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Abstract

Background and Objectives: Percentile growth charts have been known as
the standard to measure neonatal and child growth. However, there are several
problems users face when using and analyzing percentile charts. Current univariate
growth charts are generalized to global populations. To optimally identify high-
risk neonates, we outline a multivariate approach. We first hypothesize that
morphometrics will vary according to demographics such as location, gender,
race, etc. Further, we propose creating percentile charts involving any number of
growth parameters for identifying high-risk individuals for specific locations and
populations based on the Multivariate Normal Probability Density.

Methods: We obtained data from neonates (38 to 42 weeks) involving four
morphometrics (body length, chest circumference, cephalic perimeter and
weight) from three locations: Phoenix and Yuma, AZ, and Jackson, WY. We
investigated whether neonatal morphometrics differed significantly with respect
to location, gender, and race; and that assumptions of the multivariate approach
were met, justifying the procedure. We then applied the multivariate approach for
different combinations of morphometrics for specific populations. Ten scenarios
were designed to evaluate and compare percentile computations for different
demographics and morphometrics. Results: Neonatal morphometrics varied
significantly for different genders, races and locations. Morphometric data presented
no serious deviation from normality and assumptions of the multivariate approach
were supported. The analysis of different combinations of the four morphometrics
for Yuma Hispanics demonstrated the importance of our procedure in identifying
high-risk neonates over the current univariate charts. MANOV As, ANOVAs, and
Independent- samples t-Tests generally demonstrated that morphometric data varied
for different populations based on demographics: Location effect was significant
on Body Length and Weight; Gender effect was significant on Body Length and
Weight; Race effect was significant on Body Length and Weight. Location did not
significantly affect Cephalic Perimeter, while Gender and Race did. Two-variable
percentile curves were constructed and percentiles (for more than two variables)
were calculated for various scenarios and compared to conventional charts.

Conclusions: Demographic differences demonstrate that the multivariate percentile
approach may better identify high-risk individuals because percentile calculations
involve more morphometric information and the multivariate procedure accounts
for inter-correlations. Specific locations throughout the world could potentially
utilize our approach for global validation for more reliable identification of high-
risk neonates. Furthermore, this user-friendly approach could be used in a multitude
of scenarios involving morphometrics for any given population. It can also be used
to study and understand current national trends and compare how neonatal growth
has changed, showing greater need for a new and more accurate percentile- curve
model.
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Introduction

Several neonatal, infant, and child growth charts utilizing
individual morphometrics have been proposed for assessment
with the goal of detecting early nutritional defects or disease.
Early recognition and identification of any anomalies will aid
in early treatment in order to decrease morbidity, and to assist
with normal growth and development.

Growth charts based on height, weight, and other
morphometrics were developed and used to identify high-risk
children since the early 1900s, and have evolved from simple
data summaries into substantial statistical analyses.1 Notable
growth chart improvements were developed by the National
Center for Health Statistics (NCHS) and Department of
Health and Human Services (DHHS) in 1977 (known as
the NHANES program), in 2000 by the Center for Disease
Control (CDC), and again in 2006 by the World Health
Organization (WHO).

Throughout the evolution of such charts, there have
been specific factors that were utilized to determine
nutritional status, which include length/height, weight, head
circumference, chest circumference, and/or body mass index
(BMI). Normally, several measures are taken from 0 to 24
months when growth is especially crucial to determine an
infant’s well-being. These values are then plotted onto
growth charts that have been created based upon a population
of interest. Different factors are generally used during
distinctive times of development and growth. Neonates are
typically measured using length, weight, head circumference,
and chest circumference.

In spite of widespread international use of WHO growth
charts, concern about the sample that provided these charts
existed. Major concerns involved sample characteristics, lack
of racial diversity, lack of formula fed infants, and difficulties
with the transition from length to height at the two-year-old
mark. Thus, to address these problems in 1994, the National
Health and Nutrition Examination Survey (NHANES III)
oversampled children younger than six years old to update
and add to the 1970’s data, which was then further revised by
the CDC in 2000. CDC/NCHS growth charts were developed
using this information and statistically converting it to
standards specific to a certain reference population [1,2].

The NCHS later merged with the CDC, and their findings
were derived from the Fels Longitudinal Growth Study. More
precisely, the CDC created normalized growth charts for
infants and children aged 0 to 59 months, using cross-sectional
data of a population selected within the United States. Most
children included were from a middle socioeconomic status,
although the data were taken from a nationally representative
survey. Thus, there have been difficulties when using these
charts with diverse populations. These data were serially
collected, normalized, and percentiles were created, in order
to help identify individual developmental status trends, and
recognize any children at risk or who deviate from the general
population.

Abnormalities in growth were statistically determined to
be any child in or below the 5th percentile, or at or above
the 95th percentile (those beyond 2 and 3 standard deviations
from the median). Most information is derived from observing
how an infant is growing and to ensure their pattern of growth
is occurring in a curvilinear fashion. If the infant continued
to be below the fifth percentile or above the 95th percentile,
or if growth was not following a normal pattern, further
steps are taken to determine the reason. However, there were
difficulties utilizing these growth charts with individuals and
samples that deviated from the original population studied.
Additionally, ethnicity, socioeconomic status, and breast-
feeding all played a role in growth, and the growth charts lost
validity and reliability.

Although the CDC had developed growth charts that
continued to be widely used, the WHO developed growth
charts in 2003 that were created to encompass a greater
international population in order to be used globally, and
were released in 2006 [3]. The data was extricated using
a more generalized and valid population involving six
countries (USA, Brazil, Ghana, India, Norway, and Oman),
encompassing diverse ethnicities, socioeconomic statuses,
and types of feeding. Those included were healthy singleton
births, whose mothers were nonsmokers and received
nutritional counseling before, during, and after pregnancy.
They selected this sample to implicate healthy growth to thus
create a universal standard for growth charts.

Interestingly, WHO measurements took breast-feeding
into account, which was found to affect growth significantly.
One study of 226 healthy breastfed infants evaluated and
compared how CDC and WHO growth charts assessed
breastfed infants [4]. Breastfed infants grew most rapidly
within the first two months of life, with the greatest linear
growth seen until the age of four months when plotted on
WHO growth charts when compared to the CDC reference
charts. Growth was less rapid from the third to twelfth month
of age in relation to CDC growth charts. For this reason,
WHO growth charts became more of a standard, and were
more widely used [3]. Furthermore, growth velocity and birth
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weight were comparable throughout the different countries
of interest, and charts were created using z-scores, where
the normal 98% of the population was found to be within 2
standard deviations of the mean.

With the evolution of two separate growth charts, there
have been studies that have investigated the similarities and
differences of the CDC/NCHS and WHO growth charts [5,6].
The population standard defined by WHO was found to be
longer and thinner than that defined by the CDC/NCHS,
which is most prevalently seen throughout mid- to late-
infancy. It was additionally discovered that undernourished
or underweight infants and children were less likely to be
classified as such when using WHO growth charts when
compared to the CDC/NCHS growth charts. This was an
expected finding because the WHO used samples from
different countries that typically had lower rates of obesity
and lower BMIs. Also, throughout the first three months of
age, WHO growth charts demonstrated a faster rate of weight
gain, which led to the identification of slower growing infants,
and found to be prevalent in bottle-fed infants [2].

