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Introduction
Glioblastoma (GBM) is the most common and aggressive primary brain 

tumor in adults. With a median survival of approximately 15 months, the 
prognosis for glioblastoma is poor [1, 2]. The standard of care for newly 
diagnosed glioblastoma is maximum safe surgical resection followed by 
radiotherapy with concurrent and adjuvant chemotherapy. Over the last two 
decades, temozolomide (TMZ) has been the main chemotherapeutic agent 
used in the clinical practice of glioblastoma [3], but it has not provided 
an effective cure over the long term. In fact, the majority of patients still 
experience recurrence, primarily due to the molecular heterogeneity of 
GBM tumors. Unfortunately, the known prognostic factors and predictive 
biomarkers do not explain the complexity and variability of GBM treatment 
response [4-6], and despite several models having been developed to assess 
the survival of an individual patient [7-9], none of them is currently used in 
clinical practice. In the last few years, the need to increase the personalized 

Abstract
Glioblastoma (GBM) is a highly deadly brain tumor. The chemotherapeutic 
treatment still lacks solid patient stratification, as temozolomide (TMZ) is 
administered to the majority of GBM patients. In this study, we explored 
the effectiveness of NAD(P)H-fluorescence lifetime imaging microscopy 
(NAD(P)H-FLIM) in furnishing clinically relevant insights into GBM 
responsiveness, a realm constrained by the absence of corresponding 
clinical outcome data. Using the information obtained by NAD(P)
H-FLIM, we conducted a DE analysis on an RNA-seq private dataset, 
comparing TMZ responder and non-responder tumors. To validate the 
NAD(P)H-FLIM classification, we conducted a comparable DE analysis 
on the GBM TCGA (The Cancer Genome Atlas) RNA-seq data using the 
progression-free interval (PFI) as a responsiveness indicator. 

We selected the most informative genes shared by both the DE analyses 
(BIRC3, CBLC, IL6, PTX3, SRD5A1, TNFAIP3) and employed them as 
transcriptomic signature. Using a different dataset (GBM TCGA Agilent-
Microarray), we built a signature-based machine learning model capable 
of predicting the PFI. We also showed that the performance of our model is 
similar to that obtained with a well-established biomarker: the methylation 
status of the MGMT promoter. In conclusion, we assessed the reliability 
of the NAD(P)H-FLIM in providing clinically relevant drug response 
information in GBM and provided a new transcriptomic based model for 
determining patients’ responsiveness to TMZ treatment.
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medicine applicability has led to a revival of interest in 
functional assays [10-12]. These tests basically consist of 
evaluating the drug response directly on biopsied tumor cells, 
and they can be used to monitor the course of the disease 
and adopt adaptive treatment regimens [13]. However, in 
the field of neuro-oncology, in vitro drug screening methods 
based on functional assays are rarely translated into clinical 
practice. This is partially due to the high inter- and intra-
variability of brain tumors, which is difficult to represent in in 
vitro models. Moreover, traditional assays of drug response, 
mainly based on cellular proliferation and viability, require 
extended culturing times during which the samples diverge 
from the parental tumor in vivo. Despite these challenges, it 
is crucial to develop and validate new functional precision 
oncology approaches that can improve the success of 
clinical treatments. In the last decade, many researchers have 
addressed their efforts in validating an innovative functional 
strategy: the application of Fluorescence Lifetime Imaging 
Microscopy (FLIM) to in vitro drug testing [14-16]. FLIM 
overcomes the main limitations of traditional drug screening 
methods as it is a rapid, label-free, and non-destructive 
imaging technique that can be applied to living cells or 
tissues [17]. In this context, FLIM exploits the intrinsic auto-
fluorescence molecular properties of NAD(P)H, a metabolic 
enzymatic cofactor associated with the metabolic state of 
cells/tissues. Briefly, the measured NAD(P)H fluorescence is 
used as an indicator of the relative balance between oxidative 
phosphorylation and glucose catabolism (18), which has been 
shown to be an early predictor of cellular drug response [19]. 
The use of NAD(P)H-FLIM as a tool to assess treatment 
response in glioblastoma was presented by Morelli et al. [20, 
21]. They applied this technique to investigate the response 
to TMZ of GBM explants, which are an ex vivo pre-clinical 
model consisting of minimally handled fresh tumor tissues. 
However, as in most functional assays [22], the clinical 
course of the GBM cohort collected by Morelli et al. [21] 
is not yet available. This lack of information limits the 
translation of this approach into clinical practice because the 
response to TMZ predicted by NAD(P)H-FLIM cannot be 
directly confirmed with the clinical outcome. 

