
 

J Biotechnol Biomed 2021; 4 (3): 108-123                                                          DOI: 10.26502/jbb.2642-91280038 

 

   

Journal of Biotechnology and Biomedicine    108 
 

 

Research Article                                                                                                            

 

Natural Selection Footprint in Novel Coronavirus: A Genomic 

Perspective of SARS-COV2 Pandemic and Hypothesis for Peptide-

Based Vaccine 

 

Mojtaba Shekarkar Azgomi1≠, Leila Mohammadnezhad1≠, Marco Pio La Manna1*, 

Francesco Dieli1&, Nadia Caccamo1& 

 

1Central Laboratory for Advanced Diagnosis and Biomedical Research (CLADIBIOR) and Department of 

Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.); University of Palermo, Palermo 90127, Italy 

≠M.S. A. and L.M. contributed equally to this work. 

&F.D. and N.C. share last authorship for this work. 

 

*Corresponding Author: Marco Pio La Manna, PhD, Central Laboratory of Advanced Diagnosis and Biomedical 

Research, University of Palermo, Via del Vespro 129, Palermo 90127, Italy. 

 

Received: 31 May 2021; Accepted: 08 June 2021; Published: 13 July 2021 

 

Citation: Mojtaba Shekarkar Azgomi, Leila Mohammadnezhad, Marco Pio La Manna, Francesco Dieli, Nadia 

Caccamo, Natural Selection Footprint in Novel Coronavirus: A Genomic Perspective of SARS-COV2 Pandemic and 

Hypothesis for Peptide-Based Vaccine. Journal of Biotechnology and Biomedicine 4 (2021): 108-123. 

 

Abstract 

We retrospective analyzed in silico the binding affinity 

of SARS-CoV-2 peptides to MHC class I HLA-A, -B, 

and –C molecules in different countries with high and 

low morbidity and mortality rates. We used the 

bioinformatics approach to screen 18260 SARS-CoV-

2 epitopes that have significant affinity for different 

MHC class I alleles and found approximately five 

thousand predicted nonamers to bind different alleles. 

Those predicted epitopes show a different significant 
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affinity for occurring MHC I alleles. regarding HLA 

frequencies within different populations that can vary 

due to differences in their evolutionary histories, we 

showed that those alleles have different correlations 

with SARS-CoV-2 pandemic in 22 countries based on 

different mortality and morbidity rate. There was a 

strong negative correlation between morbidity and 

mortality rates and the frequency of HLA-A*24, 

HLA-C*06, and HLA-B*5, while a strong positive 

correlation is detected between HLA-A*02, HLA-

B*38, HLA-C*04, and HLA-C*08. 

 

We speculate that HLA class I polymorphism, by 

governing the set of viral peptides presented to CD8+ 

T cells, influences the outcome of SARS-Cov-2 

infection. Finally, we were able to draw a footprint of 

natural selection on MHC I alleles based on the 

significantly different affinity of the predicted 

peptides for known alleles. Our data showed that the 

HLA class I genetic background and the study epitope 

prediction should be taken into account for the 

generation of epitope-based vaccine or diagnostic 

tools. 

 

Keywords: SARS-CoV-2; CD8+ T cells; MHC class 

I; In silico analysis; Peptides 

 

1. Introduction 

In December 2019, the world experienced the 

outbreak of a novel coronavirus, when the first case 

was reported with respiratory-related symptoms in 

Wuhan, Hubei, China, and then has spread to other 

countries [1]. The viral genome was then fully 

sequenced [2] and showed similarity, but distinct 

composition to the genomes of two other SARS-CoV 

and MERS-CoV coronaviruses, that have been 

pandemic in 2002 and 2011, respectively. The new 

virus was officially termed "2019 novel coronavirus” 

while the disease that it causes was termed “the 

Corona Virus Disease 2019” (COVID-19) by World 

Health Organization (WHO) [3], but then the 

International Committee on Taxonomy renamed the 

virus as “Severe Acute Respiratory Syndrome 

Coronavirus-2” (SARS-CoV-2) [4]. Based on the 

genome sequence, SARS-CoV-2 is a member of 

genus Betacoronavirus subgenus (Sarbecovirus) [5] 

and shares approximately 79% homology with SARS-

CoV at the nucleotides level, with ∼72% nucleotide 

sequence similarity in the spike (S) protein [6]. The 

pathogenesis of COVID-19 is still under investigation. 