One of the main differences found between the CDC/
NCHS and WHO growth charts included those aged 24 to
59 months. Although this difference was thought to be due to
differing sample selections [2], Flegal, Carroll, and Ogden [7]
strived to determine if differences in methodology accounted
for any variations seen in weight-for-height and BMI-for-age
percentiles for this age group. The WHO selected criteria in
order to define healthy growth in order to obtain smoothed
percentiles. Therefore, some of the differences between the
two datasets could be accounted for due to data trimming,
which the CDC did not utilize. This study demonstrated that
there was more than one factor involved in why the CDC/
NCHS and WHO charts had different findings.

With the development of two separate growth charts,
new recommendations were created to determine a standard
of growth and which chart should be used [1,2]. They
determined that the international growth standard was
derived from WHO charts, whereas the CDC delineated a
growth reference in the United States. WHO growth charts
therefore were used to describe healthy growth under optimal
environmental conditions. The CDC growth charts were used
to describe how certain children grew during the period of
1963-1994, and were thus a growth reference. Furthermore,
in 2010, the CDC released recommendations for healthcare
professionals to follow in order to determine which growth
charts should be used depending on age.

Recommendations suggested that WHO growth charts
should be used from birth to 24 months of age, and CDC
growth charts should be used from 24 to 59 months of age.
This was based on the fact that the WHO study took breast-
feeding into account, which thus reflected a better indication
for the age group of birth to 24 months. Breast-fed infants

were also less likely to be defined as underweight when WHO
growth standard was utilized versus the CDC growth charts.

WHO charts have been more effective at identifying
slower-growing infants during the first three months, which
is suggestive of formula-fed infants, or possible inadequate or
difficulties with breast-feeding or lactation in babies who are
breast-fed [2]. Although this is the recommended standard,
there are still discrepancies that healthcare providers should
be aware of when changing from one growth chart to another.
The most important concern is that toddlers, who may be
considered overweight by WHO standards at 24 months, may
become normal weight when converted to the CDC growth
chart. Also, when this transition is made, length of the infant/
toddler is changed to height.

Mei and Grummer-Strawn [8] investigated the proportion
of children less than two years of age who were deemed to
be malnourished or failure-to-thrive (FTT) by CDC growth
charts compared to WHO growth charts. This longitudinal
study was conducted using 10,844 children that were 24
months or younger, and included 37,964 weight and length
measurements. Data extracted were from only routine office
visits in California, and the study excluded infants with
intrauterine growth retardation (IUGR), serious congenital
anomalies, and those of multiple births. These data were used
to compare the proportion of children who crossed two of
more major percentile lines on CDC growth charts versus
those who did so on WHO growth charts. Major percentile
lines were defined by the 5th, 10th, 25th, 50th, 75th, 90th,
and 95th percentiles for weight-for-age (WA), length-for-age
(LA), and weight-for-length (WL) as is typically used in the
clinical setting.

The researchers concluded that switching from CDC
growth charts to WHO growth charts revealed more infants
crossing down two percentile lines in LA, and more infants
crossing up or down two percentile lines for WA and WL
for infants aged 6 to 12 months. These results suggested
that clinicians using WHO growth charts were likely to
have more infants from birth to six months that could be
considered malnourished or possibly FTT, and may be less
likely to diagnose infants from six to 12 months as FTT.
Moreover, this study demonstrated that crossing percentile
lines, regardless of which growth chart was used, was very
common for infants aged 0 to six months old.

Although FTT has been defined in several ways, it is
commonly diagnosed when an infant/child falls below the
Sth percentile of the CDC growth chart, or if it crosses two
or more major percentile lines over a short time [9,10]. Once
FTT is suspected through this screening, there is typically
a referral to for a full growth evaluation, at a costly and
inefficient use of resources if deemed unnecessary. Therefore,
it is critical for clinicians to understand the differences
between CDC and WHO growth charts, and to be aware of

Citation: Michelle Montopoli, George Montopoli, William ‘Wil Smith, Delia Montopoli. Neonatal Percentile Curves: A Multivariate Normal
Probability Density Approach. A One-Arm Clinical Trial. Journal of Pediatrics, Perinatology and Child Health. 10 (2026): 01-18.



Volume 10 « Issue 1 4

Michelle Montopoli M.A, et al., J Pediatr Perinatol Child Health 2026

Journals DOI:10.26502/jppch.74050230

possible discrepancies that arise when using each or both of
these growth charts.

Silveira et al. [11] compared NCHS, CDC, and WHO
percentile growth charts in the assessment of nutritional
statuses for hospitalized children from birth to five years old.
The study assessed 337 children in Brazil, more than half
of who were less than one year old, who were hospitalized.
They concluded that there was a high correlation between the
three growth charts. They also found that CDC and WHO
growth charts are more likely to classify infants and children
as underweight, malnourished, or FTT. Thus, overall,
most studies have concluded that WHO charts are more
likely to diagnose infants and children as underweight and
malnourished than CDC and NCHS charts, thus leading to
further evaluation, and possible misuse of data collected from
the use of growth charts.

Although there have been effective recommendations
created in order to understand and interpret neonate, infant,
and child growth with the use of standardized growth
charts, interpretation of NCHS versus WHO growth charts
by clinicians may still be poorly understood. Ahmad, et
al. [12] conducted a single, blind, randomized crossover
trial involving 78 healthcare workers to assess how they
interpreted growth chart information, and what guidelines
they would suggest based on these findings. They were given
scenarios with the same infant plotted on both NCHS WA
percentile charts and on WHO growth charts, as well as
other scenarios with one single final weight versus that same
final weight with a leading linear growth trend, and asked
to interpret the findings. The hope was that linear growth
patterns would affect the clinicians’ concerns and decisions
regarding follow-up care.

They concluded that linear growth trends were
inefficiently considered, especially in low WA infants,
leading to unnecessary management decisions. Additionally,
more infants aged less than six months were placed in
low percentiles on WHO growth charts versus NCHS
charts, leading to a greater amount of healthcare concern,
management, and referral when using WHO charts with the
same infants. These scenarios suggested clinicians would
inappropriately manage several cases, and that they failed to
take an infant’s own growth pattern into account, which could
result in excessive or unnecessary treatment and possible
adverse effects. Finally, they recommended that WHO charts,
and interpreting growth charts in general, should include
training materials and guidelines. This study demonstrated
the complexity of growth charts and that healthcare providers
failed to understand the differences among NCHS and WHO
growth charts, which could lead to the misdiagnosis of infants
as being malnourished. Also, they failed to consider linear
growth patterns on these curves as a whole, which could also
lead to misdiagnosis on impaired growth.

More recently, Villar et al. [13] conducted a cross-
sectional study including more than 20,000 deliveries from
eight countries named the International Fetal and Newborn
Growth Consortium for the 21st Century INTERGROWTH-
21st). The goal of the study was to develop multi-ethnic
growth charts for newborn neonates born between 33 and 42
weeks from urban areas. Countries involved included USA,
UK, Brazil, China, India, Italy, Kenya, and Oman.

Trained clinicians took measurements of healthy neonates
within 12 hours of birth, and found that variables of interest
were similar throughout the eight countries. Specifically, they
found that at 40 weeks of gestation, the 50th percentile for
boys’ birth weight was 3.38kg (3rd to 97th percentile was
2.63-4.22kg), length was 49.92cm (46.75-53.13cm), and
head circumference was 34.31cm (32.15-36.56cm). For
females at 40 weeks gestation, birth weight was 3.26kg (2.55-
4.08kg), length was 49.23cm (46.12-52.22cm), and head
circumference was 33.76cm (31.72- 35.92cm).

