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Abstract
This work is aimed at modelling the progressions of COVID-19 cases 

in time in relation to meteorological determinants, in large cities of Brazil, 
Italy, Spain, and USA, and predicting the viability of SARS-CoV-2 virus 
in different weather conditions based on models. Our statistical analysis 
indicates that the spreading of infection does not vary exponentially 
with time and hence, does not have similarity with law of mass action in 
chemistry as considered in general for spreading of infectious diseases. 
New models are constructed showing the relationship of the I' (the 
number of infected individuals divided by the total population of a city) 
with the independent variables-time, temperature, relative humidity, and 
wind velocity. The regression models fitting in the data are statistically 
validated by : 1) plot of observed and predicted response; 2) standardized 
residual plots showing the characteristics of errors; 3) adjusted  value; 
4) the p value for the parameters associated with the various independent
variables; and 5) the predictive power of the model beyond data points.
Models indicate that 1) the transmission of COVID-19 could be relatively
high either for elevated temperatures with lower relative humidity or for
lower temperatures with higher relative humidity conditions; 2) disease
transmission is expected to be reduced more with higher wind velocity;
3) for meteorological factors remaining same, the rate of increase in the
number of COVID-19 cases increases in one model with a constant rate
and in the other two with varying rates in time. These transmission features
seem to have connections with the structural components of the SARS-
CoV-2 virus. Under suitable meteorological conditions, the partial natural
disappearance of COVID-19, pandemic could be possible. New models
for Ij may be considered to understand the viability of the virus in the
environment and future transmission of COVID-19.
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Introduction
The highly pathogenic coronavirus disease 2019 (COVID-19) has 

become a pandemic after its initial outbreak in Wuhan, Hubei province of 
China, during December, 2019. According to the recent report of the World 
Health Organization, the disease has spread to six continents and 210 
countries and as on 10 August 2020, there have been 19,687,156 confirmed 
cases of COVID-19, including 727,435 deaths [1]. The causative organism 
for COVID-19 is severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), a genus belonging to family Coronaviridae. Clinically, patients 
with COVID-19 develop respiratory symptoms, which is very similar to 
other respiratory virus infections. Multiple symptoms may be involved 
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with COVID-19, including respiratory (cough, shortness 
of breath, sore throat, rhinorrhea, hemoptysis, and chest 
pain), gastrointestinal (diarrhea, nausea, and vomiting), 
musculoskeletal (muscle ache), and neurologic (headache 
or confusion) types. More common signs and symptoms are 
fever (83% - 98%), cough (76% - 82%), and shortness of 
breath (31% - 55%) [2]. Historically, coronaviruses gained 
prominence during the outbreak of severe acute respiratory 
syndrome (SARS) during 2002-2003 with severe acute 
respiratory syndrome coronavirus (SARS-CoV) as the 
causative agent. The virus infected 8098 individuals with a 
mortality rate of 9% across twenty-six countries worldwide. 
In contrast, the incidence of COVID-19 infection has crossed 
more than 4.42 million to date worldwide, indicating increased 
transmission ability of SARS-CoV-2 [3,4]. According to 
recent evidence, SARS-CoV-2 virus is primarily transmitted 
between people through respiratory droplet, direct contact 
with infected people and indirect contact with surfaces in 
the immediate environment or with objects used on the 
infected person [5,6,7]. Some scientific studies have provided 
the initial evidence for the viability of SARS-CoV-2 virus 
in aerosols for hours, suggesting their plausible airborne 
transmission [8]. Besides, their human trans- miscibility 
can be influenced by the environment in which pathogen 
and host meet [9]. Like other influenza virus infections, 
relative humidity and temperature are expected to affect 
the incidence of COVID-19 particularly through airborne 
respiratory droplets [9,10,11]. The temperature and relative 
humidity could affect the physicochemical characteristics 
of infectious droplet including, pH and salt concentration of 
droplets as well as viral membrane lipid and surface proteins 
and thus influencing their transmission [11,12]. Apart from 
temperature and relative humidity, the wind velocity also 
could play a role in the transmission of the virus. In most of 
the earlier works related to the spreading of the epidemic, the 
rate of increase of the number of infected individuals has been 
studied in relation to the various meteorological determinants 
[13,14,15]. However, the rate would vary between cities 
because of their differences of total population, area and 
population density. Hence, in the present communication a 
different approach has been followed to study the spreading 
of COVID-19 by considering homogeneous mixing in the 
populations of various major cities (Spain, Italy and the USA) 
along with the meteorological determinants and population 
density. Under this consideration, the relevant quantity is the 
proportionate mixing of the number of infected individuals 
I, within the total population N of a city, denoted as I' which  
is equal to I

