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Abstract
Background and Objectives: Percentile growth charts have been known as 
the standard to measure neonatal and child growth. However, there are several 
problems users face when using and analyzing percentile charts. Current univariate 
growth charts are generalized to global populations. To optimally identify high-
risk neonates, we outline a multivariate approach. We first hypothesize that 
morphometrics will vary according to demographics such as location, gender, 
race, etc. Further, we propose creating percentile charts involving any number of 
growth parameters for identifying high-risk individuals for specific locations and 
populations based on the Multivariate Normal Probability Density.

Methods: We obtained data from neonates (38 to 42 weeks) involving four 
morphometrics (body length, chest circumference, cephalic perimeter and 
weight) from three locations: Phoenix and Yuma, AZ, and Jackson, WY. We 
investigated whether neonatal morphometrics differed significantly with respect 
to location, gender, and race; and that assumptions of the multivariate approach 
were met, justifying the procedure. We then applied the multivariate approach for 
different combinations of morphometrics for specific populations. Ten scenarios 
were designed to evaluate and compare percentile computations for different 
demographics and morphometrics. Results: Neonatal morphometrics varied 
significantly for different genders, races and locations. Morphometric data presented 
no serious deviation from normality and assumptions of the multivariate approach 
were supported. The analysis of different combinations of the four morphometrics 
for Yuma Hispanics demonstrated the importance of our procedure in identifying 
high-risk neonates over the current univariate charts. MANOVAs, ANOVAs, and 
Independent- samples t-Tests generally demonstrated that morphometric data varied 
for different populations based on demographics: Location effect was significant 
on Body Length and Weight; Gender effect was significant on Body Length and 
Weight; Race effect was significant on Body Length and Weight. Location did not 
significantly affect Cephalic Perimeter, while Gender and Race did. Two-variable 
percentile curves were constructed and percentiles (for more than two variables) 
were calculated for various scenarios and compared to conventional charts.

Conclusions: Demographic differences demonstrate that the multivariate percentile 
approach may better identify high-risk individuals because percentile calculations 
involve more morphometric information and the multivariate procedure accounts 
for inter-correlations. Specific locations throughout the world could potentially 
utilize our approach for global validation for more reliable identification of high-
risk neonates. Furthermore, this user-friendly approach could be used in a multitude 
of scenarios involving morphometrics for any given population. It can also be used 
to study and understand current national trends and compare how neonatal growth 
has changed, showing greater need for a new and more accurate percentile- curve 
model.

Neonatal Percentile Curves: A Multivariate Normal Probability Density 
Approach
Michelle Montopoli M.A, EMT1*, George Montopoli Ph.D, EMT2, William ’Will’ Smith MD, EMT-P3, Delia 
Montopoli CNM, NP4



Michelle Montopoli M.A, et al., J Pediatr Perinatol Child Health 2026
DOI:10.26502/jppch.74050230

Citation:	Michelle Montopoli, George Montopoli, William ’Will’ Smith, Delia Montopoli. Neonatal Percentile Curves: A Multivariate Normal 
Probability Density Approach. Α One-Arm Clinical Trial. Journal of Pediatrics, Perinatology and Child Health. 10 (2026): 01-18.

Volume 10 • Issue 1 2 

Keywords: Self-Awareness; Pythagorean self-awareness 
intervention; Stress; Adolescence; Cognitive intervention

Abbreviations: BL – Body Length; BNPD – Bivariate 
Normal Probability Density; CC – Chest Circumference; 
CP – Cephalic Perimeter; CV – Coefficient of Variation; 
Ku – Kurtosis; M – Mean; MAB – Medical Advisory Board; 
MNPD – Multivariate Normal Probability Density; PH – 
Phoenix; Sk – Skewness; VAR – Variance; W – Weight; WY 
– Wyoming; YU – Yuma

Introduction
Several neonatal, infant, and child growth charts utilizing 

individual morphometrics have been proposed for assessment 
with the goal of detecting early nutritional defects or disease. 
Early recognition and identification of any anomalies will aid 
in early treatment in order to decrease morbidity, and to assist 
with normal growth and development.

Growth charts based on height, weight, and other 
morphometrics were developed and used to identify high-risk 
children since the early 1900s, and have evolved from simple 
data summaries into substantial statistical analyses.1 Notable 
growth chart improvements were developed by the National 
Center for Health Statistics (NCHS) and Department of 
Health and Human Services (DHHS) in 1977 (known as 
the NHANES program), in 2000 by the Center for Disease 
Control (CDC), and again in 2006 by the World Health 
Organization (WHO).

Throughout the evolution of such charts, there have 
been specific factors that were utilized to determine 
nutritional status, which include length/height, weight, head 
circumference, chest circumference, and/or body mass index 
(BMI). Normally, several measures are taken from 0 to 24 
months when growth is especially crucial to determine an 
infant’s well-being. These values are then plotted onto 
growth charts that have been created based upon a population 
of interest. Different factors are generally used during 
distinctive times of development and growth. Neonates are 
typically measured using length, weight, head circumference, 
and chest circumference.

In spite of widespread international use of WHO growth 
charts, concern about the sample that provided these charts 
existed. Major concerns involved sample characteristics, lack 
of racial diversity, lack of formula fed infants, and difficulties 
with the transition from length to height at the two-year-old 
mark. Thus, to address these problems in 1994, the National 
Health and Nutrition Examination Survey (NHANES III) 
oversampled children younger than six years old to update 
and add to the 1970’s data, which was then further revised by 
the CDC in 2000. CDC/NCHS growth charts were developed 
using this information and statistically converting it to 
standards specific to a certain reference population [1,2].

The NCHS later merged with the CDC, and their findings 
were derived from the Fels Longitudinal Growth Study. More 
precisely, the CDC created normalized growth charts for 
infants and children aged 0 to 59 months, using cross-sectional 
data of a population selected within the United States. Most 
children included were from a middle socioeconomic status, 
although the data were taken from a nationally representative 
survey. Thus, there have been difficulties when using these 
charts with diverse populations. These data were serially 
collected, normalized, and percentiles were created, in order 
to help identify individual developmental status trends, and 
recognize any children at risk or who deviate from the general 
population.

Abnormalities in growth were statistically determined to 
be any child in or below the 5th percentile, or at or above 
the 95th percentile (those beyond 2 and 3 standard deviations 
from the median). Most information is derived from observing 
how an infant is growing and to ensure their pattern of growth 
is occurring in a curvilinear fashion. If the infant continued 
to be below the fifth percentile or above the 95th percentile, 
or if growth was not following a normal pattern, further 
steps are taken to determine the reason. However, there were 
difficulties utilizing these growth charts with individuals and 
samples that deviated from the original population studied. 
Additionally, ethnicity, socioeconomic status, and breast-
feeding all played a role in growth, and the growth charts lost 
validity and reliability.

Although the CDC had developed growth charts that 
continued to be widely used, the WHO developed growth 
charts in 2003 that were created to encompass a greater 
international population in order to be used globally, and 
were released in 2006 [3]. The data was extricated using 
a more generalized and valid population involving six 
countries (USA, Brazil, Ghana, India, Norway, and Oman), 
encompassing diverse ethnicities, socioeconomic statuses, 
and types of feeding. Those included were healthy singleton 
births, whose mothers were nonsmokers and received 
nutritional counseling before, during, and after pregnancy. 
They selected this sample to implicate healthy growth to thus 
create a universal standard for growth charts.

