Intel Xeon processors with 384 GB of memory and 
four NVIDIA V100 processors (32 GB SMX2). Each dataset 

http://
http://www.genepattern.org/
https://genepattern.ucsd.edu/
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size was run 4 times and the average elapsed time used for the 
following analysis.

For the NMFClustering code we ran the same datasets 
as were used for NMFConsensus using the GPU nodes of 
the SDSC Expanse supercomputer. Using a single GPU 
configuration we ran up to 8,000 cells successfully. The largest 
datasets consistently failed with exhausted GPU memory 
for the single GPU configuration. Since the NMFClustering 
implementation could split the dataset to compute only a 
portion on each GPU at one time, using MPI to coordinate, we 
could reduce the impact of limited GPU memory by adding 
GPUs to the runtime configuration. Therefore for the largest 
4 datasets (16,000 through 77,020 cells) we ran using a quad-
GPU (4 GPU) configuration which successfully completed a 
NMF-GPU run in under 7 hours on the largest dataset. The 
dataset size and runtimes, averaged over 4 runs, are displayed 
below in figure 1.

With 1000 cells (columns) and 5000 transcripts (rows), 
the largest dataset that could be computed on the CPU, the 
average execution time was 77993 seconds. The same dataset 
completed using NMFClustering on a single GPU in 49 
seconds, 1588 times faster or in 0.062% of the time of the 
CPU version. The smallest improvement was for the smallest 
20 sample dataset, where the GPU speedup was 27 times 
faster than the CPU version.

The NMFClustering (GPU-based) and NMFConsensus 
(R-based) implementations are available as modules on the 
public GenePattern server at https//genepattern.ucsd.edu. 
The R code for the NMFConsensus GenePattern module 
is available in github at https//github.com/genepattern/

NMFConsensus. The Python code for the NMFClustering 
(GPU based) implementation is also available on github at 
https//github.com/genepattern/nmf-gpu.

Features
The NMFClustering module, and underlying Python 

code, allow the user to define the minimum and maximum 
values of k, the number of clusters. It also allows the user to 
select the number of NMF runs with varied initial conditions 
per value of k, called the “num clusterings” parameter as well 
as the maximum number of total iterations of NMF to run per 
clustering to prevent the process for running forever if it does 
not converge to a stable result. To control the convergence it 
provides parameters for the “stop convergence”, to specify 
how many "no change" checks are needed to stop NMF 
iterations before max iterations is reached along with the “stop 
frequency” parameter, which defines the frequency (number 
of NMF iterations) between ‘no-change’ checks. Finally the 
module also allows the user to define the maximum error 
difference for KL divergence.

For advanced users, the module allows the selection 
from three parallelization strategies. They are: (1) ‘serial’ in 
which no parallelization is used; (2) ‘kfactor’ where NMF 
runs on values of k are balanced sending the entirety of runs 
for one value of k to a single GPU; and (3) ‘Input matrix’ 
parallelization in which case the input matrix is broken up 
with each GPU computing on only a portion of the input 
as defined in Meija-Roja et al, 2015. The ‘input matrix’ 
serialization is required for datasets that are too large to fit in 
the relatively smaller memory space of the GPUs and is what 
we used for the larger datasets in the performance testing.

 
Figure 1: Plot (a) and table (b) of compute time vs number of cells (columns) for CPU-based NMFConsensus and multiple GPU configurations 
of NMFClustering. Each dataset contains 5000 rows and was run 4 times to ensure consistency of runtimes. 

http://
https://genepattern.ucsd.edu/
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https://github.com/genepattern/nmf-gpu


Liefeld T, et al., J Bioinform Syst Biol 2023
DOI:10.26502/jbsb.5107072

Citation: Ted Liefeld, Edwin Huang, Alexander T Wenzel, Kenneth Yoshimoto, Ashwyn K Sharma, Jason K Sicklick, Jill P Mesirov, Michael Reich. 
NMF Clustering: Accessible NMF-based Clustering Utilizing GPU Acceleration. Journal of Bioinformatics and Systems Biology. 6 (2023): 
379-383.

Volume 6 • Issue 4 382 

Outputs
For each value of k, NMFClustering outputs a consensus 

matrix, which contains the number of times each sample 
appears in the same cluster as each other sample. In a stable 
clustering, the same samples will cluster with each other a 
majority of the time. Consensus matrices are output in the 
GenePattern gct[14] tab delimited format. If the number 
of input columns is under 1,000 the module also provides 
sorted consensus matrices in gct format, and if less than 100 
columns, the consensus matrices will be plotted and returned 
as a pdf file.

Documentation
Documentation for NMFClustering is available on github 

pages at  https//genepattern.github.io/NMFClustering/v3/

 Availability and Implementation:
NMFClustering is freely available on the public 

GenePattern server at https//genepattern.ucsd.edu. Code for 
the NMFClustering is available under a BSD style license on 
github at https:// github.com/genepattern/nmf-gpu.

Supplementary Information:
Supplementary data are available at Bioinformatics online 

and at 

https://datasets.genepattern.org/?prefix=data/test_data/
NMFClustering/.
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Figure S1: NMFClustering interface in GenePattern showing a subset of the available parameters

 

Figure S2: Example consensus matrix plot for k=3 using ALL_AML_data.gct dataset from the sample test data folder (below). Compare to 
figure 4, panel a in Brunet et al.

NMFClustering User Interface

Example Consensus Matrix plot
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