Saugstad [14] discussed the relevance of this study and its
implications for variables that can affect growth during the
gestational and neonatal period. Specifically, he observed that
several factors can affect birth weight, including maternal and
paternal factors. Specifically, maternal weight gain during
pregnancy was found to significantly impact the birth weight
in females, while paternal birth weight was significantly
associated with male birth weight [15].

INTERGROWTH-21st additionally compared their
findings to the current reference standard of growth charts
designed by WHO [1,13]. Findings suggested that the mean
birth weight for neonates in Scandinavian countries were 0.3
kg greater than what was found by WHO in the same region.
This could further implicate that the standard WHO growth
charts utilized from 0 to 24 months may in fact underestimate
birth weight, length, and head circumference.

Further studies are underway to try and discover diverse
factors that may result in this increased birth weight, and
include maternal BMI, diet, and nutrients. Additionally,
WHO [16] recommends delayed cord clamping worldwide
after delivery, as it has been found to increase birth weight
significantly. A Cochrane systematic review of 3,911 neonates
found that birth weight almost doubled after delayed cord
clamping, as well as a higher hemoglobin concentration, and
increased iron reserve up to six months post-birth [17]. Thus,
substantial difference in birth weight could be accounted
for in part, or entirely, based on the time of cord clamping,
and could be an important variable of consideration when
comparing birth weights found in different studies.

Determining neonate, infant, and child growth is of vital
importance. It allows clinicians and healthcare workers to
evaluate for any abnormalities, and to follow the trend of
growth throughout development. There have been several
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attempts to create growth charts that effectively capture
growth, with the hopes that any abnormalities will be noted
for further evaluation. Although the CDC and WHO have
implemented growth charts that have been utilized worldwide,
there are still setbacks to their effectiveness. Further, there
have been concerns with the ability of clinicians to use these
charts effectively, and apply the findings clinically.

Improvements are continuously implemented and
the charts are currently ubiquitous and based on fairly
sophisticated statistical techniques, such as curve-smoothing
procedures involving regression [1]. Curves generated for
the charts are based on extensive data sets of morphometric
measurements of children and infants, and generalized to the
U.S. population utilizing normalization techniques. Growth
curves are periodically updated with considerable effort
and complexity, with the hopes of developing an applicable
chart that encompasses a representative population, while
allowing healthcare workers to effectively use and interpret
the findings clinically.

Several studies demonstrate that much confusion exists
with the current charts available to determine growth
status. There have been errors with utilizing growth charts
when trying to evaluate FTT, obesity, and growth status.
Current growth charts are not always representative of all
populations, and have been shown to lead to clinical errors,
misunderstanding, and inaccurate diagnoses. As discussed
above, at 24 months a toddler is switched to another growth
chart, which leads to some inaccuracies.

There are differing variables that are utilized to measure
growth depending on the population of interest. For example,
growth in utero is often measured by crown rump length
(CRL), biparietal diameter (BPD), abdominal circumference
(AC), and estimated fetal weight (EFW), whereas infant,
toddler, and child growth are measured utilizing weight,
length, and head circumference. There have been several
confounding variables (such as breast feeding, geographic
location, and ethnicity) that have been found to impact growth
in diverse populations, suggesting that specific percentile
measurements for differing populations are necessary for
more precise identification of growth status and any possible
morbidities.

To better identify high-risk neonates and children, we
propose using a focused percentile approximation approach
in place of the complex generalized growth curves described
previously. The approximation is based on the multivariate
normal probability distribution, and utilizes a simplified
analysis strategy that is easily implemented to create either: 1)
a two-variable percentile chart, or 2) a three-or-more variable
percentile calculation. To our knowledge, our research is
novel and original, and no prior research using our approach
has been conducted.

The advantage of our approach is that the percentile
approximations represent current trends, easily updated,
location-specific, gender-specific, race-specific, age-
specific, and based on any combination of demographics and
morphometrics for which data are available. Any medical
facility could create its own percentile charts at periodic age
intervals relative to specific populations and risks endemic
to its location. Morphometrics such as weight, body length,
cephalic perimeter (head circumference), chest circumference,
etc., and combinations of these measures may be analyzed,
and growth charts constructed to display percentile values for
the individual.

Methods

Institutional Review Board approval was granted from
the University of Arizona to conduct this study. Four health
organizations were contacted in Arizona and Wyoming,
and three agreed to participate in the research (St. John’s
Medical Center, Jackson, WY; Maricopa County Public
Health Office of Epidemiology, Phoenix, AZ; and Sunset
Community Health Center, Yuma, AZ). Data were collected
over the course of approximately one year, and included body
length (BL), chest circumference (CC), cephalic perimeter
(CP), weight (W), race, gender, and location. Our target
populations consisted of full-term neonates born between 38
and 42 weeks after conception, and additional demographic
data that included race of mother (Hispanic or Non-Hispanic)
and gender of the neonate.

Our multivariate normal probability distribution (MNPD)
approach was based on two fundamental assumptions:

1. Morphometric data are normally distributed, and may be
incorporated jointly into a MNPD;

2. Morphometric data vary for different populations based
location, race, gender, etc., so that different MNPDs
should be applied to different populations.

To confirm the fundamental premises of our research,
preliminary descriptive analyses involved:

* Normality tests (skewness and kurtosis analyses) of all
morphometric data for the various populations that were
included in our research;

« MANOVAs, ANOVAs and independent samples t-tests
to demonstrate that significantly different populations
based on location, race and gender occurred;

» Descriptive summaries of all data pertaining to the various
populations.

Having confirmed our fundamental assumptions, we
then directed the analysis to the calculations of MNPD
percentiles based on two-, three-, and four-variable percentile
combinations for specific locations and races. We chose the
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MNPD multivariate approach because morphometric data are
generally normally-distributed, and when analyzed jointly,
the variables are generally correlated. The multivariate
approaches allow us to account for this correlation because
it is an intrinsic component of the joint probability density,
while the univariate approach (one morphometric at a time)
does not account for inter-correlations of the morphometrics.

We provide percentile calculations for up to four
morphometrics that are measured on a neonate, principally for
validation of our multivariate approach, and for comparison
of percentiles for different combinations of morphometrics.
We generally emphasize analyzing only two morphometrics
jointly using the bivariate normal probability density (BNPD),
a two- variable version of the MNPD. The BNPD provides a
more powerful analysis than analyzing one variable at a time
(the correlation between the two variables is accounted for),
and it allows construction of percentile charts (contour charts)
for convenient determination of high-risk neonates. When
analyzing more than two morphometrics, construction of
contour charts is not possible due to the additional dimensions,
but the MNPD can be used to calculate percentiles when a
high-risk infant is involved. This would provide for greater
certainty about the status of a high-risk neonate.

In the case of two measured morphometric, the BNPD is
given by:

— 2 — 2 - —
(xafl) +(yagz) 2p(x=p1)(y—H2)

0102
2(1-p?)

2may0,V (1 — p?)

e
fooy) =

where, for example: x = BL; y = W; ul = Mean BL,
p2 = Mean W, ol = Standard Deviation BL, 62 = Standard
Deviation W, and p = Correlation of BL and W. A profile
of the BNPD, the cumulative BNPD distribution, and a
percentile chart are given below in Figures 1, 2, and 3.