SARS-CoV-2 and SARS-CoV enter host cells through 

ACE2 receptors (1) while MERS-CoV uses dipeptidyl 

peptidase (DPP)-4 [7]. 

 

Previous studies in chronic infections have highlighted 

the role of CD8+ T cells, as a powerful effector 

mechanism to eliminate the virus, but also because 

they differentiate to long-lasting memory, that provide 

protective responses against the subsequent infection 

[8]. Major Histocompatibility Complex (MHC) class I 

genes play critical roles in determining the outcome 

(i.e., susceptibility or resistance to the infection). 

Association between human MHC (HLA) alleles and 

the outcome of viral infections have been documented. 

HIV-infected patients who are heterozygous for 

certain HLA class alleles, progress more slowly to 

AIDS and have a lower mortality rate [9]. Similarly, 

other studies have shown a direct relationship between 

susceptibility to infection and increased 

HLA homozygosity in a genetically isolated 

population [10]. Moreover, Ying, M. et al. [11] 

suggested that patients expressing the HLA-B*46 

https://www.sciencedirect.com/topics/medicine-and-dentistry/homozygosity
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allele had a more severe course of hemorrhagic fever 

with renal syndrome (HFRS) upon Hantan virus 

(HTNV) infection with respect to the control group. 

Another study demonstrated a reduced risk of 

developing Dengue hemorrhagic fever (DHF) 

associated with HLA-A*68 and HLA-DRB1*08 

alleles in a Sri Lankan Population [12]. Finally, 

cerebral malaria was significantly more frequent in 

patients expressing HLA-A*30 and HLA-A*33 alleles 

[13]. 

 

Based on this evidence we aimed to speculate on the 

impact of HLA class I allele polymorphism on the 

severity, mortality, and morbidity of COVID-19. We 

have analyzed the distribution of HLA class I alleles 

in countries with the diverse extent of the COVID-19 

pandemic, their potential role in SARS-CoV-2 CD8+ 

T cell epitope recognition in silico, and speculate on 

how this knowledge may impact future epitope-based 

vaccine or diagnostic tools development [14-20]. 

 

2. Material and method  

2.1 In silico Peptide prediction  

The amino acid sequence of the 29882 bp, SARS-

CoV-2 complete genome (2019-nCoV/USA-WA1-

A12/2020), was received in FASTA format from 

NCBI Protein Database (MT020880). This large 

genome codes ten essential proteins (Table 1). 

Because of the novel nature of 2019nCoV, we used 

machine learning methods and constructed models to 

predict peptide-HLA interactions with different HLA 

class I alleles, which have a higher frequency in the 

chosen population (Table 2). We used the artificial 

neural networks (ANNs) method for predicting the 

binding affinity of peptides [21]. 

 

NetMHC 4.0 Server 

(http://www.cbs.dtu.dk/services/NetMHC-4.0/) was 

used to identify CTL epitopes within the ten different 

essential protein sequences [22]. The threshold for 

strong binders was set as % Rank of <0.5 and the 

threshold for weak binders was set as % Rank of >2. 

The highest scoring epitopes (SB) for each HLA 

supertype were selected for analysis of binding 

affinity. Based on this method a list of potential 

nonamer-peptides has been created which consists of 

a total of 18219 peptides (Table 3). 