N
 In this work, in the context of infection due to

SARS-CoV-2 virus, we have found the relationship between 
I' with temperature, relative humidity, wind velocity and 
time. Another difference of the present study with the earlier 
works is in connection with the spreading of infection with 
time. In earlier works, the exponential time dependence is 

considered for spreading of infection which is a solution to the 
first order differential equation. However, this conventional 
idea of the exponential time dependence, does not give good 
statistical fit for SARS-CoV-2. We have found out different 
time dependence from the statistical fit. COVID-19 cases in 
the major cities of four countries have been considered for 
the statistical analysis and building models. The major cities 
have higher number of COVID-19 cases and with respect to 
large population size, almost homogeneous mixing of the 
population may be expected. On the other hand, small cities 
have different heterogeneous issues of the population, like 
change in population density, social behavior and movement 
of people could be more manifested, which are complicated 
to be taken into account for the statistical analysis. As our 
primary concern is to find the response of the SARS-CoV-2 
to different meteorological factors as well as the global 
properties of the spreading of the virus over space and time, the 
major cities with a higher population are expected to be more 
appropriate for the statistical analysis of the data on number 
of infected cases. In section 2, the data sources and their 
collection time period are mentioned. In section 3, regression 
models are built up from the statistical analysis of the data on 
the number of infected persons in various cities, the related 
meteorological data and the time elapsed after the initial 
reporting of infected cases. Mainly based on standardized 
residual plots and p values of numerical coefficients of 
different independent variables, we have found out the most 
suitable model in which the proportionate mixing Ij could 
depend on temperature, relative humidity, wind velocity, 
and time in a statistically significant way. In section 4, the 
results of the statistical analysis corresponding to various 
models have been presented with the help of different contour 
plots, which show the combination of temperature, relative 
humidity and wind velocity for favourable or unfavourable 
COVID-19 transmission. Also it has been shown that how the 
number of infected cases for a particular population, could 
evolve with time under various meteorological conditions. 
In section 5, it has been discussed through illustrative 
example, how models indicate the possibility of the partial 
natural disappearance of COVID-19 due to the change in 
the meteorological factors in the environment. In section 6, 
the connections of transmission characteristics and viability 
of virus under different meteorological conditions, with 
the structural components of the SARS-CoV-2 virus, are 
discussed. Finally, in section 7, based on models, concluding 
remarks with some precautionary measures have been 
mentioned.

Data Sources and Time Period of Data Collection
All data used for analysis were available in public 

databases. The data on the number of COVID-19 infection 
cases of several major cities in Spain, Italy, and the USA 
(Countries with relatively severe COVID-19 outbreak) from 
the following sources - (1) Data of Spain (URL: https://
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data have been considered for statistical analysis. But while 
interpreting any results from the analyses of the combined 
data, one needs to be careful about this assumption. In 
building up regression models, our approach is different 
from the conventional models like SIR models [16,17,18]. 
S, I and R correspond to the number of susceptible, infected 
and recovered individuals, respectively. In some modified 
models, the number of deaths due to the viral infection has 
also been considered. As the aim of this work is to determine 
the influence of the meteorological factors on the spreading of 
virus infection, we are mainly concerned with the number of 
infected individuals I. The models of transmission are related 
to the number of infected cases at early stage when the role 
of virus is highly important. At early stage of transmission of 
virus, the number of recovered persons or the number related 
to mortality are much smaller than the number of infected 
individuals and also these numbers are more related to health 
of the infected persons, health facilities etc., and are not 
related to the virus explicitly. Although these numbers do 
influence S in the early period of the pandemic (which we 
are considering), they can be easily ignored because of being 
relatively much smaller than I. In finding the connection of 
the spreading of the virus with the meteorological factors and 
time, the proportionate mixing I' = I / N will be considered 
as a parameter for the spreading of virus and, instead of I, 
the evolution of the parameter I' will be studied. This has the 
advantage as the upper limit of the quantity I' is normalized 
to unity for a total population N in any city. It is legitimate 
to assume that the evolution of I' in different cities will 
follow almost same dynamics with respect to the variation 
of meteorological factors and time. So same regression 
model for I' is expected to be valid for different cities and 
in building such model, different data of different major 
cities on the number of infected cases may be considered all 
together for statistical analysis. We have not considered a 
priori any specific form for evolution of I' with time Ti, like 
conventional model that takes into account an exponential 
increase in the number of infected cases with respect to time. 
The reason behind this is that in the SIR models, the rate of 
increase in the number of infected persons I with time Ti will 
be proportional to the proportion of infectious contacts (I/N). 
The model assumes that further infections occur due to the 
direct contact with the infected people and one follows the 
principle of mass action in chemistry where the proportionate 
mixing I/N stands for the concentration of some substance. 
But the spread of viral infections is due to the contacts of a 
large number of viruses with the population N and may be 
compared to some extent, with the scattering of large number 
of elementary particles. This is because infections will be 
happening due to virus which could be in the air, which could 
be on the surface of some material, which could be due to the 
large number of viruses coming from the nasal and respiratory 
droplets. Furthermore, viruses from one infected person, may 
infect a large or a few number of people depending on the 

www.mscbs.gob.es/profesionales/saludPublica/ccayes/
alertasActual/nCov-China/documentos/Actualizacion 122 
COVID-19.pdf) were collected from the database of the 
Centro de Coordinaci on de Alertas y Emergencias Sanitarias 
(CCAES), Spain. The centre is responsible for coordinating 
information management and supporting the response 
to national or international health alert or emergencies, 
(2) Data of Italy (URL: http://www.salute.gov.it/portale/
nuovocoronavirus/dettaglioContenuti NuovoCoronavirus.
jsp?area=nuovoCoronavirus&id=5351&lingua=italiano
&menu=vuoto) were collected from the database of The
Ministry of Health (Italian: Ministero della Salute), which
is a governmental agency of Italy and is led by the Italian
Minister of Health. (3) Data on different cities of USA
(URL: https://usafacts.org/visualizations/coronavirus-covid-
19-spread-map/) were collected from USA Facts, which is a
not-for-profit, nonpartisan civic initiative providing the most
comprehensive and understandable source of government
data available in the US. Data on cumulative COVID-19
positive cases, population, and population density for Sau
Paulo, Rio de Janeiro, and Brasilia, Brazil, were collected
from Wikipedia (https://en.wikipedia.org/wiki/COVID-19
pandemic in Brazil/Statistics). Meteorological data for all
above-mentioned locations were collected from the World
Weather Online database (URL: www.worldweatheronline.
com). We have considered data of the cities Madrid,
Catalonia and Pais Vasco-Basque in Spain during the period
4th March, 2020 to 14th March, 2020 before lockdown/travel
restrictions and 15th March to 29th March after lockdown/
travel restrictions. We have considered data of the cities
Milan, Bologna and Venice in Italy during the period 26th