Interestingly, WHO measurements took breast-feeding 
into account, which was found to affect growth significantly. 
One study of 226 healthy breastfed infants evaluated and 
compared how CDC and WHO growth charts assessed 
breastfed infants [4]. Breastfed infants grew most rapidly 
within the first two months of life, with the greatest linear 
growth seen until the age of four months when plotted on 
WHO growth charts when compared to the CDC reference 
charts. Growth was less rapid from the third to twelfth month 
of age in relation to CDC growth charts. For this reason, 
WHO growth charts became more of a standard, and were 
more widely used [3]. Furthermore, growth velocity and birth 
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weight were comparable throughout the different countries 
of interest, and charts were created using z-scores, where 
the normal 98% of the population was found to be within 2 
standard deviations of the mean.

With the evolution of two separate growth charts, there 
have been studies that have investigated the similarities and 
differences of the CDC/NCHS and WHO growth charts [5,6]. 
The population standard defined by WHO was found to be 
longer and thinner than that defined by the CDC/NCHS, 
which is most prevalently seen throughout mid- to late-
infancy. It was additionally discovered that undernourished 
or underweight infants and children were less likely to be 
classified as such when using WHO growth charts when 
compared to the CDC/NCHS growth charts. This was an 
expected finding because the WHO used samples from 
different countries that typically had lower rates of obesity 
and lower BMIs. Also, throughout the first three months of 
age, WHO growth charts demonstrated a faster rate of weight 
gain, which led to the identification of slower growing infants, 
and found to be prevalent in bottle-fed infants [2].

One of the main differences found between the CDC/
NCHS and WHO growth charts included those aged 24 to 
59 months. Although this difference was thought to be due to 
differing sample selections [2], Flegal, Carroll, and Ogden [7] 
strived to determine if differences in methodology accounted 
for any variations seen in weight-for-height and BMI-for-age 
percentiles for this age group. The WHO selected criteria in 
order to define healthy growth in order to obtain smoothed 
percentiles. Therefore, some of the differences between the 
two datasets could be accounted for due to data trimming, 
which the CDC did not utilize. This study demonstrated that 
there was more than one factor involved in why the CDC/
NCHS and WHO charts had different findings.

With the development of two separate growth charts, 
new recommendations were created to determine a standard 
of growth and which chart should be used [1,2]. They 
determined that the international growth standard was 
derived from WHO charts, whereas the CDC delineated a 
growth reference in the United States. WHO growth charts 
therefore were used to describe healthy growth under optimal 
environmental conditions. The CDC growth charts were used 
to describe how certain children grew during the period of 
1963-1994, and were thus a growth reference. Furthermore, 
in 2010, the CDC released recommendations for healthcare 
professionals to follow in order to determine which growth 
charts should be used depending on age.

Recommendations suggested that WHO growth charts 
should be used from birth to 24 months of age, and CDC 
growth charts should be used from 24 to 59 months of age. 
This was based on the fact that the WHO study took breast-
feeding into account, which thus reflected a better indication 
for the age group of birth to 24 months. Breast-fed infants 

were also less likely to be defined as underweight when WHO 
growth standard was utilized versus the CDC growth charts.

WHO charts have been more effective at identifying 
slower-growing infants during the first three months, which 
is suggestive of formula-fed infants, or possible inadequate or 
difficulties with breast-feeding or lactation in babies who are 
breast-fed [2]. Although this is the recommended standard, 
there are still discrepancies that healthcare providers should 
be aware of when changing from one growth chart to another. 
The most important concern is that toddlers, who may be 
considered overweight by WHO standards at 24 months, may 
become normal weight when converted to the CDC growth 
chart. Also, when this transition is made, length of the infant/
toddler is changed to height.

Mei and Grummer-Strawn [8] investigated the proportion 
of children less than two years of age who were deemed to 
be malnourished or failure-to-thrive (FTT) by CDC growth 
charts compared to WHO growth charts. This longitudinal 
study was conducted using 10,844 children that were 24 
months or younger, and included 37,964 weight and length 
measurements. Data extracted were from only routine office 
visits in California, and the study excluded infants with 
intrauterine growth retardation (IUGR), serious congenital 
anomalies, and those of multiple births. These data were used 
to compare the proportion of children who crossed two of 
more major percentile lines on CDC growth charts versus 
those who did so on WHO growth charts. Major percentile 
lines were defined by the 5th, 10th, 25th, 50th, 75th, 90th, 
and 95th percentiles for weight-for-age (WA), length-for-age 
(LA), and weight-for-length (WL) as is typically used in the 
clinical setting.

The researchers concluded that switching from CDC 
growth charts to WHO growth charts revealed more infants 
crossing down two percentile lines in LA, and more infants 
crossing up or down two percentile lines for WA and WL 
for infants aged 6 to 12 months. These results suggested 
that clinicians using WHO growth charts were likely to 
have more infants from birth to six months that could be 
considered malnourished or possibly FTT, and may be less 
likely to diagnose infants from six to 12 months as FTT. 
Moreover, this study demonstrated that crossing percentile 
lines, regardless of which growth chart was used, was very 
common for infants aged 0 to six months old.

Although FTT has been defined in several ways, it is 
commonly diagnosed when an infant/child falls below the 
5th percentile of the CDC growth chart, or if it crosses two 
or more major percentile lines over a short time [9,10]. Once 
FTT is suspected through this screening, there is typically 
a referral to for a full growth evaluation, at a costly and 
inefficient use of resources if deemed unnecessary. Therefore, 
it is critical for clinicians to understand the differences 
between CDC and WHO growth charts, and to be aware of 
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possible discrepancies that arise when using each or both of 
these growth charts.

Silveira et al. [11] compared NCHS, CDC, and WHO 
percentile growth charts in the assessment of nutritional 
statuses for hospitalized children from birth to five years old. 
The study assessed 337 children in Brazil, more than half 
of who were less than one year old, who were hospitalized. 
They concluded that there was a high correlation between the 
three growth charts. They also found that CDC and WHO 
growth charts are more likely to classify infants and children 
as underweight, malnourished, or FTT. Thus, overall, 
most studies have concluded that WHO charts are more 
likely to diagnose infants and children as underweight and 
malnourished than CDC and NCHS charts, thus leading to 
further evaluation, and possible misuse of data collected from 
the use of growth charts.

Although there have been effective recommendations 
created in order to understand and interpret neonate, infant, 
and child growth with the use of standardized growth 
charts, interpretation of NCHS versus WHO growth charts 
by clinicians may still be poorly understood. Ahmad, et 
al. [12] conducted a single, blind, randomized crossover 
trial involving 78 healthcare workers to assess how they 
interpreted growth chart information, and what guidelines 
they would suggest based on these findings. They were given 
scenarios with the same infant plotted on both NCHS WA 
percentile charts and on WHO growth charts, as well as 
other scenarios with one single final weight versus that same 
final weight with a leading linear growth trend, and asked 
to interpret the findings. The hope was that linear growth 
patterns would affect the clinicians’ concerns and decisions 
regarding follow-up care.

They concluded that linear growth trends were 
inefficiently considered, especially in low WA infants, 
leading to unnecessary management decisions. Additionally, 
more infants aged less than six months were placed in 
low percentiles on WHO growth charts versus NCHS 
charts, leading to a greater amount of healthcare concern, 
management, and referral when using WHO charts with the 
same infants. These scenarios suggested clinicians would 
inappropriately manage several cases, and that they failed to 
take an infant’s own growth pattern into account, which could 
result in excessive or unnecessary treatment and possible 
adverse effects. Finally, they recommended that WHO charts, 
and interpreting growth charts in general, should include 
training materials and guidelines. This study demonstrated 
the complexity of growth charts and that healthcare providers 
failed to understand the differences among NCHS and WHO 
growth charts, which could lead to the misdiagnosis of infants 
as being malnourished. Also, they failed to consider linear 
growth patterns on these curves as a whole, which could also 
lead to misdiagnosis on impaired growth.