Bivariate Normal Probability Density

Probability Density

Weight

Cephalic Perimeter

Figure 1: The bivariate normal probability density for a simulated
data set.
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Figure 2: The cumulative bivariate normal probability density for
simulated data.
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Figure 3: The contour chart of the cumulative bivariate normal
probability density.

When more than two morphometrics are used for
percentile calculations, we use the generalized matrix form
of the MNPD, consisting of d variables, which is given by:

1 1 -1 '
fOeomy) = e ZTIWET (1)
VizI@m)?

where X = covariance matrix, x = vector corresponding

to the variables and p = vector of the means of the variables.

Several additional analyses were incorporated into our
research to demonstrate the superiority of our approach over
traditional approaches, including:

* Percentile calculations based on the actual data were
calculated for all one-variable, two-variable, three-
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variable, and four-variable morphometric combinations to
insure the integrity of our higher-dimensional approach;

» For various significantly different populations, percentile
calculations were compared for various combinations
of morphometrics based on sets of scenarios created
by adding and subtracting approximately 1.5 standard
deviations to the mean of each morphometric;

* Conventional percentile calculations (from hospital
charts), were compared to percentile calculations using
our approach;

* When more than two morphometric variables were
measured, but two-variable percentile contour charts
are desired for easy percentile calculations, we describe
a procedure for choosing two variables based on a
Coefficient of Variation (CV) analysis, where CV equals
the standard deviation divided by the mean for any
population.

Results

After obtaining the Institutional Review Board approval
from the University of Arizona to conduct our research, we
solicited participation from four organizations, and three
agreed to participate in the research (St. John’s Medical
Center, Jackson, WY; Maricopa County Public Health Office
of Epidemiology, Phoenix, AZ; and Sunset Community

Health Center, Yuma, AZ). Data were collected over the
course of approximately one year, and included body length
(BL), chest circumference (CC), cephalic perimeter (CP),
weight (W), race, gender, and location.

Neonatal morphometric measurements that were provided
differed for the various locations. Maricopa County Public
Health Office (PH) provided BL and W, Sunset Community
Health Center (YU) provided BL, CC, CP, and W; and St.
John’s Medical Center (WY) provided BL, CC, and W. A
descriptive summary of the data including number of infants
(N), mean (M), and standard deviation (SD) are given in
Table 1 below. Information displayed in this table will be
cited throughout the document.

Assumption 1: Morphometric Data are

Normally Distributed

Data were first assed for normality, an underlying premise
of the analysis. The normality assessment was based on
skewness (Sk) and kurtosis measurements (Ku). Because
normality tests are very sensitive to sample size, and the
original data from PH (N = 18,522) greatly exceeded that
from YU (N = 299) or WY (N = 376), we randomly chose
338 participants from the PH data. (The value 338 represents
the average of the YU and WY sample sizes.) Although there
are several criteria for assessing normality, our assessment
was based on that proposed by West et. al. (1995), which

Table 1: Descriptive statistics summary of the morphometric measurements.

BL
Female M =49.95
Hispanic N = 4,824 SD =2.458
N = 9,879 Male M = 50.71
N = 5,055 SD =2.483
PH N = 18,522

Female M = 50.55
Other N = 4,295 SD = 2.565

N =8,643 Male M = 51.29
N =4,348 SD =2.572

Female M =49.80
Hispanic N =140 SD =2.629

N =271 Male M = 51.01

N =131 SD =2.461

YU N =299

Female M =50.07

Other N=18 SD =2.659

N =28 Male M =51.20

N =10 SD =2.431

Female M =49.19

Hispanic N =44 SD =1.992

N=73 Male M =50.13

N =29 SD =2.376

WY N = 376

Female M =49.59

Other N =160 SD =2.177

N =303 Male M = 50.50

N = 143 SD =2.049

cC CP w
M=3.32
SD =0.424
M=3.44
SD =0.451
M =3.32
SD =0.452
M =3.42
SD =0.454
M =32.91 M =33.79 M=3.28
SD =2.067 SD =1.573 SD =0.515
M = 33.40 M = 34.41 M=3.44
SD =1.832 SD =1.635 SD =0.446
M =33.78 M =34.39 M =3.53
SD =2.144 SD =1.290 SD =0.460
M =33.70 M =34.23 M =3.39
SD =1.252 SD =1.731 SD =0.509
M =33.20 M=3.17
SD =1.370 SD =0.413
M =34.17 M=3.25
SD =1.416 SD =0.403
M =33.99 M=3.24
SD = 1.554 SD =0.408
M = 34.57 M =3.35
SD =1.546 SD =0.415
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indicated a substantial departure from normality when the
absolute skewness value >2 and absolute kurtosis value >4.
Additionally criteria will be addressed in the Discussion
Section of this manuscript; thus, additional information is
presented in Table 2.

Several summaries are presented in Tables 2, 3, and 4
below. Based on the above criteria, there is no reason to suspect
that the morphometric data presented any serious deviation
from normality. This is a necessary requirement for the
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assumption that the morphometric data may be incorporated
jointly into a MNPD. However, it is not sufficient [19].

Characteristics of multivariate normality also require
that any linear combination of the variables are normally
distributed, and all pairwise subsets are (bivariately)
normally distributed. This is not a trivial analysis; however,
it is simplified by examination of bivariate scatterplots for
approximately elliptical shapes, which is shown in Figure 4
below.

Table 2: Skewness and kurtosis analyses by location.

N Sk SE, z Ku SE, z
BL 1,013 -0.093 0.077 -1.208 0.178 0.154 1.156
cc 299 -0.260 0.141 -1.844 1.366 0.281 4.861
Combined Data

CP 675 -0.094 0.094 -1.000 0.574 0.188 3.053

w 1,013 0.096 0.077 1.247 0.931 0.154 6.045

BL 338 -0.163 0.133 -1.226 0.138 0.265 0.521

Phoenix

W 338 -0.017 0.133 -0.128 -0.103 0.265 -0.389

BL 299 -0.140 0.141 -0.993 0.410 0.281 1.459

CcC 299 -0.260 0.141 -1.844 1.366 0.281 4.861

Yuma

CP 299 -0.068 0.141 -0.482 0.629 0.281 2.238

w 299 0.217 0.141 1.539 1.690 0.281 6.014

BL 376 -0.138 0.126 -1.095 -0.237 0.251 -0.944

Wyoming CcP 376 -0.115 0.126 -0.913 0.548 0.251 2.183

w 376 0.049 0.126 0.389 0.529 0.251 2.108

Table 3: Skewness and kurtosis analyses by race.
N Sk SE, z Ku SE,, z
BL 509 -0.032 0.108 -0.296 0.191 0.216 0.884
cC 271 -0.352 0.148 -2.378 1.206 0.295 4.088
Hispanic

CP 344 -0.073 0.131 -0.557 0.552 0.262 2.107

W 509 0.195 0.108 1.806 1.459 0.216 6.755

BL 504 -0.154 0.109 -1.413 0.183 0.217 0.843

cC 28 1.010 0.441 2.290 2.740 0.858 3.193

Non-Hispanic

CP 331 -0.104 0.134 -0.776 0.652 0.267 2.442

W 504 -0.016 0.109 -0.147 0.285 0.217 1.313
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Table 4: Skewness and kurtosis analyses by location and race.