February, 2020 to 9th March, 2020 before lockdown and 10th 

March to 31st March after lockdown. We have considered data
of the cities of New York, San Francisco, Atlanta, Seattle,
Chicago and Los Angeles in the USA during the period 2nd
March, 2020 to 14th March, 2020 before travel restrictions/
stay at home order orders. Data of the cities of New York,
Chicago, Los Angeles in USA were also considered during
the period 16th March to 31st March after travel restrictions/
stay at home orders. We have considered data of the cities of
Brazil as follows: Sau Paulo during the period 26th February,
2020 to 23rd March, 2020, Rio de janeiro during the period 5th

March, 2020 to 1st April, 2020 and Brasillia during the period
7th March, 2020 to 5th April, 2020.

Regression Models for I'
Although we have considered data of different cities 

both before and after lockdown/travel restrictions, the global 
features of the spreading of COVID-19 in relation to climatic 
conditions should be examined before the implementation of 
restrictions when there were no human interventions on the 
transmission of the virus. However, assuming that the early 
parts of restrictions were not so stringent in the selected large 
cities, the combination of both before and after restrictions 

http://
https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/
https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/
http://www.worldweatheronline.com
http://www.worldweatheronline.com
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contacts with the numbers of individuals. The rate of increase 
in the number of infected individuals should not be considered 
to be proportional to the number of already infected persons I. 
So considering the viral infection problem as the one similar 
to the law of mass action in chemistry may not be correct and 
the rate of increase may not be proportional to I/N. In that 
case, the exponential time dependence which is a solution to 
I coming from the first order differential equation in I and 
time Ti in which dI

dTi
is proportional to I, may not be correct. 

For these reasons, in building up regression models, in the 
time evolution part of I', apart from exponential function of 
time Ti, we have explored other possible functional forms 
with time Ti as variable. We have explored the possibility of 
exponential time dependence, although that is not necessarily 
equivalent to considering that dI

dTi
 is proportional to I or 

SI (where S is number of susceptible persons) and will be 
explained further in the later part of the paper. In the absence 
of our understanding of the relationship of I' with time Ti at 
this point of discussion, I' is considered to be depending on 
two different functions of time F1(Ti) and F3(Ti). Also I' is 
expected to depend on various meteorological factors like 
temperature (T in 0C), relative humidity (H in percentage) and 
wind velocity (W in Km/hr) and for that another function F2 
(T,H,W) is considered which has no explicit Ti dependence 
and are separate from F1(Ti) and F3(Ti). The meteorological 
factors T, H and W may or may not vary with time and but 
have no explicit time dependence. In terms of these functions 
I' is written as

 (1)                                      

These functions could be related to the interactions of 
virus with individuals and with environment, viral replication 
processes and so on. The reason for considering such 
dependence is as follows. All the terms in the right hand side, 
should be proportional to Ti. This is because at Ti = 0, I' is 
assumed to be zero or very small. In the product of the two 
functions F1 and F2, it is expected that each additive terms 
should have Ti or its higher power as a factor, but T, H and W 
may or may not be present. F3(Ti) is another time dependent 
but independent of meteorological variables. Also because 
of above reasons, both F1(Ti) and F3(Ti) are restricted in the 
sense that they almost vanish when Ti = 0. The rate R of 
increase of I' with time can be written, as the total derivative 
for which R = Rtot is written as

(2)

where T, H and W are assumed to vary smoothly with 
time Ti. However, under the assumption that T, H and W are 
not changing with time Ti (which is in general not true, but 
may be considered as an approximation for a few days when 
the values of T, H and W are not changing significantly) we 
can write R as partial derivative for which R = Rpart is written 

as

(3)

To smoothen the local fluctuations in the data (like the 
number of cases recorded after a day or the variations of 
temperature, relative humidity or wind velocity) over a short 
period, which should not appear as a global effect, all the data 
were averaged over a period of three days. These averaged 
data points were tried to fit with various possible functional 
forms of F1, F2 and F3. We have considered various forms 
for these functions including linear, bi-linear, tri-linear, non-
linear and other simpler forms. In this work, three models 
are presented as shown in Table I : In Model A, F1 depends 
on Ti2 and F2 depends on both T and H, and F3 is absent. 
F2 depends linearly in T and H with positive coefficients. 
Then there is bilinear term TH with negative coefficients. 
This is expected to be related to the condition showing the 
lack of stability of the virus under certain temperature and 
relative humidity subject to the strength of the linear terms 
in T and H. There are three parameters evaluated statistically 
considering best fit with the data and their p values are shown 
in Table I. In Model B, F1 depends on Ti2.6 and F2 depends on 
both T and H, and F3 is absent. F2 depends linearly in T with 
positive coefficients but depends on relative humidity as H1.5. 
Then there is bilinear term TH with negative coefficients like 
Model A. There are three parameters evaluated statistically 
considering best fit with the data and their p values are shown 
in Table I. In Model C, F1 depends on Ti2 and F2

 depends on 
T, H and W, and F3 depends on Ti4. F2 depends linearly in T 
with positive coefficients but quadratically on H and W. Then 
there is bilinear term TH with negative coefficients like other 
two models. There are five parameters evaluated statistically 
considering best fit with the data and their p values are shown 
in Table I.