More recently, Villar et al. [13] conducted a cross-
sectional study including more than 20,000 deliveries from 
eight countries named the International Fetal and Newborn 
Growth Consortium for the 21st Century (INTERGROWTH-
21st). The goal of the study was to develop multi-ethnic 
growth charts for newborn neonates born between 33 and 42 
weeks from urban areas. Countries involved included USA, 
UK, Brazil, China, India, Italy, Kenya, and Oman.

Trained clinicians took measurements of healthy neonates 
within 12 hours of birth, and found that variables of interest 
were similar throughout the eight countries. Specifically, they 
found that at 40 weeks of gestation, the 50th percentile for 
boys’ birth weight was 3.38kg (3rd to 97th percentile was 
2.63-4.22kg), length was 49.92cm (46.75-53.13cm), and 
head circumference was 34.31cm (32.15-36.56cm). For 
females at 40 weeks gestation, birth weight was 3.26kg (2.55- 
4.08kg), length was 49.23cm (46.12-52.22cm), and head 
circumference was 33.76cm (31.72- 35.92cm).

Saugstad [14] discussed the relevance of this study and its 
implications for variables that can affect growth during the 
gestational and neonatal period. Specifically, he observed that 
several factors can affect birth weight, including maternal and 
paternal factors. Specifically, maternal weight gain during 
pregnancy was found to significantly impact the birth weight 
in females, while paternal birth weight was significantly 
associated with male birth weight [15].

INTERGROWTH-21st additionally compared their 
findings to the current reference standard of growth charts 
designed by WHO [1,13]. Findings suggested that the mean 
birth weight for neonates in Scandinavian countries were 0.3 
kg greater than what was found by WHO in the same region. 
This could further implicate that the standard WHO growth 
charts utilized from 0 to 24 months may in fact underestimate 
birth weight, length, and head circumference.

Further studies are underway to try and discover diverse 
factors that may result in this increased birth weight, and 
include maternal BMI, diet, and nutrients. Additionally, 
WHO [16] recommends delayed cord clamping worldwide 
after delivery, as it has been found to increase birth weight 
significantly. A Cochrane systematic review of 3,911 neonates 
found that birth weight almost doubled after delayed cord 
clamping, as well as a higher hemoglobin concentration, and 
increased iron reserve up to six months post-birth [17]. Thus, 
substantial difference in birth weight could be accounted 
for in part, or entirely, based on the time of cord clamping, 
and could be an important variable of consideration when 
comparing birth weights found in different studies.

Determining neonate, infant, and child growth is of vital 
importance. It allows clinicians and healthcare workers to 
evaluate for any abnormalities, and to follow the trend of 
growth throughout development. There have been several 
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attempts to create growth charts that effectively capture 
growth, with the hopes that any abnormalities will be noted 
for further evaluation. Although the CDC and WHO have 
implemented growth charts that have been utilized worldwide, 
there are still setbacks to their effectiveness. Further, there 
have been concerns with the ability of clinicians to use these 
charts effectively, and apply the findings clinically.

Improvements are continuously implemented and 
the charts are currently ubiquitous and based on fairly 
sophisticated statistical techniques, such as curve-smoothing 
procedures involving regression [1]. Curves generated for 
the charts are based on extensive data sets of morphometric 
measurements of children and infants, and generalized to the 
U.S. population utilizing normalization techniques. Growth 
curves are periodically updated with considerable effort 
and complexity, with the hopes of developing an applicable 
chart that encompasses a representative population, while 
allowing healthcare workers to effectively use and interpret 
the findings clinically.

Several studies demonstrate that much confusion exists 
with the current charts available to determine growth 
status. There have been errors with utilizing growth charts 
when trying to evaluate FTT, obesity, and growth status. 
Current growth charts are not always representative of all 
populations, and have been shown to lead to clinical errors, 
misunderstanding, and inaccurate diagnoses. As discussed 
above, at 24 months a toddler is switched to another growth 
chart, which leads to some inaccuracies.

There are differing variables that are utilized to measure 
growth depending on the population of interest. For example, 
growth in utero is often measured by crown rump length 
(CRL), biparietal diameter (BPD), abdominal circumference 
(AC), and estimated fetal weight (EFW), whereas infant, 
toddler, and child growth are measured utilizing weight, 
length, and head circumference. There have been several 
confounding variables (such as breast feeding, geographic 
location, and ethnicity) that have been found to impact growth 
in diverse populations, suggesting that specific percentile 
measurements for differing populations are necessary for 
more precise identification of growth status and any possible 
morbidities.

To better identify high-risk neonates and children, we 
propose using a focused percentile approximation approach 
in place of the complex generalized growth curves described 
previously. The approximation is based on the multivariate 
normal probability distribution, and utilizes a simplified 
analysis strategy that is easily implemented to create either: 1) 
a two-variable percentile chart, or 2) a three-or-more variable 
percentile calculation. To our knowledge, our research is 
novel and original, and no prior research using our approach 
has been conducted.

The advantage of our approach is that the percentile 
approximations represent current trends, easily updated, 
location-specific, gender-specific, race-specific, age-
specific, and based on any combination of demographics and 
morphometrics for which data are available. Any medical 
facility could create its own percentile charts at periodic age 
intervals relative to specific populations and risks endemic 
to its location. Morphometrics such as weight, body length, 
cephalic perimeter (head circumference), chest circumference, 
etc., and combinations of these measures may be analyzed, 
and growth charts constructed to display percentile values for 
the individual.

Methods
Institutional Review Board approval was granted from 

the University of Arizona to conduct this study. Four health 
organizations were contacted in Arizona and Wyoming, 
and three agreed to participate in the research (St. John’s 
Medical Center, Jackson, WY; Maricopa County Public 
Health Office of Epidemiology, Phoenix, AZ; and Sunset 
Community Health Center, Yuma, AZ). Data were collected 
over the course of approximately one year, and included body 
length (BL), chest circumference (CC), cephalic perimeter 
(CP), weight (W), race, gender, and location. Our target 
populations consisted of full-term neonates born between 38 
and 42 weeks after conception, and additional demographic 
data that included race of mother (Hispanic or Non-Hispanic) 
and gender of the neonate.

Our multivariate normal probability distribution (MNPD) 
approach was based on two fundamental assumptions:

1. Morphometric data are normally distributed, and may be
incorporated jointly into a MNPD;

2. Morphometric data vary for different populations based
location, race, gender, etc., so that different MNPDs
should be applied to different populations.

To confirm the fundamental premises of our research,
preliminary descriptive analyses involved:

• Normality tests (skewness and kurtosis analyses) of all
morphometric data for the various populations that were
included in our research;

• MANOVAs, ANOVAs and independent samples t-tests
to demonstrate that significantly different populations
based on location, race and gender occurred;

• Descriptive summaries of all data pertaining to the various 
populations.

Having confirmed our fundamental assumptions, we
then directed the analysis to the calculations of MNPD 
percentiles based on two-, three-, and four-variable percentile 
combinations for specific locations and races. We chose the 
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MNPD multivariate approach because morphometric data are 
generally normally-distributed, and when analyzed jointly, 
the variables are generally correlated. The multivariate 
approaches allow us to account for this correlation because 
it is an intrinsic component of the joint probability density, 
while the univariate approach (one morphometric at a time) 
does not account for inter-correlations of the morphometrics.