Hispanic

N =615

Other
N =173

Hispanic
N =271

Other

Yuma N = 299

N =28

Hispanic

Wyoming N =376

N=73

Other
N =303

Sk
0.061
0.263
-0.402
-0.265
-0.145
-0.352
-0.054
0.191
-0.087
1.007
-0.133
0.607
0.151
-0.382
0.178
-0.208
-0.100
0.017
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Figure 4: Bivariate scatterplots for the combined data

Assumption

The second fundamental assumption of our
stipulates that morphometric data vary for
populations based on location, race, gender,
that different MNPDs should be applied to the

2: Morphometrics
Different Populations

Vary

for

research
different
etc., so
different

populations. In the Introduction Section, we cited several

SE,, z Ku SE,, z
0189 | 0323 0.172 0376 | 0457
0.189 1.392 -0.010 | 0376 | -0.027
0.185 | -2.173 0571 0367 | 1556
0185 | -1432 | -0015 | 0367 & -0.041
0.148 | -0.980 0.419 0295 | 1.420
0.148 | -2.378 1.206 0295 | 4.088
0.148 | -0.365 0.625 0295 | 2119
0.148 1.291 1.860 0295 | 6.305
0441 | -0.197 0.604 0.858 | 0.704
0.441 2.283 2.740 0.858 | 3.193
0441 | -0.302 0.812 0.858 | 0.946
0.441 1.376 -0.209 | 0.858 | -0.244
0.281 0.537 -0.340 | 0555 | -0.613
0281 | -1.359 | -0094 | 0555  -0.169
0.281 0.633 -0.033 | 0555 | -0.059
0140 | -1486 | -0142 | 0279 | -0.509
0.140 | -0.714 0.652 0279 | 2337
0.140 | 0.121 0.708 0279 | 2538

studies that supported our assumption; however, to support
this claim with our data, we performed several parametric
tests. Similar to normality tests, sample sizes that are
substantially different can significantly influence results. We
therefore used the reduced, randomly-selected data from the
PH population (N = 338 instead of 18,522) in the analyses.
All tests were run at an experiment-wise level of significance,
a, equal to 0.05

The first analysis involved a multivariate ANOVA
(MANOVA) designed to test the significance of three
independent variables (Gender, Location, and Race) on a best
linear combination of two dependent variables (BL and W).
We used a best linear combination of BL and W because they
were measured at all locations, and the combination of the two
variables provided a more holistic multidimensional analysis
of the phenomenon under investigation [20]. The results of
the analysis indicated a significant effect of Location (Wilks’
Lambda=0.970, df=4, 2000, p =0.000) and Gender (Wilks’
Lambda = 0.003, df = 4, 292, p = 0.001) on the combined
dependent variable. All two-way and three-way interactions
were not significant. Follow-up ANOVAs and Independent-
Samples t-tests assessed significance of the main effects of
the dependent variables, Gender, Location, and Race, on each
of the dependent variables, BL and W, examined one at a
time. Significant results included:
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* Location demonstrated a significant effect on BL [F(2,
1001) = 10.576, p = 0.000]. A Bonferroni Post-Hoc
analysis indicated that infants from WY were significantly
shorter (M = 49.4cm) than those from PH (p = 0.000) or
YU (p =0.036), while there was no significant difference
(p =0.100) in BL between infants from PH (M = 50.8cm)
and YU (M= 50.4cm).

* Gender demonstrated a significant effect on BL [F(1,
1001) = 20.431, p = 0.000].

* Male infants (M = 50.9cm) were significantly longer than
female infants (M = 49.9cm).

* Race demonstrated a significant effect on BL [F(1, 1001)
=4.609, p=0.032].

* Hispanic infants (M = 50.3cm) were significantly shorter
than non-Hispanic infants (M = 50.4cm).

* Location demonstrated a significant effect on W [F(2,
1001) = 14.064, p = 0.000]. A Bonferroni Post-Hoc
analysis indicated that infants from WY were significantly
lighter (M = 3.27kg) than those from PH (p=0.000) or YU
(p = 0.036), while there was no significant difference (p =
0.100) in W between infants from PH (M = 3.44kg) and
YU (M =3.37kg).

* Gender demonstrated a significant effect on W [F(1, 1001)
= 4.206, p = 0.041]. Male infants (M = 3.42kg) were
significantly heavier than female infants (M = 3.30kg).

* Race demonstrated a significant effect on W [F(1, 1001)
=4.841, p=0.028].

Hispanic infants (M = 3.35kg) were significantly lighter
than non-Hispanic infants (M = 3.36kg).

The second analysis investigated CP, which was measured
in WY and YU, but not in PH. A three-way ANOVA assessed
significance of the main effects of the dependent variables,
Gender, Location, and Race, on CP. A summary of the results
follows:

* Location did not significantly affect CP [F(1, 667) =
1.333, p = 0.247]. CP in YU had a mean, M = 34.13cm,
while that in YU was M = 34.11cm.

* Gender demonstrated a significant effect on CP [F(1,
667) = 6.939, p = 0.009). Male infants (M = 34.45cm)
had a significantly longer CP than female infants (M =
33.83cm).

* Race demonstrated a significant effect on CP [F(1, 667) =
4.463, p = 0.035).

Hispanic infants (M = 33.98cm) had a significantly shorter
CP than non-Hispanic infants (M = 34.27cm).

The final analysis investigated CC, which was only
measured in Yuma. Independent samples t-tests indicated
that there were no significant differences [t(297) = 1.808,
p = 0.072] on CC between male infants (M = 33.4cm) and
female infants (M = 33.0cm); nor were there any significant
differences [t(297) = 1.554, p = 0.121] on CC between
Hispanic infants (M = 33.1cm) and non-Hispanic infants
(M =33.8cm).

The above analyses demonstrated that morphometric data
do vary for different populations based on location, race,
and gender, so that different MNPDs should be applied to
the different populations. The descriptive statistics used in
the above analyses for the reduced data are summarized in
Table 5:

Table 5: Descriptive Statistics for the Reduced Data Set

Gender
Female Male PH
M = 49.88 M = 50.85 M =50.79
BL (cm) SD =2473 SD =2.301 SD =2.502
N =525 N = 488 N = 338
M = 33.01 M = 33.42
CC (cm) SD =2.087 SD =1.796
N =158 N =141
M = 33.84 M = 34.45
CP (cm) SD = 1.547 SD =1.576
N =362 N =313
M =3.30 M =3.42 M=3.44
W (kg) SD =0.445 SD =0.423 SD =0.401
N =525 N =488 N = 338

Location Race
YU wy Hispanic Other

M = 50.39 M =50.79 M = 49.92 M = 50.42
SD =2.610 SD =2.502 SD =2.155 SD =2.389

N =299 N =376 N =509 N = 504
M =33.20 M =33.15 M =33.75
SD =1.963 SD =1.968 SD =1.848

N =299 N =271 N =28
M = 34.11 M =34.13 M = 33.98 M = 34.27
SD =1.612 SD =1.574 SD = 1.606 SD =1.561

N =299 N =376 N =344 N =331
M =3.37 M =3.27 M=3.35 M=3.36
SD =0.488 SD =0.414 SD =0.450 SD =0.427

N =299 N =376 N =509 N = 504
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Percentile Calculations:

Having substantiated our assumptions, we first assessed
the integrity of the MNPD procedure. Using Matlab
(R2014b), percentiles based on the actual data for all one-
variable, two-variable, three-variable, and four-variable
morphometric combinations were calculated without any
issues, and random examination of the percentiles revealed no
discrepancies. All available complete data for each location
were used in the percentile validation. Descriptive statistics
used in the calculations, specifically the means (M), variances
(VAR), and covariances, are given in Tables 6 and 7 below.
Matlab commands for running the percentile calculations are
listed in the Appendix, as well as information about obtaining
a Matlab compiler program provided by the authors at no cost
that provides percentile calculations and charts.