 

2.2 Subjects 

We used a retrospective study of a cohort of SARS-

CoV-2 countries reported by WHO [23]. To find a 

correlation between alleles that have high affinity for 

predicted SARS-CoV-2 nonamer-peptides and covid-

19 pandemic. We selected two different cohort groups 

(Table 2 and Table 4), the first cohort group consists 

of HLA allele selection of infected people belonging 

to different countries, and this group was further 

divided into a subgroup with high and low mortality 

and morbidity rate (Table2). The second cohort group 

consists of patients that were used to test the 

correlation between allele frequency and mortality 

morbidity rates (Table 4). This study method was 

tested in three different periods: from the beginning of 

the Covid-19 pandemic until March 2020, until April 

2020, and until July 2020. The latest update of data is 

presented here which included reports until July 12th, 

2020. Allele frequencies of candidate place (first and 

second group) have been collected using Allele 

Frequency Net Database (AFND) [24]. 

 

https://www.ncbi.nlm.nih.gov/nuccore/MT020880
http://www.cbs.dtu.dk/services/NetMHC-4.0/
http://www.allelefrequencies.net/default.asp
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2.3 Allele frequency of HLA I genes in different 

study subjects 

According to the hypothesis that different frequencies 

of HLA class I alleles that can vary due to differences 

in their evolutionary histories in the different 

populations; can be associated with mortality and 

morbidity rates, the most frequent alleles in the two 

different cohort groups with high and low mortality 

and morbidity rates have been chosen (Table 5). 

Mortality and morbidity rates are calculated by the 

following formula: 

 

We used the calculated rate for further analysis based 

on the prevalence of the disease (Table 4). The 

population with a higher rate of mortality and 

morbidity included Lombardy (Italy), Wuhan (China) 

and Tehran (Iran), and population with a low rate of 

mortality and morbidity included Saudi Arabia, 

Germany, and Sweden (Table 2). 

 

 

 

 

We have chosen the most frequent HLA class I alleles 

in group 1 and based on allele frequency (Table 2).  

A total of 30 alleles were selected as candidates for 

nonamers epitope prediction (HLA-A*01, HLA-

A*02, HLA-A*03, HLA-A*11, HLA-A*23, HLA-

A*24, HLA-A*68, HLA-B*07, HLA-B*08, HLA-

B*14, HLA-B*15, HLA-B18, HLA-B35, HLA-B38, 

HLA-B40, HLA-B44, HLA-B46, HLA-B50, HLA-

B51, HLA-B*52, HLA-C*0303, HLA-C*0401, HLA-

C*0501, HLA-C*0602, HLA-C*0701, HLA-C*0702, 

HLA-C*0802, HLA-C*1203, HLA-C*1402, HLA-

C*1502). 

 

Two separate analysis were used to test our 

hypothesis. binding affinity in nano-Molar units and 

frequency of predicted nonamers that can be 

recognized by different HLA class I alleles. The 

affinity of nonamers was analyzed using Kruskal–

Wallis one-way ANOVA test. p-values < 0.05 were 

considered significant. The second analysis regarded 

the correlation between HLA class I alleles (selected 

from first analysis) with mortality and morbidity rates 

has been run on the second group: Pearson correlation 

coefficient with a one-tailed p-value and 90% of the 

confidence interval was used for allele correlation. 

 