Table 1: Three Regression models. Different regression models 
with the relationship of I' with T, H, W and Ti. p values of the 
numerical coefficients are given in the same order as the order of the 
coefficients in the fitted equations.

http://
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Next, we discuss the validation of the regression models 
in fitting the data. In obtaining these three models we have 
taken care of: 1) Plot of observed and predicted response, 
2) Standardized residual plots showing the characteristics
of errors in the model with respect to observed data, 3)
adjusted   value which indicates the goodness of fit, 4) the
p value for the parameters appearing as coefficients with the
various variables in F1, F2 and F3 which indicates what is
the probability of the values of those parameters not to be
so, and 5) the predictive power of the model beyond data
points. Here, by predictive power, it is meant that at some
moderate temperature, I' should not vanish for all H or W,
as such things have not been observed. In some cases, the
first three points are well-satisfied for some functional forms
of F1, F2 and F3 but the point 5 is not satisfied and those
cases were discarded. These three models satisfy point 5.
Also, in obtaining these three models, we have imposed the
condition p < 0.05 for all numerical coefficients as shown
in Table I, for the model to be statistically significant. In

subsequent discussions, based on the first four criteria, we 
will discuss merits and demerits of these three models. For 
statistical analysis, [19] Mathematica (URL: https://www.
wolfram.com/mathematica) has been used. The best fit for the 
model will be determined by minimizing the weighted sum 
of squares of the deviation between the data and the fit. The 
weighted sum of squares is given by

 (4)

yi where is the observed and  the fitted values of the 
response (which is I' for Model A and I'/Ti2 for Model B and 
C) corresponding to the number of infected cases and n is the
total number of data points. It has been expected that

 is in general function of Ti, T, H, W and some parameters  
(aj where j is the number of parameters) appearing as 
coefficients of the variables Ti, T, H, and W. If the weights wi 
are same for all data points then it may be considered as  
1. The hat matrix H is given by yˆ = Hy where yˆ is the

Figure 1: Observed versus predicted values of I' for Model A and of I'/Ti2 for Model B and C are shown in upper three plots. The Standardized 
residual plots for three models are shown in the lower three plots.
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predicted response vector and y is the observed response 
vector. H is a n×n matrix where n is the number of data points. 
The i-th standardized residuals is the scaled form of the 
residuals and is given by  where  is 
the estimated  error variance including the i-th data point for 
standardized residuals, hii is the i-th diagonal element of the 
hat matrix H and wi is the weight of the i-th data element. To 
check the validity of the models, we will consider standardized 
residuals plots for different models as shown in Figure 1. 

Residuals give a measure of the point wise difference 
 between the observed yi and the fitted values  of the 

 response corresponding to the number of infected cases. 
These are not true errors but estimated errors. For statistical 
analysis, two criteria for errors are (1) they are normally 
distributed and in that case, standardized residuals are 
preferably within ±2 in 95% cases, (2) They are uncorrelated, 
which is expected to reflect in the standardized residual plots. 
These may not be totally independent for some F1 which is 

function of Ti. In that case, heteroscedastic feature will be 
seen in the standardized residuals. To make that somewhat 
homoscedastic, the consideration of some weights wi ≠ 1 
could be useful. As for example, with the type of function 
considered for I' for model A (as shown in Table I) without 
different weights for different data points, the standardized 
residuals are found to be highly heteroscedastic. To avoid 
that (as required by the criterias for errors mentioned above), 
for model A, wi = 1/Ti2  have been considered. However, 
for model B and C, wi = 1. In Table I, corresponding to 
each model, the Adjusted  is  shown which represents the 
goodness of fit with data and will be considered for comparing 
models. R2 is the ratio of the model sum of squares to the total 
sum of squares. The Adjusted   is given by  
where np is the number of parameters and with increase in  
np, Adjusted  is reduced.

In the upper part of Figure 1 the predicted versus observed 
I' is shown for Model A. The points which are nearer to the 

Figure 2: Mean prediction band for I' at 90% confidence level for different models at T = 300C, H = 40% and W = 10 Km/hr. Blue line 
corresponds to best fit values.

Figure 3: Contour plots of number of virus-infected persons with temperature and relative humidity for Model A in the first 20 days and 40 
days after the initial cases of infection. Total population is considered as 5 × 106. Different colors in the legend show ranges of the number of 
infected cases.
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straight line are better fit as the points on the straight line 
corresponds to the equality of observed and predicted values. 
For higher values of I' the fit is not so good. For Model A, if 
no different weights are considered, then there is too much 
heteroscedastic feature in the corresponding standardized 
plot. Although after considering weights wi = 1/ Ti2 for 
different data, heteroscedasticity is reduced but still little bit it 
is there as seen in standardized residual plot for Model A. 
Removing some outliers or changing the functional form, 
does not help much when we consider also the p values for 
the parameters to be at least lesser than 0.05 and adjusted R       

 greater than 0.50. Considering various possible functional 
forms of F1, F2 and F3, it is found that there should be at least 

overall a factor of Ti2 in fitting I'. Also it could be that because 
of this factor, the error in F2 and F3/F1 is getting magnified 
while considering the error in I'. So instead of I', best fit for I'/
Ti2 has been tried in case of Model B and C and then better 
homoscedastic standardized residual plots have been found. 
In that sense, Model B and C are better than model A. 
However, we have to remove a few outliers also to achieve 
this homoscedastic feature. The observed versus predicted I'/
Ti2 plots in Figure 1 for Model B and C are better keeping in 
mind that the scales are different from that shown for Model 
A. The adjusted  is better for Model C in comparison to
other two models as shown in Table I. Combining all these
points, model C seems to be better than other two models.