To overcome this limitation and investigate the 
informative nature of the NAD(P)H-FLIM technique in 
predicting clinical outcomes, in this paper we propose a 
bioinformatics pipeline that utilizes external cohorts of GBM 
patients and leverages the progression-free interval (PFI) as 
an approximation of drug response. With this aim we found 
a panel of genes highlighted by the FLIM classification and 
in the same time playing a role in clinical outcomes of the 
external dataset.

Finally, to further assess the clinical relevance of the 
identified genes, and consequently of the NAD(P)H-FLIM 
functional assay, we attempted to use them as predictive 
biomarkers by building a machine learning model. The model 

capability of assessing the clinical outcome on a different 
GBM cohort would, in turn, provide both a strong evidence 
of the NAD(P)H-FLIM reliability as a drug testing assay and 
a tool to effectively stratify GBM patients. 

Materials and Methods
GBM explants cohort

GBM explants cohort description: In this study, we 
used the data presented by Morelli et al. [21], These data are 
related to 33 samples of glioblastoma multiforme (GBM) 
that were cultured as explants, an ex vivo pre-clinical model 
consisting of minimally handled fresh tumor tissues. Out of 
the 33 GBM samples, 18 were sequenced as fresh-frozen 
samples, while the other 15 as GBM explants cultured in 
vitro. For the sake of simplicity, we will refer to this dataset 
as the “GBM explants”.

All GBM explants were exposed to temozolomide (TMZ) 
drug. The protocol for drug treatment, as well as the culture 
methods of GBM explants, are described in Morelli et al. 
[21].

To determine which GBM explants were responsive to 
the benchmark drug (temozolomide, TMZ), Morelli et al. 
labelled the samples as responder (RES) or non-responder 
(NRES) based on the NAD(P)H-fluorescence lifetime 
imaging microscopy (FLIM) technique [21]. In this context, 
FLIM exploits the intrinsic auto-fluorescence molecular 
properties of NAD(P)H, a metabolic enzymatic cofactor 
associated with the metabolic state of the cell/tissue.

RNA-seq data, alignment and annotation: We aligned 
the data using STAR (version 2.7.9a) against the GRCh38 
version of the human genome. Read counts were generated 
during the alignment process (as described on the GDC 
guideline: https://docs.gdc.cancer.gov/Data/Bioinformatics_
Pipelines/Expression_mRNA_Pipeline/). We obtained the 
raw count matrix using an R script. All subsequent analyses 
were conducted using R version 4.2.0 within the RStudio 
2022.07.02+576 suite or Python version 3.10.

Batch correction: Although recent works reported 
that fresh-frozen and cultured tissues have similar gene 
expression levels [23, 24], we investigated the presence of a 
batch effect in the RNA-seq data due to the different sample 
types.  With this aim, we performed principal component 
analysis (PCA) using the PCATools R library. PCA revealed 
that the samples labelled by sample type clustered along the 
principal components 1 and 7, confirming the presence of 
a batch effect. To correct for this, we applied the ComBat-
seq algorithm, which is specifically designed for RNA-seq 
data [25]. In addition, to preserve the biological variability 
of the samples, we set the ComBat-seq argument "group" as 
the NAD(P)H-FLIM classification (RES/NRES). Finally, we 
applied PCA again to verify that the corrected data were no 
longer clustered by sample type. 