Accession Id Protein name 
Length 

Bp 

Percentage of 

total genome 
HLA-A HLA-B HLA-C 

QHD43417.1_4 Envelope protein 75 0.25% 0.86% 1.00% 0.99% 

QHD43417.1_5 Membrane Glycoprotein 222 0.74% 0.79% 1.00% 0.99% 

QHD43417.1_9 

Nucleocapsid 

phosphoprotein 
419 1.40% 1.93% 2.72% 2.79% 

YP_009724389.1 orf1ab polyprotein 7976 26.69% 77.44% 77.38% 75.38% 

QHD43417.1_3 ORf3a protein 275 0.92% 5.16% 3.39% 4.07% 

QHD43417.1_6 ORF6 protein 61 0.20% 0.36% 0.50% 0.33% 

https://www.ncbi.nlm.nih.gov/protein/1791269092
https://www.ncbi.nlm.nih.gov/protein/1791269093
https://www.ncbi.nlm.nih.gov/protein/1791269097
https://www.ncbi.nlm.nih.gov/protein/1796318597
https://www.ncbi.nlm.nih.gov/protein/1791269091
https://www.ncbi.nlm.nih.gov/protein/1791269094
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QHD43417.1_8 ORF8a protein 121 0.40% 1.07% 0.67% 0.76% 

QHD43417.1_10 Orf10 protein 38 0.13% 0.57% 0.94% 0.52% 

QHD43416 

surface glycoprotein and 

spike 
1273 4.26% 11.82% 12.40% 14.16% 

  total seq 10460 35.00%       

  total seq 29882         

 

Table. 1: SARS-Cov-2 protein and total of predicted nonamers and different MHC I genes. 

 

  HLA-A HLA-B HLA-C 

HLA Allele Freq HLA Allele Freq HLA Allele Freq 

Group A 

Lombardi 

A*02 26.80% B*35 13.90% C*07 18.80% 

A*03 11.80% B*18 9.90% C*04 15.90% 

A*01 11.70% B*44 9.10% C*06:02 10.40% 

A*24 10.90% B*51 8.70%     

Wuhan 

A*02 31.00% B*40 15.70% C*01 24.50% 

A*11 29.30% B*15 15.60% C*03:04 14.90% 

A*24 17.80% B*46 13.50% C*07:02 11.60% 

A*30 5.40% B*14 10.80% C*04 7.50% 

Tehran 

A*02 18.30% B*35 19.10% C*07 19.20% 

A*24 12.00% B*51 13.70% C*12 16.70% 

A*03 11.80% B*52 5.60% C*15 14.80% 

A*01 10.90% B*38 5.30% C*04 13.90% 

Group B 

Saudi 

Arabia 

A*02 28.90% B*51 19.30% C*07 24.90% 

A*68 10.00% B*50 16.30% C*06 20.10% 

A*24 8.00% B*08 10.00% C*15 12.60% 

A*26 7.40% B*07 8.10% C*04 10.60% 

Germany 

A*02 28.20% B*07 13.50% C*07:01 20.90% 

A*03 15.40% B*08 13.50% C*03:04 10.50% 

A*01 14.40% B*44 9.20% C*02:02 10.30% 

A*24 10.10% B*40 8.60%     

Sweden 

A*02 32.90% B*07 14.10% C*07 31.90% 

A*03 16.80% B*44 12.70% C*03 18.90% 

A*01 13.90% B*08 12.10% C*04 10.10% 

A*24 9.60% B*15 10.60%     

https://www.ncbi.nlm.nih.gov/protein/1791269096
https://www.ncbi.nlm.nih.gov/protein/1791269098
https://www.ncbi.nlm.nih.gov/protein/1791269090
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Table 2: First cohorts’ group for allele Selection: the population was divided into two groups on the basis of HLA 

alleles frequency. Group A: population with a high rate of mortality and morbidity based on the WHO report; Group 

B: population with a low rate of mortality and morbidity based on the WHO report. 

 

T Cell predicted peptide High affinity for HLA I (N) Strong binder HLA I (N) 

HLA-A 4376 1437 

HLA-B 6523 1832 

HLA-C 7320 2163 

Total number 18219 5432 

 

Table 3: Number of nonamers for SARS-Cov2 proteins with binding affinity for HLA Class I molecules (High 

affinity= the peptides with significant affinity, Strong binder= the peptides that have strong affinity for epitope and 

MHC binding). 