Figure 4: Contour plots of number of virus-infected persons with temperature and relative humidity for Model B in the first 20 days and 40 
days after the initial cases of infection. Total population is considered as 5 × 106. Different colors in the legend show ranges of the number of 
infected cases.

Figure 5: Contour plots of number of virus-infected persons with temperature and relative humidity for Model C in the first 20 days and 40 
days after the initial cases of infection. Total population is considered as 5 × 106. The wind speed w = 10 Km/hr has been considered. Different 
colors in the legend show ranges of the number of infected cases.
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However, it is to be kept in mind that more data points have 
been considered for model A. We will discuss all these 
models further.

In Figure 2, the mean prediction band for I' has been shown 
for different models for different time at 90% confidence 
level. However, other variables such as T, H and W have been 
fixed at T = 300C, H = 40% and W = 10 Km/hr. For higher 
number of days, the band width is shortest for Model C and 
then comes Model A and then B so far widths are concerned. 
Model A and B are independent of W. For Model C, even if W 
is considered 40 Km/hr instead of 10 Km/hr, the band width 
for Model C is found to be smaller in comparison to Model A 
and B. This is found to be true even at 99% confidence level 
and also with the variation of T and H values. So Model C 
is also better in the sense that it has lesser uncertainty in the 
prediction of I' as long as W is not above about 40 Km/hr. In 
all these models I' varies as Ti2 or with higher powers of Ti 
and  is always non-zero. For that, the rate of increase in 
the number of COVID-19 cases increases at some rate. This 
will be further explained at the end of the result in section 4. 
For F1, the exponential form eC1Ti (where C1 is a parameter) 
has also been tried. In such case, one could write 
which is somewhat like SIR models considered extensively. 
But that kind of F1 does not give proper statistical validity of 
the model so far data is concerned. So it seems difficult to get 
SIR kind of models for the transmission of COVID-19.

In this study on transmission of COVID-19, we are 
concerned with the number of infected individuals. At 
present, there is no evidence of gender impact on this 
number of infected individuals, although there seem to be 
some impact on the number of mortality due to the disease 
(Clare Wenham, Julia Smith, Rosemary Morgan, on behalf 
of the Gender and COVID-19 Working Group, March 6, 

2020 https://doi.org/10.1016/S0140-6736(20)30526-2). 
So our analysis is not expected to have gender impact. The 
distribution of population in different age groups in Spain, 
Italy and the USA do not differ much. Based on World Bank 
Data in 2017, the percentage of population in age group of 
0-14, 15-64 and 65+ in years may be considered about 15%,
65% and 20%, respectively, for these three countries. For
Brazil, these are about 21%, 70% and 9%. If the number of
infected individuals in different age groups follow the same
distribution then one may conclude that the age of individuals
is not playing any role in the infection due to SARS-CoV-2
virus. However, it seems that for the age group 0-14 years
the number of infected cases is much lower than 15% for
all these three countries. So it could be expected that there
is different infection rate in different age groups in different
countries, but due to lack of availability of data of number of
infected persons based on age groups, in different cities, we
have refrained from doing the analysis based on age groups.
We have not analyzed the data of infected cases where lock-
down/travel restrictions have been imposed quite early like
the case of India. Depending on the nature of restrictions,
probably I' (as shown by the models in Table-I) is to be scaled
in such cases by some overall factor.

Results for Different Models
The number of infected cases for an assumed total 

population (N) of 5×106 at different temperatures and 
relative humidities are shown in contour plots in Figure 3, 
4 and 5 corresponding to model A, B and C (C with fixed 
wind velocity), respectively and at different temperatures, 
relative humidities and wind velocity in 3D plot in Figure 
6 corresponding to model C only (as other models do not 
depend on wind velocity). Models A, B and C have been 
obtained based on statistical analysis of data of different cities 

Figure 6: Allowed region in 3D space of temperature, relative humidity and wind velocity in Model C for which number of virus infected 
persons are greater than 100 in first 20 days after the initial spreading. Total population is considered as 5 × 106.
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for which meteorological determinants like temperature, 
humidity, wind velocity differs with time in the same location. 
Models are found to be suitable to take care of variations of 
these determinants with time because of good statistical fit. 
However, Figures 3, 4 and 5 show that which combinations 
of humidity and temperature are conducive to spreading of 
infection whereas Figure 6 shows that which combinations 
of humidity, temperature and wind velocity are conducive to 
spreading of infection. In these figures, we have considered 
different temperature, relative humidity and wind velocity 
remaining same with time. These figures will give easier 
understanding of how virus is viable under different weather 
conditions. However, in section 5, we have assumed certain 
variations of temperature and humidity with time to show the 
possibility of rise and fall of COVID-19. One may compare 
different zones of temperature and relative humidity where 
the virus is expected to cause more or less infection or no 
infection. To get the number of infected persons, I' has been 
multiplied by the total population N. In Figure 3, 4 and 5, we 
have considered I' in first 20 days and first 40 days after initial 
infection. In Table 1, it is seen that F2 in Model A depends 
on T and H only. Wind speed W does not play any role. 
There is no F3 part in I'. In Model A, in Figure 3, for lower 
temperature around − 100C, viral infections are expected for 
relative humidity above about 35 %. The unshaded regions 
in Figure 1 correspond to absence of viral infections for the 
corresponding temperatures and relative humidities. The 
infections are not expected in the unshaded region in Figure 
3, for temperature from −20C to −100C and relative humidity 
0 to 35%. For higher temperature, the viral infections are not 
expected in the unshaded region for temperature from 160C 
to 450C and relative humidity 65 to 95%. Higher infections 
are expected for higher temperature and lower humidity 
corresponding to right lower side of both plots in Figure 3 
and lower temperature and higher humidity corresponding to 
left upper side of both the plots. These features are true even 
with the increase in number of days in this model.