https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/
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Differential expression analysis: After the RNA-seq data 
of the 33 GBM samples were batch-corrected, we normalized 
them and conducted a differential expression (DE) analysis 
using the DESeq2 algorithm [26]. The DE analysis compared 
the two groups of samples identified by the NAD(P)H-FLIM 
technique: RES (16 samples) and NRES (17 samples). To 
reduce the effect of genes with low counts, we corrected the 
estimated log-fold values using the normal shrinkage method 
[26]. We identified differentially expressed genes (DEGs) as 
the ones with a fold change greater than 1.5 in absolute value 
(log2-fold change greater than 0.58) and p value adjusted for 
multiple comparisons less than 0.1. A custom R script was 
used to perform the analysis.

RNA-seq data of TCGA
TCGA RNA-seq cohort description: To validate 

the NAD(P)H-FLIM based classification, we conducted a 
comparable DE analysis on the GBM RNA-seq data sourced 
from The Cancer Genome Atlas (TCGA). We downloaded 
the RNA-seq dataset and the corresponding clinical data 
from the Genomic Data Commons (GDC) Data Portal. The 
raw counts table was obtained using the same alignment and 
annotation procedures as the GBM explants. From the whole 
set of patients, we only selected the ones treated for at least 
one cycle with TMZ (104 patients).

Differential expression analysis: Among the TMZ 
treated patients, we only selected the ones whose PFI value 
was non-censored. Then, we grouped them based on the 
progression-free interval (PFI): we defined two groups of 
patients with extreme PFI values, one group with PFI values 
within the 1st quartile (Short PFI, or S-PFI group, 22 patients) 
and the other with PFI values within the 4th quartile (Long 
PFI, or L-PFI group, 22 patients). Finally, the differential 
expression (DE) analysis was conducted on the selected 
RNA-seq data following the same approach and statistical 
thresholds used for the GBM explants dataset. Specifically, 
we used the DESeq2 algorithm to normalize raw counts data 
and then we conducted a DE analysis comparing the L-PFI 
with the S-PFI group [26]. Differentially expressed genes 
(DEGs) were identified as the ones with a log2-fold change 
(corrected using normal shrinkage) higher than 0.58 (fold 
change higher than 1.5) and a p-value adjusted lower than 
0.1. Data selection was performed using a custom Python 
script, while the DE analysis was conducted using a custom 
R script.

Functional-clinical differentially expressed genes
By only considering the DEGs whose expression pattern 

was consistent (preserved up- or down-regulation) among 
the two datasets, we found 19 DEGs shared by the two DE 
analyses. Subsequently, in order to select the most informative 
genes, we performed a supervised feature selection. With this 
aim we first standardized the RNA-seq expression values of 

the 19 shared DEGs of both GBM explants and TCGA. Next, 
we aggregated the two standardized datasets into a unique 
dataset (77 samples) and the Long PFI (L-PFI) label was 
converted to TMZ responder (RES), as well as the Short PFI 
(S-PFI) label was converted to TMZ non-responder (NRES). 
Finally, we applied a linear discriminant analysis (LDA, 
[27]) and selected the genes having a discriminant coefficient 
(i.e. the loading) higher than the mean of the coefficients, 
as shown in Figure 3B. This process led to the selection of 
6 genes among the initial 19. The described analyses were 
conducted in Python using custom-made scripts.

Microarray data of TCGA Agilent
Here, we selected a different dataset: the TCGA 

AgilentG4502A_07_2 Microarray, downloaded from 
UCSC (University of California Santa Cruz) Xena (https://
tcga-xena-hub.s3.us-east-1.amazonaws.com/download/
TCGA.GBM.sampleMap%2FAgilentG4502A_07_2.gz). We 
decided to use a new dataset to avoid any information leakage. 
Additionally, we excluded the 36 patients who were also 
present in the RNA-seq dataset of TCGA. To be consistent 
with the previous analyses, we only selected patients who 
were treated with TMZ, resulting in a final dataset of 247 
patients.