We provide percentile calculations for up to four 
morphometrics that are measured on a neonate, principally for 
validation of our multivariate approach, and for comparison 
of percentiles for different combinations of morphometrics. 
We generally emphasize analyzing only two morphometrics 
jointly using the bivariate normal probability density (BNPD), 
a two- variable version of the MNPD. The BNPD provides a 
more powerful analysis than analyzing one variable at a time 
(the correlation between the two variables is accounted for), 
and it allows construction of percentile charts (contour charts) 
for convenient determination of high-risk neonates. When 
analyzing more than two morphometrics, construction of 
contour charts is not possible due to the additional dimensions, 
but the MNPD can be used to calculate percentiles when a 
high-risk infant is involved. This would provide for greater 
certainty about the status of a high-risk neonate.

In the case of two measured morphometric, the BNPD is 
given by:

−
(

2

1
1) +(

2

2
2) 1 2)−

1 2
2)

1 2√ 2)

where, for example: x = BL; y = W; µ1 = Mean BL,  
µ2 = Mean W, σ1 = Standard Deviation BL, σ2 = Standard 
Deviation W, and ρ = Correlation of BL and W. A profile 
of the BNPD, the cumulative BNPD distribution, and a 
percentile chart are given below in Figures 1, 2, and 3.

When more than two morphometrics are used for 
percentile calculations, we use the generalized matrix form 
of the MNPD, consisting of d variables, which is given by:

1 −1

√|∑|
2

−1 ′

where Σ = covariance matrix, x = vector corresponding 
to the variables and µ = vector of the means of the variables.

Several additional analyses were incorporated into our 
research to demonstrate the superiority of our approach over 
traditional approaches, including:

• Percentile calculations based on the actual data were
calculated for all one-variable, two-variable, three-

Figure 1: The bivariate normal probability density for a simulated 
data set.

Figure 2: The cumulative bivariate normal probability density for 
simulated data.

Figure 3: The contour chart of the cumulative bivariate normal 
probability density.
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variable, and four-variable morphometric combinations to 
insure the integrity of our higher-dimensional approach;

• For various significantly different populations, percentile
calculations were compared for various combinations
of morphometrics based on sets of scenarios created
by adding and subtracting approximately 1.5 standard
deviations to the mean of each morphometric;

• Conventional percentile calculations (from hospital
charts), were compared to percentile calculations using
our approach;

• When more than two morphometric variables were
measured, but two-variable percentile contour charts
are desired for easy percentile calculations, we describe
a procedure for choosing two variables based on a
Coefficient of Variation (CV) analysis, where CV equals
the standard deviation divided by the mean for any
population.

Results
After obtaining the Institutional Review Board approval 

from the University of Arizona to conduct our research, we 
solicited participation from four organizations, and three 
agreed to participate in the research (St. John’s Medical 
Center, Jackson, WY; Maricopa County Public Health Office 
of Epidemiology, Phoenix, AZ; and Sunset Community 

Health Center, Yuma, AZ). Data were collected over the 
course of approximately one year, and included body length 
(BL), chest circumference (CC), cephalic perimeter (CP), 
weight (W), race, gender, and location.

Neonatal morphometric measurements that were provided 
differed for the various locations. Maricopa County Public 
Health Office (PH) provided BL and W, Sunset Community 
Health Center (YU) provided BL, CC, CP, and W; and St. 
John’s Medical Center (WY) provided BL, CC, and W. A 
descriptive summary of the data including number of infants 
(N), mean (M), and standard deviation (SD) are given in 
Table 1 below. Information displayed in this table will be 
cited throughout the document.

Assumption 1: Morphometric Data are 
Normally Distributed

Data were first assed for normality, an underlying premise 
of the analysis. The normality assessment was based on 
skewness (Sk) and kurtosis measurements (Ku). Because 
normality tests are very sensitive to sample size, and the 
original data from PH (N = 18,522) greatly exceeded that 
from YU (N = 299) or WY (N = 376), we randomly chose 
338 participants from the PH data. (The value 338 represents 
the average of the YU and WY sample sizes.) Although there 
are several criteria for assessing normality, our assessment 
was based on that proposed by West et. al. (1995), which 

BL CC CP W

PH N = 18,522

Hispanic 
N = 9,879

Female
N = 4,824

M = 49.95
SD = 2.458

M = 3.32
SD = 0.424

Male
N = 5,055

M = 50.71
SD = 2.483

M = 3.44
SD = 0.451

Other 
N = 8,643

Female
N = 4,295

M = 50.55
SD = 2.565

M = 3.32
SD = 0.452

Male
N = 4,348

M = 51.29
SD = 2.572

M = 3.42
SD = 0.454

YU N = 299

Hispanic 
N = 271

Female
N = 140

M = 49.80
SD = 2.629

M = 32.91
SD = 2.067

M = 33.79
SD = 1.573

M = 3.28
SD = 0.515

Male
N = 131

M = 51.01
SD = 2.461

M = 33.40
SD = 1.832

M = 34.41
SD = 1.635

M = 3.44
SD = 0.446

Other 
N = 28

Female
N = 18

M = 50.07
SD = 2.659

M = 33.78
SD = 2.144

M = 34.39
SD = 1.290

M = 3.53
SD = 0.460

Male
N = 10

M = 51.20
SD = 2.431

M = 33.70
SD = 1.252

M = 34.23
SD = 1.731

M = 3.39
SD = 0.509

WY N = 376

Hispanic 
N = 73

Female
N = 44

M = 49.19
SD = 1.992

M = 33.20
SD = 1.370

M = 3.17
SD = 0.413

Male
N = 29

M = 50.13
SD = 2.376

M = 34.17
SD = 1.416

M = 3.25
SD = 0.403

Other 
N = 303

Female
N = 160

M = 49.59
SD = 2.177

M = 33.99
SD = 1.554

M = 3.24
SD = 0.408

Male
N = 143

M = 50.50
SD = 2.049

M = 34.57
SD = 1.546

M = 3.35
SD = 0.415

Table 1: Descriptive statistics summary of the morphometric measurements.
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indicated a substantial departure from normality when the 
absolute skewness value >2 and absolute kurtosis value >4. 
Additionally criteria will be addressed in the Discussion 
Section of this manuscript; thus, additional information is 
presented in Table 2.

Several summaries are presented in Tables 2, 3, and 4 
below. Based on the above criteria, there is no reason to suspect 
that the morphometric data presented any serious deviation 
from normality. This is a necessary requirement for the 

assumption that the morphometric data may be incorporated 
jointly into a MNPD. However, it is not sufficient [19].

Characteristics of multivariate normality also require 
that any linear combination of the variables are normally 
distributed, and all pairwise subsets are (bivariately) 
normally distributed. This is not a trivial analysis; however, 
it is simplified by examination of bivariate scatterplots for 
approximately elliptical shapes, which is shown in Figure 4 
below.

N Sk SESk Z Ku SEKU Z

Combined Data

BL 1,013 -0.093 0.077 -1.208 0.178 0.154 1.156

CC 299 -0.260 0.141 -1.844 1.366 0.281 4.861

CP 675 -0.094 0.094 -1.000 0.574 0.188 3.053

W 1,013 0.096 0.077 1.247 0.931 0.154 6.045

Phoenix
BL 338 -0.163 0.133 -1.226 0.138 0.265 0.521

W 338 -0.017 0.133 -0.128 -0.103 0.265 -0.389

Yuma

BL 299 -0.140 0.141 -0.993 0.410 0.281 1.459

CC 299 -0.260 0.141 -1.844 1.366 0.281 4.861

CP 299 -0.068 0.141 -0.482 0.629 0.281 2.238

W 299 0.217 0.141 1.539 1.690 0.281 6.014

Wyoming

BL 376 -0.138 0.126 -1.095 -0.237 0.251 -0.944

CP 376 -0.115 0.126 -0.913 0.548 0.251 2.183

W 376 0.049 0.126 0.389 0.529 0.251 2.108

Table 2: Skewness and kurtosis analyses by location.