In Table 1, it is seen that F2 in Model B depends on T and 
H only. Wind speed W does not play any role like Model A. 
There is no F3 part in I'. However, the total number of cases as 
shown in Figure 4, is relatively lesser than that in Model A. In 
Model B, in Figure 4, for lower temperature around − 100C, 
viral infections are expected for relative humidity above about 
30 %. The viral infections are not expected in the unshaded 
region in Figure 4, for temperature from −20C to −100C and 
relative humidity 0 to 30%. For higher temperature, the 
viral infections are not expected in the unshaded region for 
temperature from 220C to 450C and relative humidity 60 to 
95%. Similar to model A, in model B also, higher infections 
are expected for higher temperature and lower humidity 
corresponding to right lower side of both plots in Figure 4 
and lower temperature and higher humidity corresponding to 
left upper side of both the plots. These features are true even 
with the increase in number of days in this model.

In Table 1, it is seen that unlike earlier two models, F2 
in Model C depends on T, H and also wind speed W and I' 
in Model C, depends on F3 also. In both the contour plots 
in Figure 5, wind speed is fixed at W = 10 Km/hr. The total 
number of cases as shown in Figure 5, is relatively lesser than 
those in other two models. In Model C, in Figure 5 for the 
left hand side plot for 20 days, for lower temperature around 
−100C, viral infections are expected for relative humidity
above about 25 %. Infections are not expected in the unshaded
region in Figure 5 for the left hand side plot for 20 days, for
temperature from −40C to −100C and relative humidity 0 to
25%. For higher temperature, infections are not expected in
the unshaded region for temperature from 240C to 450C and
relative humidity 60 to 95%. Similar to model A and B, in
model C also, higher infected cases are expected for higher
temperature and lower humidity corresponding to right lower
side of left plot in Figure 5 and lower temperature and higher
humidity corresponding to left upper side of the left plot for

Figure 7: Plot  of   versus Ti for temperature 300C, relative 
humidity 50% in models A, B and C. For model C, wind velocity 
is 10 Km/hr.

Figure 8: Variations in spreading of SARS-CoV-2 in terms of the 
variations of I' according to Model B due to T = 200 C and H = 50 % 
in first 20 days; T = 300 C and H = 40 % in the next 10 days and T = 
350 C and H = 85 % after 30 days.
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the first 20 days. But unlike other two models, these features 
change with time, as can be seen from the right hand side 
plot in Figure 5. This is due to the presence of purely time 
dependent part F3 in case of Model C. Gradually the unshaded 
regions become smaller with increase in time and later on do 
not exist. So viral infections are possible for wider range of 
humidity and temperature in Model C with the increase of 
time after initial infection.

For Model C, the effect due to the variation of wind 
velocity in the range 0 to 25 Km/hr is shown in Figure 6. For 
Models A & B, wind velocity has not been considered for 
statistical fit. The regions for no viability of viral infections, 
related to lower temperature and lower relative humidity 
and also related to higher temperature and higher relative 
humidity; becomes larger for higher wind velocity. This can 
be seen in both left and right plots corresponding to 20 and 
40 days, respectively. Probably it happens because virus are 
blown away more by the stronger winds even to the areas 
where hosts do not come into contact with the virus easily. 
However, the total unshaded region decreases with time. So 
viral infections are possible for wider range of humidity and 
temperature as well as wind velocity in Model C with the 
increase of time after initial infection.

The rate of increase of number of infected cases is equal 
to rate of increase of I' times N. The rate of increase of I' for 
different models can be written as

       (5)

F2 in above equation are different for different models as 
follows from the relationship for I' shown in Table I. In Figure 
7, the rate of increase of I' written as   in equation (5) is 
shown for different models for temperature 300C 
and relative humidity 50% and wind speed W = 10 Km/hr. 
One can see that for Model A,   is increasing linearly with 
time. For other two models it is non-linear. But this increase 
is faster in Model C at a later time in comparison to other two 
models for the chosen temperature, relative humidity and 
wind speed. For Model A, the rate of increase of   with time 
is 2F2. For Model B, it is 2.6 × 1.6 F2 Ti0.6 and for Model C, it 
is 2F2 + 12 × 2.7413 × 10-9 Ti2. So for particular T and H 
values, this is constant in Model A. However, in Model B and 
in Model C, it is also varying with time as can be seen in 
Figure 7.