 

  population confirmed cases deaths mortality rate Morbidity rate 

India 1,364,562,908 820,916 22,123 2.69% 0.06% 

Saudi Arabia 34,218,169 226,486 2,151 0.95% 0.66% 

Jordan 10,721,796 1,173 10 0.85% 0.01% 

China 1,403,482,160 85,487 4,648 5.44% 0.01% 

Albania 2,845,955 3,371 89 2.64% 0.12% 

Croatia 4,076,246 3,532 117 3.31% 0.09% 

Iran 8,36,03,884 252,720 12,447 4.93% 0.30% 

Germany 83,166,711 198,556 9,060 4.56% 0.24% 

Belgium 11,528,375 62,469 9,782 15.66% 0.54% 

Italy 60,238,522 242,639 34,938 14.40% 0.40% 

Spain 47,329,981 253,908 28,403 11.19% 0.54% 

France 67,081,000 161,275 29,907 18.54% 0.24% 

Finland 5,498,027 7,279 329 4.52% 0.13% 

UK 66,796,807 288,137 44,650 15.50% 0.43% 

Argentina 45,376,763 94,060 1,787 1.90% 0.21% 

Brazil 211,778,013 1,800,827 70,398 3.91% 0.85% 

Japan 125,930,000 21,502 982 4.57% 0.02% 

Ecuador 17,524,324 67,209 5,031 7.49% 0.38% 
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peru 32,824,358 319,646 11,500 3.60% 0.97% 

Sweden 10,348,730 74,898 5,526 7.38% 0.72% 

Republic of 

Korea 
51,780,579 13,417 289 2.15% 0.03% 

 

Table 4: Second cohorts’ group for allele correlation analysis consisting of eleven countries based on their mortality 

and morbidity rate. The confirmed cases and deaths number is based on WHO report until 11th of April. Number of 

populations is based on united nation last report Nations WPP-PD-U. 2019 Revision of World Population Prospects 

9 November 2019; Available from: https://population.un.org/wpp/. 

 

 

 

Table. 5: Allele frequency of second cohort of SARS-CoV-2 infected countries reported by WHO. 

*NR: allele frequency was Not reported in Allele Frequency Net Database. 

 

 

 

https://population.un.org/wpp/
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Pearson r correlation 

allele Correlation factor Vs Mortality Vs Morbidity 

H
L

A
-A

*
0

1
 

r 0.2273 0.05488 

90% confidence interval -0.1551 to 0.5504 -0.3210 to 0.4158 

R squared 0.05164 0.003012 

   

H
L

A
-A

*
0

2
 

    

r 0.02707 0.4413 

90% confidence interval -0.3458 to 0.3925 0.08588 to 0.6970 

R squared 0.0007331 0.1947 

H
L

A
-A

*
2

4
 

r -0.2829 -0.4685 

90% confidence interval -0.5906 to 0.09656 -0.7143 to -0.1199 

R squared 0.08004 0.2195 

H
L

A
-A

*
6

8
 

r -0.06578 0.349 

90% confidence interval -0.4248 to 0.3112 -0.02335 to 0.6364 

R squared 0.004326 0.1218 

H
L

A
-B

*
0

7
 

r 0.4478 0.1823 

90% confidence interval 0.09394 to 0.7012 -0.2005 to 0.5169 

R squared 0.2005 0.03325 

H
L

A
-B

*
0

8
 

r 0.1413 0.02803 

90% confidence interval -0.2406 to 0.4853 -0.3449 to 0.3933 

R squared 0.01996 0.0007855 

H
L

A
-B

*
3

8
 

r -0.1121 -0.0747 

90% confidence interval -0.4623 to 0.2684 -0.4321 to 0.3030 

R squared 0.01256 0.005579 

H
L

A
-B

*
4

6
 

r -0.16 -0.5295 

90% confidence interval -0.5766 to 0.3226 -0.7952 to -0.09330 

R squared 0.02559 0.2804 

H
L

A
-B

*
5

1
 

r -0.4901 -0.1505 

90% confidence interval -0.7277 to -0.1474 -0.4925 to 0.2317 

R squared 0.2402 0.02266 

H
L

A
-C

*
0

3
 

r 0.2666 0.09891 

90% confidence interval -0.1372 to 0.5944 -0.3022 to 0.4703 

R squared 0.07107 0.009782 
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H
L