Building a predictive model
To make the results as interpretable as possible, we 

implemented the Cox proportional hazards model using the 
lifelines library developed in Python [28, 29]. An important 
advantage of using a Cox regression is that a hazard ratio 
(HR) is computed for each of the model’s covariates, which, 
in our case, are the 6 selected genes. Each HR gives insights 
on the effect of the corresponding covariate on the predicted 
clinical variable (progression-free in our case), i.e., whether 
it increases or decreases the event probability. Finally, the 
model can be used to divide subjects into two risk groups, 
i.e., high risk or low risk, by using the partial hazard (PH) 
assigned to each patient by the model.

Leave-One-Subject-Out (LOO) training and testing 
procedure

To train and test the model we adopted a Leave-One-
Subject-Out (LOO) approach, rather than a classical training 
and testing procedure. Practically, the dataset was split into 
train and test set, with the latter consisting of only one sample 
at a time. A Cox model was then trained using all the samples 
except for the one left out, which was used to test the model. 
This procedure was repeated as many times as the total 
number of patients, with each patient left out of the training 
set in turn and treated as a new observation by the model. It is 
important to remark that the train set related to two different 
iterations differs from just one observation, i.e., the left-out-
patient. 
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Finally, for each patient in the dataset we obtained a risk 
prediction, which is called partial hazard when using the 
Cox regression. We split the patients into high and low risk 
groups by using as threshold the median of the computed 
partial hazards. By conducting a univariate Cox regression 
that uses as covariate the risk group, we can compute the 
corresponding hazard ratio (HR), which indicates the model 
ability to correctly categorize patients into high and low risk 
groups.

Statistical analyses
Throughput this paper, we used the Kaplan-Meier 

plot to visualize time-to-event data. Log-rank test (https://
lifelines.readthedocs.io/en/latest/lifelines.statistics.html) 
was applied to compare the progression-free interval (PFI) 
distributions of two sets of data. The Wilcoxon rank-sum test 
(https://docs.scipy.org/doc/scipy/reference/generated/scipy.
stats.wilcoxon.html) was used to compare the risk scores 
distribution of MGMT-methylated and MGMT-unmethylated 
patients.

Results
Differential Expression Analyses

The workflow of the bioinformatics approach we propose 
to assess the NAD(P)H-FLIM technique is depicted in 
Figure 1. Firstly, we conducted a differential expression 
(DE) analysis on the RNA-seq data of the GBM explants by 

comparing the RES and NRES group. Here we identified 244 
differentially expressed genes (DEGs, defined as in 2.2.2), as 
shown in the volcano plot of Figure 2A. Out of the 244 DEGs, 
172 of them were up-regulated in the NRES condition, while 
the remaining 72 down-regulated. Secondly, we conducted a 
comparable DE analysis on the GBM RNA-seq data of TCGA 
using the progression-free interval (PFI) to group patients, as 
described in section 2.2.2. As a result, 1090 genes were found 
to be differentially expressed when comparing the L-PFI (n = 
22) and S-PFI (n = 22) groups, as shown in the volcano plot 
of Figure 2B. Out of the 1090 DEGs, 853 of them were up-
regulated, while the remaining 237 down-regulated. Finally, 
we identified 19 genes that were differentially expressed and 
that exhibited consistent expression patterns (up- or down-
regulation) in both the DE analyses. 