Statistical Model-Inspired Rise and Fall in the 
Spreading of COVID-19

In Figure 8, considering model (B), an illustrative example 
of rise and fall of I' which also means the rise and fall of the 
spreading of the virus, has been presented. Here, the variation 
of temperature and relative humidity with time Ti has been 
considered. For simplicity, we have assumed the changes in 

temperature and relative humidity are almost instantaneous. 
In this example, in the first 20 days, T = T1 = 200 C and  
H = H1 = 50 % and in the next 10 days it is T = T2 = 300 C 
and H = H2 = 40 % and after 30 days it is T = T3 = 350 C and  
H = H3 = 85 %. To plot I' in these three time periods the 
following functions for I' has been used:

       (6)

In which I'1 is to be considered with Ti varying from 0 
to 20, I'2 is to be considered with Ti varying from 20 to 30 
and I'3 is to be considered with Ti varying from 30 onwards. 
From Figure 4 for Model (B), one can see that for (T2, H2), 
the number of infected cases is more than that for (T1, H1). 
So in Figure 8, there is steeper rise in I' during 20 to 30 days 
than that during 0 to 20 days. The (T3, H3) is in the region 
where viral infections are not viable in Figure 4. F2 is actually 
negative in this region which should be interpreted as the fall 
in the spreading of the virus with which I' is related. Once the 
weather is in such no viable (unshaded) region for the SARS-
CoV-2 viral infections for some days, one might expect that 
COVID-19 could go away. In Figure 8, the period after 30 
days, corresponds to a fall in the spreading of the virus. We 
have considered that the function F2 (which indicates the 
interactions of virus with the environment), will remain the 
same during this period. Figure 8 is an illustrative example of 
how large cities could be partially free from COVID-19 in a 
natural way due to the change in the meteorological factors 
in the environment. This is possible in Model A also. But in 
Model C this can happen only in very early stage but later on 
it is not expected as the unshaded region will not be found 
later as shown in right plot in Figure 5. The possibility of 
a fall in COVID-19 cases has been discussed due to only 
meteorological factors. But this could also be due to the 
development of immunity to SARS-CoV-2 in the human 
body. No analysis on that aspect has been done here.

Connection of Transmission Characteristics 
with the Structural Components of the SARS-
CoV-2 virus

The statistical analysis through function F2 indicates a 
complex interaction between COVID-19 infection and 
meteorological parameters. The infection is expected to 
enhance under two different combinations of environmental 
conditions i.e. lower temperature-higher humidity and higher 
temperature-low to ambient humidity as found in Figures 3-5. 
Such nature of interaction can be explained by the 
physicochemical characteristics of respiratory droplets or 
aerosol and the structural features of the virus itself. The 
enveloped virus SARS-CoV-2 has a positive sense, single-
stranded RNA genome which encode four important structural 
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proteins, namely spike glycoprotein (S), envelope protein 
(E), matrix glycoprotein (M), and nucleocapsid protein (N). 
The S glycoprotein is surface exposed and mediates the viral 
entry into host cells. It comprises two regions S1 and S2, 
where S1 is responsible for binding to the receptor of the host 
cell and S2 is for the fusion of the viral and cellular membrane. 
Although both SARS-CoV, SARS-CoV-2 attach the host 
cells through the binding of receptor-binding domain (RBD) 
of S1 region to the angiotensin converting enzyme 2 (ACE2) 
[4,20], the pandemic impact of the later happens to be more 
severe with continuous worldwide increase in the number of 
infection cases and mortality. Several factors including, the 
structural features of virus for persistence in the environment 
and for human contact might be associated with the severe 
infection of SARS-CoV-2. Recently, an experimental study 
based on Cryo-EM structure of the SARS-CoV-2 spike 
protein in prefusion conformation has suggested higher 
binding affinity of SARS-COV-2 with human ACE2 than 
SARS-COV [21]. Another study on the protein-protein 
interaction and molecular dynamics simulations of RBD-
ACE2 complex for SARS-CoV-2 and SARS-CoV showed 
significantly lower binding free energy of the SARS-CoV-2 
RBD-ACE2 interaction (-50.43 kcal/mol) compared with 
SARS-CoVRBD-ACE2 interaction (-36.75 kcal/mol) and 
thus suggesting higher binding affinity of SARS-CoV-2RBD-
ACE2 interaction [22]. Ou et al., (2020) [23] analyzed the 
SARS-CoV-2RBD mutations worldwide and found the 
equilibrium dissociation constant of three RBD mutants to be 
two orders magnitude lower than the prototype Wuhan-Hu-1 
strain indicating remarkable increase in the infectivity of the 
mutated viruses. Apart from the increased binding affinity of 
SARS-CoV-2 to ACE2, the severity of COVID-19 can also 
be determined by the stability of the virus in the environment. 
Although most of the studies on the effect of meteorological 
factors on the COVID-19 have speculated the decline in 
infection with an increase in environmental temperature and 
humidity [13,22], the number of infection cases in reality is 
increasing sharply with the rise in temperature. Present study 
has also indicated such increase at higher temperature as the 
general feature of the models (Table I) particularly for lower 
humidity. The persistence of the virus at higher temperatures 
can be explained in the context of the stability of the spike 
protein because it is a critical component determining the 
infectivity. A lengthy molecular dynamics simulation of 
trimeric spike proteins of SARS-CoV-2 and SARS-CoV has 
shown that the spike protein of SARS-CoV-2 has significantly 
lower total free energy (-67,303.28 kcal/mol) than the spike 
protein of SAR-CoV (-63,139.96 kcal/mol). Similarly, the 
free energy of the RBD of SARS-CoV-2 spike protein is 
relatively lower than that of SARS-CoV. The results thus 
explained increased stability of SARS-CoV-2 spike protein at 
higher temperature [22] (He et al. 2020). Several studies have 
been carried out on the effect of relative humidity on the 
survival and infectivity of enveloped and non-enveloped 