N Sk SESk Z Ku SEKU Z

Hispanic

BL 509 -0.032 0.108 -0.296 0.191 0.216 0.884

CC 271 -0.352 0.148 -2.378 1.206 0.295 4.088

CP 344 -0.073 0.131 -0.557 0.552 0.262 2.107

W 509 0.195 0.108 1.806 1.459 0.216 6.755

Non-Hispanic

BL 504 -0.154 0.109 -1.413 0.183 0.217 0.843

CC 28 1.010 0.441 2.290 2.740 0.858 3.193

CP 331 -0.104 0.134 -0.776 0.652 0.267 2.442

W 504 -0.016 0.109 -0.147 0.285 0.217 1.313

Table 3: Skewness and kurtosis analyses by race.
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Assumption 2: Morphometrics Vary for 
Different Populations

The second fundamental assumption of our research 
stipulates that morphometric data vary for different 
populations based on location, race, gender, etc., so 
that different MNPDs should be applied to the different 
populations. In the Introduction Section, we cited several 

studies that supported our assumption; however, to support 
this claim with our data, we performed several parametric 
tests. Similar to normality tests, sample sizes that are 
substantially different can significantly influence results. We 
therefore used the reduced, randomly-selected data from the 
PH population (N = 338 instead of 18,522) in the analyses. 
All tests were run at an experiment-wise level of significance, 
α, equal to 0.05

The first analysis involved a multivariate ANOVA 
(MANOVA) designed to test the significance of three 
independent variables (Gender, Location, and Race) on a best 
linear combination of two dependent variables (BL and W). 
We used a best linear combination of BL and W because they 
were measured at all locations, and the combination of the two 
variables provided a more holistic multidimensional analysis 
of the phenomenon under investigation [20]. The results of 
the analysis indicated a significant effect of Location (Wilks’ 
Lambda = 0.970, df = 4, 2000,  p = 0.000) and Gender (Wilks’ 
Lambda = 0.003, df = 4, 292, p = 0.001) on the combined 
dependent variable. All two-way and three-way interactions 
were not significant. Follow-up ANOVAs and Independent-
Samples t-tests assessed significance of the main effects of 
the dependent variables, Gender, Location, and Race, on each 
of the dependent variables, BL and W, examined one at a 
time. Significant results included:

Sk SESk Z Ku SEKU Z

Phoenix 
N = 338

Yuma N = 299

Wyoming N = 376

Hispanic

N = 615

BL 0.061 0.189 0.323 0.172 0.376 0.457

W 0.263 0.189 1.392 -0.010 0.376 -0.027

Other
N = 173

Hispanic 
N = 271

Other 
N = 28

Hispanic 
N = 73

Other
N = 303

BL -0.402 0.185 -2.173 0.571 0.367 1.556

W -0.265 0.185 -1.432 -0.015 0.367 -0.041

BL -0.145 0.148 -0.980 0.419 0.295 1.420

CC -0.352 0.148 -2.378 1.206 0.295 4.088

CP -0.054 0.148 -0.365 0.625 0.295 2.119

W 0.191 0.148 1.291 1.860 0.295 6.305

BL -0.087 0.441 -0.197 0.604 0.858 0.704

CC 1.007 0.441 2.283 2.740 0.858 3.193

CP -0.133 0.441 -0.302 0.812 0.858 0.946

W 0.607 0.441 1.376 -0.209 0.858 -0.244

BL 0.151 0.281 0.537 -0.340 0.555 -0.613

CP -0.382 0.281 -1.359 -0.094 0.555 -0.169

W 0.178 0.281 0.633 -0.033 0.555 -0.059

BL -0.208 0.140 -1.486 -0.142 0.279 -0.509

CP -0.100 0.140 -0.714 0.652 0.279 2.337

W 0.017 0.140 0.121 0.708 0.279 2.538

Table 4: Skewness and kurtosis analyses by location and race.

Figure 4: Bivariate scatterplots for the combined data
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• Location demonstrated a significant effect on BL [F(2,
1001) = 10.576, p = 0.000]. A Bonferroni Post-Hoc
analysis indicated that infants from WY were significantly
shorter (M = 49.4cm) than those from PH (p = 0.000) or
YU (p = 0.036), while there was no significant difference
(p = 0.100) in BL between infants from PH (M = 50.8cm)
and YU (M= 50.4cm).

• Gender demonstrated a significant effect on BL [F(1,
1001) = 20.431, p = 0.000].

• Male infants (M = 50.9cm) were significantly longer than
female infants (M = 49.9cm).

• Race demonstrated a significant effect on BL [F(1, 1001)
= 4.609, p = 0.032].

• Hispanic infants (M = 50.3cm) were significantly shorter
than non-Hispanic infants (M = 50.4cm).

• Location demonstrated a significant effect on W [F(2,
1001) = 14.064, p = 0.000]. A Bonferroni Post-Hoc
analysis indicated that infants from WY were significantly
lighter (M = 3.27kg) than those from PH (p=0.000) or YU
(p = 0.036), while there was no significant difference (p =
0.100) in W between infants from PH (M = 3.44kg) and
YU (M = 3.37kg).

• Gender demonstrated a significant effect on W [F(1, 1001)
= 4.206, p = 0.041]. Male infants (M = 3.42kg) were
significantly heavier than female infants (M = 3.30kg).

• Race demonstrated a significant effect on W [F(1, 1001)
= 4.841, p = 0.028].

Hispanic infants (M = 3.35kg) were significantly lighter
than non-Hispanic infants (M = 3.36kg).

 The second analysis investigated CP, which was measured 
in WY and YU, but not in PH. A three-way ANOVA assessed 
significance of the main effects of the dependent variables, 
Gender, Location, and Race, on CP. A summary of the results 
follows:

• Location did not significantly affect CP [F(1, 667) =
1.333, p = 0.247]. CP in YU had a mean, M = 34.13cm,
while that in YU was M = 34.11cm.

• Gender demonstrated a significant effect on CP [F(1,
667) = 6.939, p = 0.009). Male infants (M = 34.45cm)
had a significantly longer CP than female infants (M =
33.83cm).

• Race demonstrated a significant effect on CP [F(1, 667) =
4.463, p = 0.035).

Hispanic infants (M = 33.98cm) had a significantly shorter
CP than non-Hispanic infants (M = 34.27cm).

The final analysis investigated CC, which was only 
measured in Yuma. Independent samples t-tests indicated 
that there were no significant differences [t(297) = 1.808, 
p = 0.072] on CC between male infants (M = 33.4cm) and 
female infants (M = 33.0cm); nor were there any significant 
differences [t(297) = 1.554, p = 0.121] on CC between 
Hispanic infants (M = 33.1cm) and non-Hispanic infants  
(M = 33.8cm).