Ten scenarios were designed to: 1) evaluate and
compare percentile computations for the different locations
with respect to BL and W; and 2) evaluate and compare
percentile computations within the YU area for different
combinations of BL, CC, CP, W, and currently- used hospital
charts. Scenarios were based on different combinations of
morphometrics by adding and subtracting approximately 1.5
standard deviations to the mean of each morphometric, and
dividing the resulting range into ten segments. The scenarios
were then arranged in order so that the lowest percentile to the
largest percentile would result from the various combinations
of the morphometrics. The ten scenarios are listed in Table

8, and the resulting percentile calculations for the Hispanic
and Non-Hispanic (or Other) races in the WY, PH and YU
locations are given in Table 9.

Figure 5 provides a summary plot of the percentiles
presented in Table 9. Although Figure 5 will be analyzed
in-depth in the Discussion Section, noteworthy observations
include:

1. All populations have approximately equal percentile
calculations for Scenario 1;

2. Scenario 4 indicates that the WY Hispanic population falls
in the 23.4th percentile, while the PH Other population
falls in the 12.7th percentile;

3. Scenario 6 indicates that the WY Hispanic population falls
in the 57.8th percentile, while the PH Other population
falls in the 35.4th percentile.

Table 10 and Figure 6 provide a summary of scenario
percentile computations for the Hispanic race within the
YU area for different combinations of BL, CC, CP, W, and
currently- used hospital charts. Any combination of two or
more morphometrics used the MNPD in its computation,
combinations containing one variable used the univariate
normal probability distribution approximation (Excel), and
combinations of one variable based on hospital charts were
estimated from the respective chart. There was no hospital
chart available for CC. Trends demonstrated below will be
addressed more thoroughly in the Discussion Section.

Table 6: Descriptive statistics for the percentile computations.

BL
Hispanic N = 9879 V,'\AAR==52324

PH Other N = 8640 V'XIF: fgji’is
Hispanic N = 271 VXF: 52:223

Yu Other N = 28 VXF: N 22121
Hispanic N = 72 v'/\\AR: 3223?8

% Other N = 303 v'/\\/le fﬂj?ég

cc cp w
M =338
VAR = 0.195
M =337
VAR = 0.208
M = 33.15 M = 34.09 M =3.36
VAR = 3.860 VAR = 2.647 VAR = 0.238
M = 33.75 M = 34.33 M =3.48
VAR = 3.295 VAR = 1.979 VAR =0.216
M = 33.61 M =3.21
VAR = 2.094 VAR = 0.154
M = 34.26 M =3.29
VAR = 2.471 VAR = 0.171

Table 7: Covariances of morphometrics used in percentile computations.

BL-CC BL - CP
Hispanic 2.9297 2.066
YU
Other 3.3199 2.2234
Hispanic
PH P
Other
Hispanic 1.2086
WY
Other 0.972

BL-W CC-CP CC-w CP-W
0.8809 2.0528 0.8058 0.4849
0.8368 1.4509 0.666 0.4698
0.6166

0.7206

0.5284 0.2737
0.5498 0.3358
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Table 8: Ten scenarios for percentile comparisons.

Scenario BL CcC CP w
1 46.00 31.50 32.00 2.60
2 46.89 32.06 32.44 2.78
3 47.78 32.61 32.89 2.96
4 48.67 33.17 33.33 3.13
5 49.56 33.72 33.78 3.31
6 50.44 34.28 34.22 3.49
7 51.33 34.83 34.67 3.67
8 52.22 35.39 35.11 3.84
9 53.11 35.94 35.56 4.02
10 54.00 36.50 36.00 4.20

Table 9: Scenarios with Percentile Calculations Expressed as

Percentages

Wyoming Phoenix Yuma
Scenario | Hispanic | Other | Hispanic | Other

1 168% | 1.14% | 1.03% | 1.03% | 2.04% 1.23%

Hispanic | Other

2 4.89% 3.42% 2.88% 2.74% 4.72% 3.15%

3 11.72% | 8.53% 6.89% 6.29% 9.68% 7.07%

4 23.42% | 17.87% | 14.20% | 12.66% | 17.63% | 13.92%
5 39.63% | 31.86% | 2541% |22.45% | 28.78% | 24.26%
6 57.78% | 49.00% | 39.95% | 35.39% | 4242% | 37.71%
7 74.31% |66.24% | 55.93% |50.16% | 56.97% | 52.80%
8 86.56% | 80.53% | 70.86% | 64.76% | 70.58% | 67.44%
9 94.01% |90.32% | 82.78% | 77.32% | 81.72% | 79.74%
10 97.73% | 95.87% | 90.94% | 86.78% | 89.74% | 88.70%

right edge of chart)

wy
Hispanic
WY Other
PH Hispanic
YU Hispanic

Scenario (Smallest --> Largest Neonate)

Figure 5: Neonate percentile growth curves based on length and
weight for ten scenarios

Table 11 presents coefficients of variation (CV) for
the four morphometrics where CV equals the standard
deviation divided by the mean. Pairwise correlations for
all morphometrics are listed in Table 12. The CV was used

to select the most important morphometrics to include
in the percentile calculations in the event that only two
morphometrics (of three or four measured morphometrics)
are used to create bivariate percentile charts. Variables with
higher (but not excessively higher) CVs allow for better,
more powerful, estimates of percentiles. As noted in Table
11, W has the largest CV, followed by CC; however, W and
CC are highly correlated (r = 0.837). Therefore BL, with
the next highest CV, is more appropriate to use with W in
constructing two-variable percentile charts. Also, BL and
W are commonly measured in all locations. A two-variable
percentile (contour) chart, calculated from actual data and
based on BL and W for YU Hispanics, is shown in Figure 7.

Discussion

Results of studies described in the introduction, along
with results from our research, provide substantial evidence
that current growth morphometric measurements are both
controversial and inadequate in determining high risk neonates
(and other age groups) using conventional percentiles charts
developed by WHO, CDC, etc. These current percentile
charts are univariate (they describe one morphometric) and
are generalized to global populations.

Without any doubt, populations based on different
demographics demonstrate significantly different neonatal
growth parameters. Although research cited in the introduction
identifies the issue, any realistic solutions are not explicitly
stated other than the suggestion of the need for percentile
charts specific to different populations.

Table 10: Percentile calculation comparisons for three scenarios for
YU hispanics based on different combinations of morphometrics.

Scenario 1 5 10
BL, CC, CP 0.0094 0.1764 0.7772
BL, CC, CP 0.0116 0.1862 0.7798
BL, CC, W 0.0151 0.2295 0.8334
BL, CP, W 0.0113 0.2039 0.8183
CC,CP, W 0.0223 0.2491 0.8116
BL, CC 0.0199 0.2468 0.8370
BL, CP 0.0178 0.2357 0.8282
BL, W 0.0205 0.2883 0.8976
CC,CP 0.0388 0.2829 0.8163
CC,W 0.0412 0.3452 0.8770
CP, W 0.0277 0.2976 0.8611
BL 0.0468 0.3761 0.9171
cC 0.2005 0.6146 0.9559
CP 0.0995 0.4239 0.8798
w 0.0597 0.4601 0.9574
Chart BL 0.1200 0.5800 0.9900
Chart CP 0.1200 0.5000 0.9500
Chart W 0.0900 0.6000 0.9900
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Percentile Calculation Comparisons for Three
Scenarios for YU Hispanics
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Figure 6: Percentile calculation comparisons for three scenarios for YU hispanics.