viruses [9,12,24-26]. When the virus is released into the 
environment as part of a respiratory fluid droplet, relative 
humidity of environment controls the amount of water 
evaporated from the droplet until equilibrium with the 
surrounding air is maintained/reached [27]. The respiratory 
viral droplets or aerosol on exposure to lower to ambient 
relative humidity environment are subject to evaporation due 
to the vapour pressure gradient between its surface and air. 
As evaporation proceeds, the water vapour pressure at droplet 
surface decreases. The presence of lipid membrane in the 
enveloped viruses has been evidenced to protect their capsids 
from damage due to change in humidity leading to survival at 
lower humidity conditions [12,24]. Hence, a considerable 
higher infection level of SARS-CoV-2 at low to ambient 
relative humidity and higher temperature as predicted in the 
present study could be related to the presence of structural 
features of the viral envelope and relatively stable spike 
protein with significantly lower free energy. Moreover, at 
lower relative humidity and higher temperature the respiratory 
droplet will undergo evaporation at a higher rate and the 
desiccated state of droplet will remain unaffected by the 
changes in temperature, causing higher infection rates. 
Infection can be further enhanced due to higher mobility of 
the smaller droplets under high temperature and low humidity 
which can readily enter the human host. As predicted in this 
study, the experiments conducted [27] by Prussin et al. (2018) 
showed that at 370C temperature Phi6, a surrogate of influenza 
and coronaviruses, had the highest infectivity at 20-40% 
relative humidity. This happens in all the models as shown in 
Figures 3-5. However, in the same experiment the virus 
showed a significantly higher level of infection throughout 
the entire range of relative humidity at lower temperature of 
14 and 190C. Particularly for Model B and C, this happens for 
lower temperatures 10 to 200C throughout the entire range of 
humidity as seen in the left plots in Figure 4 and 5 in the first 
20 days although with some variation in the level of infection 
in comparison to that found for surrogate of influenza and 
coronavirus. On the other hand, our statistical analysis also 
showed an increase in viral infection at low temperature and 
high relative humidity as observed earlier for seasonality of 
influenza virus infection, which occurs at a significantly 
higher level during winters when average outdoors daily 
temperatures remains lower and relative humidity is higher 
[11]. The finding is also supported [27] by the results of 
Prussin et al. (2018) reporting higher infectivity of Phi6 at 
lower temperature (10-200C) when relative humidity was 
kept constant at 75%. However, according to models in this 
work, for relative humidity at 75%, increase in viral infection 
occurs at further lower temperature than that found for 
influenza virus. It is below 00C in Model A, and in Model B 
and C, below 100C as seen in Figures 3-5 in first 20 days. 
Probably at higher humidity with appropriate droplet size 
SARS-CoV-2 could remain wet by keeping it at slightly 
higher temperature with respect to the lower surface 
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temperature of the droplet and thus remains viable for 
infection. However, our study indicates a complete reduction 
in infectivity of the virus under lower temperature and lower 
humidity condition. Under such condition, probably SARS-
CoV-2 virus could not remain wet inside the droplets which 
are of smaller size and the lipid and the protein structure 
inside the virus gets deformed resulting in a reduction in 
viability. Furthermore, the predicted decrease in viral 
infectivity at a higher temperature and higher humidity in our 
models could be due to the reduced rate of evaporation of 
respiratory droplets at higher humidity, which consequently 
makes them highly susceptible to higher temperature resulting 
in non-viability of SARS-CoV-2 for infection. Furthermore, 
corresponding aerosols with bigger size falls down to the 
surface and loses the mobility. This also could be a reason for 
the reduction in the viability of infection of SARS-CoV-2 at 
both high temperature and high humidity as indicated by the 
models.

Conclusion
Our statistical analysis indicates that the spreading of 

infection due to SARS-CoV-2 does not vary exponentially 
with time and hence, does not have similarity with law of mass 
action in chemistry as considered in general for spreading of 
infectious diseases. Based on statistical significance, three 
models may be considered to understand the future outcome 
of COVID-19 throughout the world and among them Model 
C seems better. We have not considered the data of all 
COVID-19 affected countries. However, based on Figure 1, 
it seems that data of different cities of four countries, can be 
considered in a single framework of a statistically validated 
regression model for the evolution of I'. Furthermore, as I' is 
normalized to 1 for any place, it is expected that such models 
would give a reasonably good estimate for the evolution of I' 
for the major cities of other countries. Based on the general 
features of all the models, it appears that higher precautionary 
measures would be required in the cities during the summer 
season with higher temperature and lower relative humidity, 
and during winter with low temperature and high relative 
humidity. On the other hand, the viability of SARS-CoV-2 
seems to be reduced at higher temperatures with higher 
humidity and at a lower temperature with lower humidity 
conditions in the environment, as depicted by the unshaded 
regions of Figures 3-5. However, Model C indicates this 
feature to be valid in the early infections only and may not 
continue for prolonged period. Based on models there is some 
non-zero rate of increase of  with time, which indicates 
some acceleration in the spread of the virus. This is related 
to the function F2 in Model A and functions F1, F2 in Model 
B and F2 and F3 in Model C. These features are expected 
to be valid for the spreading of other types of viruses which 
infect the human host. However, further studies on exploring 
such acceleration and the relationship of F2 with the structural 
features of SARS-CoV-2 would be worthwhile.
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