A
-C

0
4

 r -0.1104 0.5719 

90% confidence interval -0.4793 to 0.2916 0.2347 to 0.7863 

R squared 0.01219 0.3271 
H

L
A

-C
0

5
 r 0.3474 -0.0176 

90% confidence interval -0.06215 to 0.6568 -0.4155 to 0.3860 

R squared 0.1207 0.0003097 

 

H
L

A
-C

*
0

6
 

 
 

r -0.05918 0.07537 

90% confidence interval -0.4494 to 0.3500 -0.3357 to 0.4623 

R squared 0.003502 0.00568 

H
L

A
-C

*
0

7
 

r 0.3229 0.3315 

90% confidence interval -0.07622 to 0.6328 -0.06665 to 0.6385 

R squared 0.1042 0.1099 

H
L

A
-C

*
0

8
 

r -0.08358 -0.2325 

90% confidence interval -0.4688 to 0.3283 -0.5794 to 0.1857 

R squared 0.006985 0.05404 

H
L

A
-C

*
1

2
 

r -0.06214 -0.1335 

90% confidence interval -0.4410 to 0.3355 -0.4972 to 0.2700 

R squared 0.003861 0.01783 

H
L

A
-C

*
1

4
 

r -0.2459 -0.466 

90% confidence interval -0.5799 to 0.1588 -0.7241 to -0.09344 

R squared 0.06048 0.2171 

H
L

A
-C

*
1

5
 

r -0.4622 0.1069 

90% confidence interval -0.7218 to -0.08864 -0.2949 to 0.4766 

R squared 0.2136 0.01143 

 

Table 6: Correlation between different alleles and mortality/morbidity rate. 

 

3. Results  

3.1 Bioinformatic-based prediction of SARS-CoV-

2 epitopes binding to HLA-A alleles 

A total of 4417 SARS-CoV-2 peptides showed a 

significant affinity to selected HLA-A chosen alleles. 

Among these nonamer epitopes, 1451 (32%) had a 

strong binding affinity based on a 2% Rank threshold 

for weak binders and 0.5% Rank threshold for strong 

binders. The most frequent HLA-A allele in our 

database was HLA-A*02, but the affinity of the 

nonamer epitopes for HLA-A*02 was significantly 

lower (even extremely lower) than for all other 

selected alleles (p-value=0.0001) (Figure 1A). 

Approximately 31% of nonamer epitopes have a 

strong binding affinity to HLA-A*01 and HLA-A*68. 

Interestingly, the countries with a high frequency of 
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these two alleles showed a low mortality and 

morbidity rate. Pearson correlation analysis showed a 

strong positive correlation between HLA-A*02 and 

morbidity rate (Figure 2A and Table 6), where the 

correlation between HLA-A*24 and morbidity rate 

were significantly negative (p-value = 0.0322), 

whereas HLA-A*02 showed a significantly positive 

correlation with morbidity rate (p-value = 0.0452). 

 