The above analyses demonstrated that morphometric data 
do vary for different populations based on location, race, 
and gender, so that different MNPDs should be applied to 
the different populations. The descriptive statistics used in 
the above analyses for the reduced data are summarized in  
Table 5:

Gender Location Race

Female Male PH YU WY Hispanic Other

BL (cm)

M = 49.88 M = 50.85 M = 50.79 M = 50.39 M = 50.79 M = 49.92 M = 50.42

SD = 2.473 SD = 2.301 SD = 2.502 SD = 2.610 SD = 2.502 SD = 2.155 SD = 2.389

N = 525 N = 488 N = 338 N = 299 N = 376 N = 509 N = 504

CC (cm)

M = 33.01 M = 33.42 M = 33.20 M = 33.15 M = 33.75

SD = 2.087 SD = 1.796 SD = 1.963 SD = 1.968 SD = 1.848

N = 158 N = 141 N = 299 N = 271 N = 28

CP (cm)

M = 33.84 M = 34.45 M = 34.11 M = 34.13 M = 33.98 M = 34.27

SD = 1.547 SD = 1.576 SD = 1.612 SD = 1.574 SD = 1.606 SD = 1.561

N = 362 N = 313 N = 299 N = 376 N = 344 N = 331

W (kg)

M = 3.30 M = 3.42 M = 3.44 M = 3.37 M = 3.27 M = 3.35 M = 3.36

SD = 0.445 SD = 0.423 SD = 0.401 SD = 0.488 SD = 0.414 SD = 0.450 SD = 0.427

N = 525 N = 488 N = 338 N = 299 N = 376 N = 509 N = 504

Table 5: Descriptive Statistics for the Reduced Data Set
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Percentile Calculations:
Having substantiated our assumptions, we first assessed 

the integrity of the MNPD procedure. Using Matlab 
(R2014b), percentiles based on the actual data for all one-
variable, two-variable, three-variable, and four-variable 
morphometric combinations were calculated without any 
issues, and random examination of the percentiles revealed no 
discrepancies. All available complete data for each location 
were used in the percentile validation. Descriptive statistics 
used in the calculations, specifically the means (M), variances 
(VAR), and covariances, are given in Tables 6 and 7 below. 
Matlab commands for running the percentile calculations are 
listed in the Appendix, as well as information about obtaining 
a Matlab compiler program provided by the authors at no cost 
that provides percentile calculations and charts.

Ten scenarios were designed to: 1) evaluate and 
compare percentile computations for the different locations 
with respect to BL and W; and 2) evaluate and compare 
percentile computations within the YU area for different 
combinations of BL, CC, CP, W, and currently- used hospital 
charts. Scenarios were based on different combinations of 
morphometrics by adding and subtracting approximately 1.5 
standard deviations to the mean of each morphometric, and 
dividing the resulting range into ten segments. The scenarios 
were then arranged in order so that the lowest percentile to the 
largest percentile would result from the various combinations 
of the morphometrics. The ten scenarios are listed in Table 

8, and the resulting percentile calculations for the Hispanic 
and Non-Hispanic (or Other) races in the WY, PH and YU 
locations are given in Table 9.

Figure 5 provides a summary plot of the percentiles 
presented in Table 9. Although Figure 5 will be analyzed 
in-depth in the Discussion Section, noteworthy observations 
include:

1. All populations have approximately equal percentile
calculations for Scenario 1;

2. Scenario 4 indicates that the WY Hispanic population falls 
in the 23.4th percentile, while the PH Other population
falls in the 12.7th percentile;

3. Scenario 6 indicates that the WY Hispanic population falls 
in the 57.8th percentile, while the PH Other population
falls in the 35.4th percentile.

Table 10 and Figure 6 provide a summary of scenario
percentile computations for the Hispanic race within the 
YU area for different combinations of BL, CC, CP, W, and 
currently- used hospital charts. Any combination of two or 
more morphometrics used the MNPD in its computation, 
combinations containing one variable used the univariate 
normal probability distribution approximation (Excel), and 
combinations of one variable based on hospital charts were 
estimated from the respective chart. There was no hospital 
chart available for CC. Trends demonstrated below will be 
addressed more thoroughly in the Discussion Section.

BL CC CP W

PH

Hispanic N = 9879 M = 50.34 
VAR = 6.244

M = 3.38
VAR = 0.195

Other N = 8640 M = 50.92
VAR = 6.735

M = 3.37
VAR = 0.208

YU

Hispanic N = 271 M = 50.38
VAR = 6.823

M = 33.15
VAR = 3.860

M = 34.09
VAR = 2.647

M = 3.36
VAR = 0.238

Other N = 28 M = 50.47
VAR = 6.481

M = 33.75
VAR = 3.295

M = 34.33
VAR = 1.979

M = 3.48
VAR = 0.216

WY

Hispanic N = 72 M = 49.63 
VAR = 4.418

M = 33.61 
VAR = 2.094

M = 3.21
VAR = 0.154

Other N = 303 M = 50.02 
VAR = 4.658

M = 34.26 
VAR = 2.471

M = 3.29
VAR = 0.171

Table 6: Descriptive statistics for the percentile computations.

BL - CC BL - CP BL - W CC - CP CC - W CP - W

YU
Hispanic 2.9297 2.066 0.8809 2.0528 0.8058 0.4849

Other 3.3199 2.2234 0.8368 1.4509 0.666 0.4698

PH
Hispanic 0.6166

Other 0.7206

WY
Hispanic 1.2086 0.5284 0.2737

Other 0.972 0.5498 0.3358

Table 7: Covariances of morphometrics used in percentile computations.
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Table 11 presents coefficients of variation (CV) for 
the four morphometrics where CV equals the standard 
deviation divided by the mean. Pairwise correlations for 
all morphometrics are listed in Table 12. The CV was used 

to select the most important morphometrics to include 
in the percentile calculations in the event that only two 
morphometrics (of three or four measured morphometrics) 
are used to create bivariate percentile charts. Variables with 
higher (but not excessively higher) CVs allow for better, 
more powerful, estimates of percentiles. As noted in Table 
11, W has the largest CV, followed by CC; however, W and 
CC are highly correlated (r = 0.837). Therefore BL, with 
the next highest CV, is more appropriate to use with W in 
constructing two-variable percentile charts. Also, BL and 
W are commonly measured in all locations. A two-variable 
percentile (contour) chart, calculated from actual data and 
based on BL and W for YU Hispanics, is shown in Figure 7.

Discussion
Results of studies described in the introduction, along 

with results from our research, provide substantial evidence 
that current growth morphometric measurements are both 
controversial and inadequate in determining high risk neonates 
(and other age groups) using conventional percentiles charts 
developed by WHO, CDC, etc. These current percentile 
charts are univariate (they describe one morphometric) and 
are generalized to global populations.

Without any doubt, populations based on different 
demographics demonstrate significantly different neonatal 
growth parameters. Although research cited in the introduction 
identifies the issue, any realistic solutions are not explicitly 
stated other than the suggestion of the need for percentile 
charts specific to different populations.

Scenario BL CC CP W

1 46.00 31.50 32.00 2.60

2 46.89 32.06 32.44 2.78

3 47.78 32.61 32.89 2.96

4 48.67 33.17 33.33 3.13

5 49.56 33.72 33.78 3.31

6 50.44 34.28 34.22 3.49

7 51.33 34.83 34.67 3.67

8 52.22 35.39 35.11 3.84

9 53.11 35.94 35.56 4.02

10 54.00 36.50 36.00 4.20

Table 8: Ten scenarios for percentile comparisons.