A transcriptomic-based predictive model
Genes selection: From the original set of 19 shared DEGs, 

we identified a subset of the most informative ones. To select 
the genes, we applied a linear discriminant analysis (LDA) to 
the aggregated RNA-seq data of GBM explants and TCGA. 
LDA was used to identify the genes that contributed the most 
in separating RES and L-PFI samples from NRES and S-PFI 
samples. In figure 3A the LDA projected data are shown 
and are notably well separated according to their true label 
(RES+L-PFI/NRES+S-PFI), confirming that the discriminant 
algorithm nicely worked. In Figure 3B we show the LD scaling 
value assigned to each of the 19 DEGs. The higher the scaling 

 
Figure 1: Qualitative workflow of the bioinformatics validation of NAD(P)H-FLIM technique. The left box shows the differential expression 
(DE) analysis conducted on the GBM explants classified as RES or NRES. The right box shows the DE analysis conducted on the RNA-seq 
data of TCGA by comparing patients with extreme progression-free interval (PFI) values. From the 19 shared DEGs, the 6 most informative 
ones were retained and used to build a predictive model.

https://lifelines.readthedocs.io/en/latest/lifelines.statistics.html
https://lifelines.readthedocs.io/en/latest/lifelines.statistics.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html
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Figure 2: Volcano plots resulting from the DE analyses of RNA-seq 
data. The log2 fold change between the two conditions is shown on 
the x-axis, while the minus log10 p adjusted is shown on the y-axis. 
The dotted lines indicate the threshold values (0.58 for the absolute 
value of the log2 fold change and 1 for the minus log10 p adjusted). 
The red dots show the down-regulated DEGs, while the blue 
dots show the up-regulated DEGs. The black dots are not DEGs.  
A) TCGA cohort. B) GBM explants cohort

Figure 3: A) Linear Discriminant Analysis (LDA) projected data of the aggregated RNA-seq data of GBM explants and TCGA. The projected 
data are separated according to their label (RES+L-PFI and NRES+S-PFI), as highlighted by the dotted line. B) Linear Discriminant (LD) 
scaling value of the 19 genes. The selected most informative genes are the ones framed with the dotted line.

value, the greater the relevance of that gene in discriminating 
between the two labels. The selection process is described 
in details in section 2.3 and it led to the selection of 6 genes: 
BIRC3, CBLC, IL6, PTX3, SRD5A1, and TNFAIP3.  The 
standardized expression levels of these genes are shown in 
Figure 4, where all of them show up-regulation in the NRES 
and S-PFI cases compared to the RES and L-PFI cases.

Model design: We employed the microarray data of 
TCGA Agilent, described in section 2.4, to build a model 
based on the Cox regression [28], described in sections 2.5 
and 2.6. Our model fits a hazard function to progression-
free interval (PFI) data using the expression values of 
the 6 identified genes and returns, for each patient, a label 
corresponding to the predicted risk class (High Risk/Low 
Risk). Figures 5A and 5B show the Kaplan-Meier curves 
of the two groups produced by the model on the train and 
test set, respectively. The hazard ratio (HR) computed on the 
High Risk/Low Risk variable is 1.76 for the train set (for one 
of the N splits of the full dataset) and 1.40 for the test set. The 
p values calculated with the LogRank test assessed that the 
PFI related to the two risk groups significantly differed both 
in the train and test set (p = 0.0001 and p = 0.02 for the train 
and test set, respectively).

MGMT promoter methylation status
The MGMT promoter methylation status is a well-

established clinical biomarker for GBM (4). Here we assess 
and compare its predictive capability with our model. In 
accordance with the previous analyses, we only selected 
the TCGA Agilent patients who were treated with TMZ and 
had information about their MGMT status (145 patients). 
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Figure 4: RNA-seq standardized expression level of the 6 selected DEGs: BIRC3, CBLC, IL6, PTX3, SRD5A1, and TNFAIP3. The direction 
(up- or down-regulation) of expression is coherent in the GBM explants and TCGA cohorts. All the 6 DEGs are up-regulated in the RES or 
L-PFI cases (green boxplot) compared to the NRES or S-PFI cases (light blue boxplot).