Bivariate Normal Cumulative Probability Contour Plot Table 11: Coefficients of variation for the YU hispanic
45 morphometrics.
o BL cc cP w
R AR . M 50.5942 33.2027 341224 | 33739
4 LA — SD 2.556 1.9592 1.5884 0.4488
R cv 0.0505 0.059 0.0465 0.133
Vov| N L
5 VN N T
é 35 i E& ’\\ T \\\\h—h_ Table 12: Correlations of all pairs of yuma hispanic morphometrics.
2 \ \\ NN 2 BL- = BL- | BL-W | CC- CC-W | CP-W
‘;\ \-\\\M“"h 93 0.582 0.403 0.581 0.637 0.838 0.562
’ &‘\ . . . .
~_ | i In our manuscript, we outline a simplistic approach for
* creating percentile charts and percentile calculations for
5 use in identifying high-risk individuals at specific locations
46 47 48 49 50 51 52 583 54 55 56 for specific populations. Percentile charts are based on the
BodLengim ey Multivariate Normal Probability Density MNPD), and defined
Bivariate Normal Cumuiative Probability Contour Plot by any number or combinations of morphometrics, although
= : we emphasize two morphometrics which can optimally
be £ identify high-risk individuals via a convenient chart.
D
4 Tz 23 = These charts need not be generalized to larger populations
ﬁ\ but are specific to the populations from which the data were
5 { E 3, L7 collected.
£ 35 \ % ‘\\“ SEl. | 2 ]
2 ¥ \ “ e I == Our approach was based on the assumption that
\ [ os growth measurements are normally distributed and may be
3 . incorporated jointly into a MNPD when taken together. Our
\\\_‘_ﬁ 4 assessment for validating the assumption was based on that
proposed by West et al. [18], which indicated a substantial
25

Tas 47 48 49 50 51 52 54 55 56

Body Length (cm)

53

Figure 7: The contour chart of BL and W for YU hispanics based on
the cumulative BNPD.

departure from normality when the absolute skewness
value >2 and absolute kurtosis value >4. We preferred this
assessment because of its simplicity and the fact that tests
for normality of data generally are very sensitive to sample
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size and often overly conservative. We also assessed our data
using other procedures:

1. A Z-test for normality of data, proposed by West
etal, where Z = Sk/SE,, or Z = Ku/SE,_, with the criteria:

Ku

1. For small samples (n < 50), if absolute z-scores for
either skewness or kurtosis are >1.96, the sample may
be non-normal;

2. For medium-sized samples (50 < n < 300), if absolute
z-scores for either skewness or kurtosis are >3.29, the
sample may be non-normal;

3. For sample sizes greater than 300, depend on the
histograms and the absolute values of skewness and
kurtosis without considering z-values. Either an
absolute skew value >2 or an absolute kurtosis >7
may be used as reference values for determining non-
normality.

Using this approach, seven minor potential, borderline
discrepancies out of a possible 78 comparisons were
observed (see Tables 2 through 4, which investigate skewness
and kurtosis for Location, Race, and Location-by-Race,
respectively).

2. Assessment of histograms, using stem-and-leaf plots,
boxplots, and Normal Q-Q plots, did not display any
major deviations from normality.

3. Assessment of bivariate normality using bivariate
scatterplots of the morphometrics, supported multivariate
normality by demonstrating approximately elliptical
shapes.

Examination of all the criteria suggested above provides
strong evidence in the assertion that morphometric data
generally follow a normal probability distribution when
analyzed univariately, and when analyzed jointly follow a
multivariate normal probability distribution.

This in turn supports the approach we propose. We wish
to emphasize several points:

1. The approach is intentionally designed for percentile
chart creation at specific locations and for specific
populations based on race, gender, etc. It is easy to
create these percentile curves; hence, they can target
specific populations without need for generalization to
all populations.

2. The approach could be extended to encompass any
age group, perhaps defined at three-month intervals.

3. A Medical Advisory Board (MAB) would be
responsible for defining risk categories and protocols
for the categories.

4. We do not suggest that conventional percentile charts
are useless. For a generalized assessment of the
status of newborns with respect to their development,
they provide a quick reference. Our procedure,
however, provides an enhanced, more comprehensive
assessment in the event that more detail is required in
the management of high-risk neonates.

Having established the fact that our MNPD assumptions
were not violated, we next investigated the integrity and
validity of our approach. Calculations of cumulative
multivariate normal probabilities are numerically intensive,
and any high multicollinearity between morphometrics
could potentially force an ill-conditioned or near-singular
matrix to not converge to an answer. We therefore applied
the cumulative MNPD analysis to all combinations of two or
more morphometric measures for PH, YU, WY, and the 10
scenarios, and calculated percentiles for 23,418 scenarios. No
problems were noted in the calculations, even after several
sorting arrangements for easier observation, and no value
deviated from reasonable expectation.

If in some instance the technique were to fail, we suggest
checking bivariate correlations.

High correlations indicate that variables are highly
related and account for much of the same variability. In
the generalized MNPD formula, as the correlation between
any two variables approach one, the covariance matrix X
approaches singularity, and its determinant approaches zero.
Division by zero occurs, and the technique fails. Hence, in the
presence of high correlation, we recommend removal of one
of the correlated variables using the Coefficient of Variation
technique discussed below. Finally, providing that bivariate
correlations are not excessively high, we feel that inclusion of
up to four morphometrics for higher dimensional percentile
calculations would be beneficial in identification of high-risk
neonates when there is any doubt about the condition of the
neonate.

Ten scenarios (Table 8, Results Section) were designed
to: 1) evaluate and compare percentile computations for the
different locations with respect to BL and W (Table 9 and
Figure 4, Results Section); and 2) evaluate and compare
percentile computations for YU Hispanics for different
combinations of BL, CC, CP, W, and currently-used hospital
charts (Table 10, Results Section). Scenarios were based
on different combinations of morphometrics by adding and
subtracting approximately 1.5 standard deviations to the
mean of each morphometric, and dividing the resulting range
into ten segments. The scenarios were then arranged in order
so that the lowest percentile to the largest percentile would
result from the various combinations of the morphometrics.
Noteworthy observations include the following:

4. All populations have approximately equal percentile
calculations for Scenario 1;
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5. As morphometric size measurements increase, percentile
calculations for the various populations differ substantially:

a. Scenario 4 indicates that the WY Hispanic
population falls in the 23.4th percentile, while the PH Other
population falls in the 12.7th percentile, a difference of 10.7
percentile points;

b.  Scenario 7 indicates that the WY Hispanic population
falls in the 74.3th percentile, while the PH Other population
falls in the 50.2th percentile, a difference of 24.1 percentile
points (the largest percentile point difference);

6. Percentile point differences begin to narrow as Scenario
10 is approached, but still remain fairly large (WY
Hispanic population falls in the 97.7th percentile, while
the PH Other population falls in the 86.8th percentile, a
difference of 10.9 percentile points).