3.2 Bioinformatic-based prediction of SARS-CoV-

2 epitopes binding to HLA-B alleles 

A total of 6523 SARS-CoV-2 peptides showed a 

significant affinity to selected HLA-B alleles and 1840 

(28%) of these had a strong binding affinity. Our in-

silico analysis showed that similarly to HLA-A, the 

most frequent HLA-B alleles, such as HLA-B*35 or 

HLA-B*40 had the lowest binding affinity for 

nonamer epitopes (Figure1B) and only 13% epitopes 

were recognized by HLA-B*35 and B*40. The 

countries with a lower prevalence of the disease 

showed different allele frequency patterns, which 

comprised HLA-B*07, *08 or B*51. As shown in 

Figure 1B, a small number of peptides (4%) had a 

strong binding affinity to HLA-B*51, while 26.20% of 

the predicted nonamer epitopes display a strong 

affinity binding to HLA-B*08. The correlation 

between selected alleles with higher affinity for 

nonamers HLA-B epitopes (HLA-B*07, HLA-B*08, 

HLA-B*38, HLA-B*51) and mortality and morbidity 

rates were estimated. HLA-B*07 showed a 

significantly positive correlation versus mortality rate 

(p-value = 0.0418) and HLA-B*38 alleles showed a 

negative correlation with morbidity rates, while HLA-

B*51 showed a statistically significant negative 

correlation with mortality (p-value =0.0241) and 

strong negative correlation versus morbidity rates 

(Figure 2B and table 6). 

 

3.3 Bioinformatic-based prediction of SARS-CoV-

2 epitopes binding to HLA-C alleles 

There was no significant difference in the number of 

SARS-CoV2 nonamers that have strong binding 

affinity to HLA-C alleles (Figure 1C), but 3 allele 

clusters could be observed, as reported in Table 2 and 

Figure 1C; the most frequent allele among 22 

countries is HLA-C*07, but our data showed an 

affinity that was lower than other alleles and 

interestingly the correlation between this allele and 

mortality rate was strongly positive (Figure 2C). On 

the other hand, HLA-C*04 which had a strong affinity 

for predicted SARS-CoV2 nonamers showed the 

significantly strongest positive correlation versus 

morbidity rate. According to our results, these two 

alleles may contribute to the spread and mortal 

function of this new virus. Contrastingly, the third 

cluster showed a different result. The HLA-C*14 and 

-C*15 showed a low affinity for predicted SARS-

CoV2 nonamers but HLA-C*14 showed a 

significantly negative correlation with morbidity (p-

value =0.0443) and HLA-C*15 significant negative 

correlation with mortality (p-value =0.0463), which 

again confirm our hypothesis that high affinity of 

SARS-CoV2 epitopes with HLA-C alleles may 

contribute to spread and fatal disease progression of 

this new virus. 
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Figure. 1: SARS-CoV-2 epitopes predicted to bind to HLA class I alleles. 

 

On the left side is shown the affinity of peptides that bind to different HLA alleles. X axis represents allele type and 

Y axis represents affinity of peptides that bind to different alleles type(nM). Shown is median affinity and bars indicate 

Standard Deviation. On the middle, are shown the SARS-CoV-2 nonamers that can be recognized by different HLA-

A alleles (% of total strong binder to different HLA alleles phenotype). On the right side, are shown numbers of SARS-

CoV-2 nonamers that can be recognized by different HLA-A (A), HLA-B (B), and HLA-C (C).**p<0.01 and 
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****p<0.0001. 

 

 

 

Figure. 2: Correlation between HLA class I alleles frequency and morbidity/mortality rate. 

 

Correlation has been calculated based on Pearson 

coefficient with one-tailed p-value and 90% of 

confidence interval. Each graph represents the 

correlation between HLA-A (A), HLA-B (B) and 

HLA-C (C) alleles and morbidity/mortality rate. X 

axes indicate allele frequency and Y-axes indicate the 

morbidity/mortality rates. The red line indicates 

positive correlation, the green line indicates negative 

correlation and the black one indicates no correlation. 

The table represents each allele correlation with a 90% 

confidence interval and * indicate the significant p 

value <0.05 where significant for alpha = 0.1. The 

complete correlation data can be seen in table 6.  
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4. Discussion 

During evolution, living species have adapted to 

environmental constraints such as different pathogens 

according to the mechanism of natural selection. Here 

we showed that different frequencies of HLA class I 

alleles that can vary due to the different evolutionary 

histories in the different populations, may contribute 

to the spread of this new coronavirus because the 

different alleles can have different affinity for 

pathogen epitope and consequently elicit different 

adaptive immune responses. Understanding the 

pathogenesis of SARS-CoV-2 infection, including the 

role of immunogenetics, is essential not only for the 

development of new strategies to treat and prevent this 

novel infection, but also for vaccine development [25, 

26]. Here, we have used bioinformatics and in silico 

approaches to evaluate associations between HLA 

alleles and SARS-CoV-2 epitopes in different 

populations with different HLA Class I alleles 

frequency. 