 
Figure 5: Kaplan-Meier curves of progression-free interval on the 
microarray data of TCGA Agilent. The High Risk and Low Risk 
groups were identified by the predictive model based on the 6-genes 
transcriptional signature. The hazard ratio (HR) between the two risk 
classes and p-value (LogRank test) are also displayed. A) Train set, 
B) Test set.

Figure 6: A) Kaplan-Meier curves of progression-free interval 
of the MGMT methylated and unmethylated patients. The hazard 
ratio (HR) between the two groups and p-value (LogRank test) 
are also displayed. B)  Risk scores assigned by our model to the 
MGMT unmethylated (blue) and methylated patients (orange). The 
unmethylated ones have significantly higher risk scores (Wilcoxon 
rank-sum test, p < 0.01).

Then, we divided all 145 patients based on their methylation 
status. Figure 6A shows the Kaplan-Meier curves of the 
methylated (72 patients) and unmethylated (73 patients) 
groups. The hazard ratio (HR) obtained from the univariate 
Cox regression whose covariate is the MGMT status is 1.46, 
while the p value calculated with the LogRank test is at the 
significance threshold (p = 0.05). Considering all the 145 
patients grouped into methylated/unmethylated, we retrieved 
the matched risk scores (i.e., the partial hazard assigned by 
our model when testing). By using the Wilcoxon rank-sum 
test, we found that the methylated had significantly lower 

risk scores than unmethylated patients (p < 0.01, Figure 
6B), pointing out the consistency of the MGMT status and 
model predictions. Finally, we focused on Agilent patients 
with extreme PFI values, grouping them into Agi S-PFI or 
Agi L-PFI groups using the criterion described in section 
2.2.2. Among this subset of peculiar patients, we analyzed 
the degree of consistency between our model predictions 
and MGMT status. The congruent predictions resulted to be 
60.8% of the total suggesting that the information provided 
by the two indicators did not fully overlap.
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Discussion
The molecular heterogeneity in glioblastoma (GBM) has 

led to limited treatment options and poor prognosis [1, 2]. 
The current lack of personalized chemotherapeutic therapies 
can be attributed to the limited predictive capability of known 
molecular biomarkers in determining drug response of an 
individual patient [4-6, 9]. In this context, there has been 
a growing interest in functional tests applied to precision 
oncology [12, 22]. These tests serve as drug screening assays 
by measuring changes induced by drug perturbations on 
tumor tissues derived from patients. One promising tool to 
improve the personalized treatment of malignancies is the 
functional assay based on NAD(P)H-FLIM imaging [14-
16, 19]. Morelli et al. recently employed this technique to 
assess the response of GBM explants to temozolomide 
(TMZ) [20, 21]. Since TMZ is administered to the majority 
of GBM patients, it serves as a benchmark drug (Stupp et al., 
2005). While Morelli et al. obtained biological and molecular 
confirmations of the validity of this approach, the clinical 
translation of NAD(P)H-FLIM, being a novel functional 
assay, is hindered by the lack of retrospective clinical data. In 
the present study, we solidify the clinical significance of the 
NAD(P)H-FLIM assay in GBM by addressing the challenge 
of the lack of matched clinical outcome data. Since direct 
confirmation of this functional assay is currently unfeasible 
due to the unavailability of clinical outcomes matched with 
the GBM explants we analysed, we have designed and 
implemented a novel bioinformatics approach.