The above percentile point differences suggest that a
significant underestimation or overestimation of the status of
a neonate could result if a single set of population parameters
were generally applied to all populations, as is the current case
with generalized hospital charts that measure morphometrics
one at a time. For example, if WY parametric measures
were applied to PH Other neonates according to criteria in
Scenario 4, the PH Other neonate would be assigned to the
23.4th percentile, when in actuality, its percentile is 12.7th.
Medical follow-up protocols for the different percentiles
would certainly follow different standards of care.

In Table 10 and Figure 6, we compare percentile
computations for YU Hispanics for different combinations
of BL, CC, CP, W, and currently-used hospital charts. The
pattern that emerges is that conventional hospital charts based
on BL, CP, or W tend to significantly overestimate neonatal
percentiles for all scenarios. The combination consisting
of all four morphometrics produces the lowest percentiles
for all scenarios. This is expected because when four
morphometrics are all taken into account simultaneously, and
their correlations are accounted for, a very precise percentile
measurement results. If protocols globally accepted this
approach (using all four measures), it would be the most
accurate; however, if percentile charts based on two measures
were more convenient, the four-measure approach could be
excessive. As noted below in the table and figure, a two-
measure percentile calculation falls somewhat in the middle
of extremes, and the BL-W combination could be preferred
because it is commonly measured. We will also argue for
the BL-W combination based on the Coefficient of Variation
(CV) analysis that follows.

CV is defined as the standard deviation divided by the
mean, and is summarized in Table 11. CV essentially
represents a scaled standard deviation, or the amount of
variability in a measure relative to its mean (Howell, 2010).
Variables with higher (but not excessively higher) CVs

allow for better, more powerful, analyses and, in our case,
estimates of percentiles. We propose the use of CV to select
the most important morphometrics to include in the percentile
calculations in the event that only two morphometrics (of three
or four measured morphometrics) are used to create bivariate
percentile charts. Variables with higher CVs allow for better,
more powerful, estimates of percentiles. As noted in Tables
11, W has the largest CV, followed by CC; however, W and
CC are highly correlated (r = 0.837, Table 12). Therefore BL,
with the next highest CV, is more appropriate to use with W
in constructing two-variable percentile charts. Also, BL and
W are commonly measured in all locations.

A contour chart of BL and W for YU Hispanics based
on the Cumulative BNPD is shown in Figure 7. The contour
chart was easily constructed using Matlab (see Appendix for
the command code). Using this chart, input of a BL = 51cm
and W = 3.5kg would result in a percentile calculation for a
YU Hispanic neonate = 48th.

To summarize our approach, a Medical Advisory Board
(MAB) in PH could select a target population, select two
(or more) variables of interest, collect recent data (for
example, over six months), and produce a percentile chart for
its specific population. The target population could be, for
example, gender-specific, race-specific, etc., and defined over
ages for neonates, at three-month intervals, etc. (a separate
chart would be created at each age interval). The MAB would
also be responsible for defining percentiles corresponding to
high-risk, medium-risk, low- risk, and normal individuals,
and protocols for addressing each risk category.

We feel that higher dimensional percentiles may
better identify high-risk individuals because the percentile
calculation would involve more morphometric information
and be more precise. For example, a neonate who has a
small body length may not necessarily be considered high-
risk, while a neonate who has a small body length and low
weight might raise more concern. However, a neonate with
a small body length, small cephalic perimeter, small chest
circumference, and low weight would certainly be of concern,
especially if he/she fell into the 10th or lower percentile.

We will make available upon request a Matlab Compiler
program free of charge. The program will compute
percentiles based on any number of morphometrics, and/or
create a percentile chart similar to the one in Figure 7 when
two morphometrics are specified.

What’s Known on this Subject:

Current neonatal growth charts are univariate and globally
applied to all populations. Current research has demonstrated
problems with this approach and discrepancies between the
CDC and WHO charts. Also, the charts are misinterpreted
and incorrectly applied by health care providers.
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What this Study Adds:

We propose a multivariate approach that simultaneously
incorporates any number of morphometrics into the
calculation of a percentile. The approach can be designed
for any specific population based on any combinations of
demographics such as race, gender, location, etc.
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Appendix:

1. EXCEL 2013 intrinsic functions for generating parameters
(the data encompass the entire population, and not a
sample):

Mean: =AVERAGE(DataRange)

Standard Deviation: =STDEV.P(DataRange)

Variance: =VAR.P(DataRange)

Correlation: =CORREL((DataRange1, DataRange?2)
Covariance: =COVARIANCE.P(DataRangel, DataRange2).

2. Using MATLAB R2014b, we defined the row-vector
of means p by [34.28328 3.56779] and the covariance

. 8.639222  0.831953 .
matrix = |(e11053 032651|, and produced the following

BNPD (Figure 1). We plotted CP and W over intervals

approximately equal to p+3c to capture the entire

probability density. The MATLAB code for generating
the BNPD:

mu = [34.28328 3.56779];

Sigma = [8.639222 0.831953; 0.831953 0.326451];
x1=126:25:42; x2=2:.1:5;

[X1,X2] = meshgrid(x1,x2);

F = mvnpdf([X1(:) X2(:)],mu,Sigma);

F = reshape(F,length(x2),length(x1));
surf(x1,x2,F);
caxis([min(F(:))-.5*range(F(:)),max(F(:))]);

axis([26 42250 .15])

xlabel('Cephalic Perimeter");

ylabel("Weight');

zlabel('Probability Density');

title('Bivariate Normal Probability Density")
3. We next generated the Cumulative BNPD (Figure 2),
which we used to define the Contour Chart (Figure 3) for the
10th, 20th, ... , 90th percentile curves. The MATLAB code
for generating the Cumulative BNPD:

F = mvnedf([X1(:) X2(:)],mu,Sigma);

F = reshape(F,length(x2),length(x1));

surf(x1,x2,F);

caxis([min(F(:))-.5*range(F(:)),max(F(:))]);

axis([26 42250 1))

xlabel('Cephalic Perimeter");

ylabel('"Weight'); zlabel('Cumulative Probability');

title('Bivariate Normal Cumulative Probability Density")

4. The MATLAB code for generating the Contour Plot of
the Cumulative BNPD:

contour(x1,x2,F,[.1:.1:.9]);
xlabel('Cephalic Perimeter'); ylabel("Weight');

title('Bivariate Normal Cumulative Probability Contour
Plot");

colormap autumn;
colorbar('location','eastoutside');

Higher dimensional percentile computations were
calculated using MATLAB; however, contour charts
cannot be not meaningfully constructed for >2 dimensions.
For example, we decided to include body length (BL) in
our percentile computation along with CP and W. Values
corresponding to BL were then included in the row vector of
means and the covariance matrix .

For example, suppose Mean(BL) = 43.2 cm,
Variance(BL) = 4.0, Covariance(CP,BL) = 0.532, and
Covariance(W,BL) = 0.412, then the row-vector of means mu
=[34.28328 3.5677943.2] and the covariance matrix Sigma =
8.63922 0.831953 0.532

0.831953 0.326451 0.412
0532 0412 40 ,

To find the percentile for an infant with CP = 30, W =
3.2, and BL =41, the MATLAB command is mvncdf([30 3.2

41], mu, Sigma). The following percentile value is obtained:
0.2028 = 20.28th percentile.
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