Wyoming Phoenix Yuma

Scenario Hispanic Other Hispanic Other Hispanic Other

1 1.68% 1.14% 1.03% 1.03% 2.04% 1.23%

2 4.89% 3.42% 2.88% 2.74% 4.72% 3.15%

3 11.72% 8.53% 6.89% 6.29% 9.68% 7.07%

4 23.42% 17.87% 14.20% 12.66% 17.63% 13.92%

5 39.63% 31.86% 25.41% 22.45% 28.78% 24.26%

6 57.78% 49.00% 39.95% 35.39% 42.42% 37.71%

7 74.31% 66.24% 55.93% 50.16% 56.97% 52.80%

8 86.56% 80.53% 70.86% 64.76% 70.58% 67.44%

9 94.01% 90.32% 82.78% 77.32% 81.72% 79.74%

10 97.73% 95.87% 90.94% 86.78% 89.74% 88.70%

Table 9: Scenarios with Percentile Calculations Expressed as 
Percentages

Figure 5: Neonate percentile growth curves based on length and 
weight for ten scenarios

Scenario 1 5 10
BL, CC, CP 0.0094 0.1764 0.7772
BL, CC, CP 0.0116 0.1862 0.7798
BL, CC, W 0.0151 0.2295 0.8334
BL, CP, W 0.0113 0.2039 0.8183
CC, CP, W 0.0223 0.2491 0.8116

BL, CC 0.0199 0.2468 0.8370
BL, CP 0.0178 0.2357 0.8282
BL, W 0.0205 0.2883 0.8976

CC, CP 0.0388 0.2829 0.8163
CC, W 0.0412 0.3452 0.8770
CP, W 0.0277 0.2976 0.8611

BL 0.0468 0.3761 0.9171
CC 0.2005 0.6146 0.9559
CP 0.0995 0.4239 0.8798
W 0.0597 0.4601 0.9574

Chart BL 0.1200 0.5800 0.9900
Chart CP 0.1200 0.5000 0.9500
Chart W 0.0900 0.6000 0.9900

Table 10: Percentile calculation comparisons for three scenarios for 
YU hispanics based on different combinations of morphometrics.
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In our manuscript, we outline a simplistic approach for 
creating percentile charts and percentile calculations for 
use in identifying high-risk individuals at specific locations 
for specific populations. Percentile charts are based on the 
Multivariate Normal Probability Density MNPD), and defined 
by any number or combinations of morphometrics, although 
we emphasize two morphometrics which can optimally 
identify high-risk individuals via a convenient chart.

These charts need not be generalized to larger populations 
but are specific to the populations from which the data were 
collected.

Our approach was based on the assumption that 
growth measurements are normally distributed and may be 
incorporated jointly into a MNPD when taken together. Our 
assessment for validating the assumption was based on that 
proposed by West et al. [18], which indicated a substantial 
departure from normality when the absolute skewness 
value >2 and absolute kurtosis value >4. We preferred this 
assessment because of its simplicity and the fact that tests 
for normality of data generally are very sensitive to sample 

Figure 6:  Percentile calculation comparisons for three scenarios for YU hispanics.

Figure 7: The contour chart of BL and W for YU hispanics based on 
the cumulative BNPD.

BL CC CP W

M 50.5942 33.2027 34.1224 3.3739

SD 2.556 1.9592 1.5884 0.4488

CV 0.0505 0.059 0.0465 0.133

Table 11: Coefficients of variation for the YU hispanic 
morphometrics.

BL - BL - BL - W CC - CC - W CP - W

0.582 0.403 0.581 0.637 0.838 0.562

Table 12: Correlations of all pairs of yuma hispanic morphometrics.
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size and often overly conservative. We also assessed our data 
using other procedures:

1. A Z-test for normality of data, proposed by West
et al, where Z = Sk/SESk   or Z = Ku/SEKu, with the criteria:

Ku

1. For small samples (n < 50), if absolute z-scores for
either skewness or kurtosis are >1.96, the sample may
be non-normal;

2. For medium-sized samples (50 < n < 300), if absolute
z-scores for either skewness or kurtosis are >3.29, the
sample may be non-normal;

3. For sample sizes greater than 300, depend on the
histograms and the absolute values of skewness and
kurtosis without considering z-values. Either an
absolute skew value >2 or an absolute kurtosis >7
may be used as reference values for determining non-
normality.

Using this approach, seven minor potential, borderline 
discrepancies out of a possible 78 comparisons were 
observed (see Tables 2 through 4, which investigate skewness 
and kurtosis for Location, Race, and Location-by-Race, 
respectively).

2. Assessment of histograms, using stem-and-leaf plots,
boxplots, and Normal Q-Q plots, did not display any
major deviations from normality.

3. Assessment of bivariate normality using bivariate
scatterplots of the morphometrics, supported multivariate
normality by demonstrating approximately elliptical
shapes.

Examination of all the criteria suggested above provides
strong evidence in the assertion that morphometric data 
generally follow a normal probability distribution when 
analyzed univariately, and when analyzed jointly follow a 
multivariate normal probability distribution.

This in turn supports the approach we propose. We wish 
to emphasize several points:

1. The approach is intentionally designed for percentile
chart creation at specific locations and for specific
populations based on race, gender, etc. It is easy to
create these percentile curves; hence, they can target
specific populations without need for generalization to
all populations.

2. The approach could be extended to encompass any
age group, perhaps defined at three-month intervals.

3. A Medical Advisory Board (MAB) would be
responsible for defining risk categories and protocols
for the categories.

4. We do not suggest that conventional percentile charts
are useless. For a generalized assessment of the
status of newborns with respect to their development,
they provide a quick reference. Our procedure,
however, provides an enhanced, more comprehensive
assessment in the event that more detail is required in
the management of high-risk neonates.

Having established the fact that our MNPD assumptions 
were not violated, we next investigated the integrity and 
validity of our approach. Calculations of cumulative 
multivariate normal probabilities are numerically intensive, 
and any high multicollinearity between morphometrics 
could potentially force an ill-conditioned or near-singular 
matrix to not converge to an answer. We therefore applied 
the cumulative MNPD analysis to all combinations of two or 
more morphometric measures for PH, YU, WY, and the 10 
scenarios, and calculated percentiles for 23,418 scenarios. No 
problems were noted in the calculations, even after several 
sorting arrangements for easier observation, and no value 
deviated from reasonable expectation.

If in some instance the technique were to fail, we suggest 
checking bivariate correlations.

High correlations indicate that variables are highly 
related and account for much of the same variability. In 
the generalized MNPD formula, as the correlation between 
any two variables approach one, the covariance matrix Σ 
approaches singularity, and its determinant approaches zero. 
Division by zero occurs, and the technique fails. Hence, in the 
presence of high correlation, we recommend removal of one 
of the correlated variables using the Coefficient of Variation 
technique discussed below. Finally, providing that bivariate 
correlations are not excessively high, we feel that inclusion of 
up to four morphometrics for higher dimensional percentile 
calculations would be beneficial in identification of high-risk 
neonates when there is any doubt about the condition of the 
neonate.

Ten scenarios (Table 8, Results Section) were designed 
to: 1) evaluate and compare percentile computations for the 
different locations with respect to BL and W (Table 9 and 
Figure 4, Results Section); and 2) evaluate and compare 
percentile computations for YU Hispanics for different 
combinations of BL, CC, CP, W, and currently-used hospital 
charts (Table 10, Results Section). Scenarios were based 
on different combinations of morphometrics by adding and 
subtracting approximately 1.5 standard deviations to the 
mean of each morphometric, and dividing the resulting range 
into ten segments. The scenarios were then arranged in order 
so that the lowest percentile to the largest percentile would 
result from the various combinations of the morphometrics. 
Noteworthy observations include the following:

4. All populations have approximately equal percentile
calculations for Scenario 1;
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5. As morphometric size measurements increase, percentile
calculations for the various populations differ substantially:

a. Scenario 4 indicates that the WY Hispanic
population falls in the 23.4th percentile, while the PH Other 
population falls in the 12.7th percentile, a difference of 10.7 
percentile points;

b. Scenario 7 indicates that the WY Hispanic population 
falls in the 74.3th percentile, while the PH Other population 
falls in the 50.2th percentile, a difference of 24.1 percentile 
points (the largest percentile point difference);

6. Percentile point differences begin to narrow as Scenario
10 is approached, but still remain fairly large (WY
Hispanic population falls in the 97.7th percentile, while
the PH Other population falls in the 86.8th percentile, a
difference of 10.9 percentile points).