Functional-clinical differentially expressed genes
Starting from the cohort of GBM explants presented by 

Morelli et al. [21], we assessed the presence of differentially 
expressed genes (DEGs) between the groups of GBM 
samples classified as responsive (RES) or non-responsive 
(NRES) based on the NAD(P)H-FLIM investigation. The 
differential expression (DE) analysis unveiled 244 DEGs. 
This finding suggests that the classification derived from 
this functional approach reflects differences observed at the 
gene-expression level. We verified the treatment-related 
relevance of the identified DEGs by conducting a separate 
DE analysis using an external dataset, specifically the GBM 
RNA-seq data of TCGA. We ensured that the new analysis 
was strictly consistent, in terms of data acquisition and 
processing, with the previous one. Additionally, we only 
included TCGA patients who had received TMZ treatment, 
as the NAD(P)H-FLIM technique was utilized to evaluate 
the responsiveness to this drug. To perform the DE analysis 
on the RNA-seq data of TCGA, we categorized the selected 
patients based on the matched progression-free interval (PFI). 
We chose PFI as the variable for grouping because of its role 
in approximating the response to TMZ treatment. Indeed, 
the PFI is defined as “the length of time during and after the 
treatment of a disease, such as cancer, that a patient lives with 
the disease but it does not get worse” (https://www.cancer.

gov/publications/dictionaries/cancer-terms/def/pfs). In the 
context of our study, PFI serves as a measure of treatment 
effectiveness or patient response to the therapeutic treatment, 
specifically TMZ.

To emphasize the gene expression differences associated 
to PFI, we defined two groups of patients with extreme PFI 
values: the short-PFI group, or S-PFI, and the long-PFI 
group, or L-PFI. The two groups we defined are similar to 
the non-responsive (NRES) and the responsive (RES) groups 
of the GBM explants cohort, respectively. Using the same 
differential expression algorithm and parameters as before, we 
identified 1090 DEGs when comparing the S-PFI and L-PFI 
groups. Having obtained these two sets of DEGs, related to 
both NAD(P)H-FLIM classification and the length of the 
PFI, we proceeded to intersect them. We found 19 DEGs 
that were shared by the two sets and exhibited consistent 
regulation (preserved up- or down-regulation). We remark 
that these candidate genes were identified by overlapping 
results obtained from entirely different cohorts. Crucially, the 
presence of a non-empty intersection indicates a candidate 
panel of genes that are involved together in the tumour 
metabolic alterations identified by the NAD(P)H-FLIM and 
in the clinical disease containment.

Testing the genes predictive capability with machine 
learning

To further assess the clinical relevance of the identified 
genes, and consequently of the NAD(P)H-FLIM functional 
assay, we attempted to use them as predictive biomarkers 
by building a machine learning model. Specifically, we 
evaluated their potential to predict the progression-free 
interval on a GBM cohort not used for previous analyses. 
With this aim, we performed a features selection to reduce 
the number of candidate biomarkers and retain the most 
informative ones. This step is crucial when training a machine 
learning model as it helps prevent overfitting and mitigates 
the risks associated with the "curse of dimensionality" [30]. 
To do so, we applied a Linear Discriminant Analysis (LDA) 
to the data, which successfully clustered the samples based 
on their predicted response to TMZ, as shown in Figure 3A. 
This result remarks that the genes identified through both DE 
analyses contain valuable information regarding treatment 
effectiveness. Finally, we selected the top 6 genes that had 
the most significant impact on the classification of samples 
responsiveness: BIRC3, CBLC, IL6, PTX3, SRD5A1, and 
TNFAIP3 (Figures 3B and 4). 

Biological function of the 6 candidate biomarkers: 
According to the literature, the 6 selected genes are 
dysregulated in the tumor microenvironment and their 
overexpression is consistently associated to an unfavourable 
prognosis. Moreover, all the 6 selected genes have been 
associated with tumor severity [31-37], and 2 are involved 
in apoptosis resistance (BIRC3 and TNFAIP3). Additionally, 
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Comparing the predictive model performance with 
a clinical biomarker: Finally, we wanted to evaluate the 
model’s prediction performance using as benchmark a well-
established clinical biomarker. With this aim, we compared 
the patient stratification performance of our model with the 
one obtained with the MGMT promoter methylation status 
[4, 45]. Hence, we first stratified patients respect to the 
MGMT status and, in accordance with the literature, we 
found that the methylated patients have a better prognosis 
than the unmethylated (Figure 6A). We then compared the 
stratification performance of MGMT status and our model. 
They reached strictly comparable results in terms of hazard 
ratio (Figure 5B and 6A), confirming the robustness of the 
NAPH-FLIM derived information.