 

The vast majority of HLA-A and -B alleles fall into 

one of 9 supertypes [28], for example, HLA-A*6802 

and HLA-A*0201 have exact matches in the B and F 

pockets and A*0301, A*1101 and A*6801 belong to 

the same HLA A supertype [27]. But, they are 

structurally far from HLA-A*0201 allele. Based on 

the AFND database, the HLA-A*02 is the most 

frequent allele almost in all candidate populations, but 

we show here that HLA-A*02 has a low affinity for 

SARS-CoV-2 nonamer epitopes. In contrast, HLA-

A*01, A*24, and A*68 alleles, despite having a lower 

frequency with respect to HLA-A*02 allele, have the 

highest binding affinity for the mentioned viral 

nonamers. Take into consideration that HLA-A*24 

and HLA-A*68 have more affinity in comparison to 

HLA-A*02, it can be considered that this 

polymorphism might favor SARS-CoV-2 peptide 

binding to B and F pockets and consequently promote 

activation of CTLs CD8+ T virus-specific cells. In our 

study, we show a strong negative correlation between 

morbidity rate and HLA-A*24 allele at partial support 

of this possibility. Notably, several HLA-A*24-

restricted epitopes derived from the influenza virus 

have been also identified in human studies [28, 29], 

and another study suggested the role of HLA-A*24-

restricted CD8+T cell responses against 2009 pH1N1 

[30]. 

 

In different populations, alleles of the HLA-B*07 

superfamily, including HLA-B*0702 HLA-B*35, 

HLA-B*51, and HLA-B*53, preferentially select 

peptides with a proline residue in P2 [31]. In some 

instances, this small allele polymorphism can provide 

an advantage for a given population. Here, we show 

that HLA-B*07 has a low affinity for the predicted 

SARS-Cov-2 epitopes but, another member of the 

same supertype family, HLA-B*5101, displays a high 

binding affinity. Kawashima et al. [32] reported that 

HLA-B*51 is associated with slow disease 

progression to AIDS; accordingly, we show here that 

there is a strong negative correlation between HLA-

B*51 and SARS-CoV-2 mortality and morbidity rate. 

We speculate that individuals that express HLA-B*51 

and HLA-B*08 alleles are not affected as much as 

other people expressing other HLA alleles. 

Concerning HLA-C alleles, HLA-C*0801 correlates 

with the susceptibility to SARS-CoV-2 [33], while 

HLA-C*06 had a strong negative correlation with 

mortality rate. Interestingly, HLA-A*24-B*51-C*06 

are the most frequent extended HLA class I haplotype 

in Albania [33], where 475 confirmed COVID-19 

http://www.allelefrequencies.net/default.asp
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infection cases and 24 deaths were reported by WHO 

[23]. 

 

In conclusion, our in-silico study, although very 

preliminary, suggests the possibility that HLA class I 

polymorphism, by selecting potential SARS-Cov-2 

epitopes capable to induce protective CD8+ T cell 

responses, may account for the diverse mortality and 

morbidity rates documented in different countries that 

screening during almost 10 months of this tragic 

pandemic. Due to the important role of CD8+ T cells 

in SARS-CoV-2 immunity, a specific antiviral 

cytotoxic immune response induced by viral peptides 

should be considered. We suggest that the mentioned 

peptides could be used for peptide-based vaccine 

development and could be evaluated for the 

development of diagnostic tools with high sensitivity 

and specificity. 
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