The above percentile point differences suggest that a
significant underestimation or overestimation of the status of 
a neonate could result if a single set of population parameters 
were generally applied to all populations, as is the current case 
with generalized hospital charts that measure morphometrics 
one at a time. For example, if WY parametric measures 
were applied to PH Other neonates according to criteria in 
Scenario 4, the PH Other neonate would be assigned to the 
23.4th percentile, when in actuality, its percentile is 12.7th. 
Medical follow-up protocols for the different percentiles 
would certainly follow different standards of care.

In Table 10 and Figure 6, we compare percentile 
computations for YU Hispanics for different combinations 
of BL, CC, CP, W, and currently-used hospital charts. The 
pattern that emerges is that conventional hospital charts based 
on BL, CP, or W tend to significantly overestimate neonatal 
percentiles for all scenarios. The combination consisting 
of all four morphometrics produces the lowest percentiles 
for all scenarios. This is expected because when four 
morphometrics are all taken into account simultaneously, and 
their correlations are accounted for, a very precise percentile 
measurement results. If protocols globally accepted this 
approach (using all four measures), it would be the most 
accurate; however, if percentile charts based on two measures 
were more convenient, the four-measure approach could be 
excessive. As noted below in the table and figure, a two-
measure percentile calculation falls somewhat in the middle 
of extremes, and the BL-W combination could be preferred 
because it is commonly measured. We will also argue for 
the BL-W combination based on the Coefficient of Variation 
(CV) analysis that follows.

CV is defined as the standard deviation divided by the
mean, and is summarized in Table 11. CV essentially 
represents a scaled standard deviation, or the amount of 
variability in a measure relative to its mean (Howell, 2010). 
Variables with higher (but not excessively higher) CVs 

allow for better, more powerful, analyses and, in our case, 
estimates of percentiles. We propose the use of CV to select 
the most important morphometrics to include in the percentile 
calculations in the event that only two morphometrics (of three 
or four measured morphometrics) are used to create bivariate 
percentile charts. Variables with higher CVs allow for better, 
more powerful, estimates of percentiles. As noted in Tables 
11, W has the largest CV, followed by CC; however, W and 
CC are highly correlated (r = 0.837, Table 12). Therefore BL, 
with the next highest CV, is more appropriate to use with W 
in constructing two-variable percentile charts. Also, BL and 
W are commonly measured in all locations.

A contour chart of BL and W for YU Hispanics based 
on the Cumulative BNPD is shown in Figure 7. The contour 
chart was easily constructed using Matlab (see Appendix for 
the command code). Using this chart, input of a BL = 51cm 
and W = 3.5kg would result in a percentile calculation for a 
YU Hispanic neonate = 48th.

To summarize our approach, a Medical Advisory Board 
(MAB) in PH could select a target population, select two 
(or more) variables of interest, collect recent data (for 
example, over six months), and produce a percentile chart for 
its specific population. The target population could be, for 
example, gender-specific, race-specific, etc., and defined over 
ages for neonates, at three-month intervals, etc. (a separate 
chart would be created at each age interval). The MAB would 
also be responsible for defining percentiles corresponding to 
high-risk, medium-risk, low- risk, and normal individuals, 
and protocols for addressing each risk category.

We feel that higher dimensional percentiles may 
better identify high-risk individuals because the percentile 
calculation would involve more morphometric information 
and be more precise. For example, a neonate who has a 
small body length may not necessarily be considered high-
risk, while a neonate who has a small body length and low 
weight might raise more concern. However, a neonate with 
a small body length, small cephalic perimeter, small chest 
circumference, and low weight would certainly be of concern, 
especially if he/she fell into the 10th or lower percentile.

We will make available upon request a Matlab Compiler 
program free of charge. The program will compute 
percentiles based on any number of morphometrics, and/or 
create a percentile chart similar to the one in Figure 7 when 
two morphometrics are specified.

What’s Known on this Subject:
Current neonatal growth charts are univariate and globally 

applied to all populations. Current research has demonstrated 
problems with this approach and discrepancies between the 
CDC and WHO charts. Also, the charts are misinterpreted 
and incorrectly applied by health care providers.
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What this Study Adds:
We propose a multivariate approach that simultaneously 

incorporates any number of morphometrics into the 
calculation of a percentile. The approach can be designed 
for any specific population based on any combinations of 
demographics such as race, gender, location, etc.
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Appendix:
1. EXCEL 2013 intrinsic functions for generating parameters

(the data encompass the entire population, and not a
sample):

Mean:  =AVERAGE(DataRange)
Standard Deviation: =STDEV.P(DataRange) 

Variance: =VAR.P(DataRange)

Correlation: =CORREL((DataRange1, DataRange2) 

Covariance: =COVARIANCE.P(DataRange1, DataRange2).

2. Using MATLAB R2014b, we defined the row-vector
of means µ by [34.28328 3.56779] and the covariance

matrix  , and produced the following
BNPD (Figure 1). We plotted CP and W over intervals
approximately equal to   to capture the entire
probability density. The MATLAB code for generating
the BNPD:

mu = [34.28328 3.56779];

Sigma = [8.639222 0.831953; 0.831953 0.326451];

x1 = 26:.25:42; x2 = 2:.1:5;

[X1,X2] = meshgrid(x1,x2);

F = mvnpdf([X1(:) X2(:)],mu,Sigma);

F = reshape(F,length(x2),length(x1));

surf(x1,x2,F);

caxis([min(F(:))-.5*range(F(:)),max(F(:))]);

axis([26 42 2 5 0 .15])

xlabel('Cephalic Perimeter');

ylabel('Weight');

zlabel('Probability Density'); 

title('Bivariate Normal Probability Density')

3. We next generated the Cumulative BNPD (Figure 2),
which we used to define the Contour Chart (Figure 3) for the
10th, 20th, … , 90th percentile curves. The MATLAB code
for generating the Cumulative BNPD:

F = mvncdf([X1(:) X2(:)],mu,Sigma); 

F = reshape(F,length(x2),length(x1)); 

surf(x1,x2,F);

caxis([min(F(:))-.5*range(F(:)),max(F(:))]); 

axis([26 42 2 5 0 1])

xlabel('Cephalic Perimeter'); 

ylabel('Weight'); zlabel('Cumulative Probability'); 

title('Bivariate Normal Cumulative Probability Density')

4. The MATLAB code for generating the Contour Plot of
the Cumulative BNPD:

contour(x1,x2,F,[.1:.1:.9]);

xlabel('Cephalic Perimeter'); ylabel('Weight');

title('Bivariate Normal Cumulative Probability Contour 
Plot'); 

colormap autumn;

colorbar('location','eastoutside');

Higher dimensional percentile computations were 
calculated using MATLAB; however, contour charts 
cannot be not meaningfully constructed for >2 dimensions. 
For example, we decided to include body length (BL) in 
our percentile computation along with CP and W. Values 
corresponding to BL were then included in the row vector of 
means and the covariance matrix Σ.

For example, suppose Mean(BL) = 43.2 cm, 
Variance(BL) = 4.0, Covariance(CP,BL) = 0.532, and 
Covariance(W,BL) = 0.412, then the row-vector of means mu 
= [34.28328 3.5677943.2] and the covariance matrix Sigma =  

, 
To find the percentile for an infant with CP = 30, W = 

3.2, and BL = 41, the MATLAB command is mvncdf([30 3.2 
41], mu, Sigma). The following percentile value is obtained: 
0.2028 = 20.28th percentile.
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