Finally, we focused on Agilent patients with extreme 
PFI values (Agi Long-PFI/Agi Short-PFI), to assess the 
consistency of the model-based predictions and the MGMT 
methylation. The information provided by the two indicators 
matched for the 60%, thus did not fully overlap suggesting 
that the two variables could be synergistically used to generate 
a more accurate predictive model. We believe that the 
integration of this indicator with the 6 genes transcriptomic 
signature in a comprehensive model would remarkably 
improve patient stratification for GBM treatment.

Our results emphasize the valuable potential of the 
NAD(P)H-FLIM assay in assessing the drug response in GBM 
and show the possibility to use it in order to derive panels of 
predictive genes. The stratification performance achieved by 
the model, indeed, confirmed the possibility to use the FLIM 
derived information to make prognostic inferences.

We highlight that the bioinformatics approach we adopted 
can be tailored to validate other screening tests that cannot be 
directly investigated with a retrospective study.
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4 have already been recognized as key factors in brain 
tumors. Indeed, in GBM tumors high levels of BIRC3 and 
IL6 are associated with short-term survival [38, 39]; targeting 
TNFAIP3 leads to decreased growth and survival of brain 
tumor cells [40, 41] and PTX3 expression level is observed 
to correlate with the tumor grade and malignancy [36, 42]. In 
line with the literature, this panel of genes is overexpressed 
in the groups characterized by an unfavourable prognosis 
in both the GBM explants and TCGA cohorts (Figure 4). 
The consistency of our results with the literature provides 
further support for the reliability of the approach we have 
adopted. Crucially, 5 candidate biomarkers have been already 
identified as drug targets in cancer (BIRC3 [39], IL6 [31, 35], 
CBLC [43], TNFAIP3 [40, 41], and SRD5A1 [44]). This 
result highlights that the synergistic use of NAD(P)H-FLIM 
with omics techniques can unveil new treatment strategies 
based on targeting the genes that are involved in therapeutic 
response. 

Machine learning modelling: We consequently exploited 
the selected set of 6 genes as a transcriptomic signature to 
develop a predictive model. Although machine learning is 
a powerful tool, its effectiveness is heavily affected by the 
number of available observations. Typically, a machine 
learning pipeline involves training the model on a train set, 
selecting the features and setting the model hyper-parameters 
to optimize the performance on the validation set, and testing 
the resulting best model on a test set. However, all these steps 
require splitting the entire dataset into subsets. This operation 
decreases the amount of data used to train the model, thus 
reducing the model capability to generalize to new data. 
Additionally, the performance of the model is evaluated on 
a small set of data, which can be highly variable and not 
representative of the full dataset. Due to these limitations, we 
have adopted a Leave-One-Subject-Out (LOO) procedure, 
described in section 1.6, instead of a typical one. 

Additionally, to train and test the model, we used 
expression data obtained through a distinct technology 
(specifically microarray instead of RNA-seq) by patients not 
included in the previous analyses. By doing so, we avoided 
any potential information leakage and tested the technology 
independence of the identified genes. Hence, we designed a 
model based on the Cox regression and tested it both in the 
training set and in the test set, in order to verify the internal 
and the external validity. The hazard ratio (HR) computed 
between the two risk groups identified by the model (Low 
Risk and High Risk) proves the possibility to effectively 
stratify them. Indeed, when a new patient was tested, the 
model could assign a risk class using only the matched 
transcriptomic signature.  Notably, the panel of 6 genes was 
obtained using RNA-seq data while the model was developed 
and validated using microarray-derived gene expression 
levels, implying the sequencing-technique independence of 
the candidate biomarkers.
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