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Abstract  

Shift work, particularly, night work has been classified as a 

probable carcinogen to humans based on the increased risk 

observed in epidemiological studies for some cancer types, 

including female breast cancer. The underlying molecular 

mechanisms are not well established, but may involve 

aberrant epigenetic modifications. Here, effects of changes 

in methylation status of 5-methyl cytosine in melatonin and 

female hormone receptor genes were investigated as 

possible mechanisms for increased breast cancer risk in 

female night shift workers. Methylation in promoter regions 

of the MTNR1A, MTNR1B, PGR, ESR1 and ESR2 genes 

was analyzed by pyrosequencing in a nested case-control 

study of female nurses, including 354 breast cancer cases 

and 356 healthy controls. The effects of methylation as well 

as the combined effects of methylation and shift work on 

breast cancer risk were assessed. We demonstrate that 

increased methylation of the MTNR1A promoter is 

associated with increased risk of breast cancer (OR=1.13, 

95% CI: 1.02 -1.24, P=0.019). No association between 
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promoter methylation levels and breast cancer risk was 

observed for the other receptor genes investigated. 

Furthermore, MTNR1A methylation levels were not affected 

by shift work. Altogether, our data suggest that epigenetic 

regulation of MTNR1A may contribute to breast cancer. 

 

Keywords: DNA methylation; Night shift; Breast cancer; 

Melatonin receptor 

 

Abbreviation: 5mC: 5-methyl cytosine; CTCF: CCCTC-

binding factor; ESR1: estrogen receptor alpha; ESR2: 

estrogen receptor beta; EZH2: enhancer of zeste homolog 2; 

FSH: follicle stimulating hormone; GCF: GC-rich sequence 

DNA-binding factor; LAN: light at night; LH: luteinizing 

hormone; OR: odds ratio; MI: methylation index; MTNR1A: 

melatonin receptor 1A; MTNR1B: melatonin receptor 1B; 

PGR: progesterone receptor, RAD21:RAD21 cohesion 

complex component; TP53: tumor protein p53 

 

1. Introduction 

Breast cancer is the most commonly diagnosed cancer and 

the leading cause of cancer death in women. The etiology 

of breast cancer is complex and may involve multiple 

biological, lifestyle and genetic risk factors [1-5]. 

Approximately, 30% of breast cancer incidence can be 

attributed to established risk factors such as young age at 

menarche, late age at menopause, late age at first birth, 

nulliparity, hormone replacement therapy, exposure to 

ionizing radiation, and alcohol consumption [2, 5]. 

Occupational risk factors may also contribute to breast 

cancer risk [6, 7]. Based on several epidemiological studies, 

night work is probably one of the occupational risk factors 

that may increase risk of breast cancer [8-18], and night 

shift work has been classified as probably carcinogenic 

(Group 2A) by IARC in 2019 [19]. A study on Nordic 

female cabin crew members found an increased risk (SIR, 

1.5) for breast cancer [12]. Similarly, Danish female 

military staff had an odds ratio of 3.9 for breast cancer in 

women exposed to intense night shifts of longer duration 

and morning chronotype [10]. Stratifying the intensity of 

night work exposure by number of consecutive night shifts, 

a case control study of Norwegian nurses showed 

significantly increased risk of breast cancer (OR 1.7–1.8) in 

nurses that worked five or more years in work schedules 

including more than six consecutive night shifts, compared 

with nurses who never worked night shifts [9]. A similar 

Danish study also found an increased risk of breast cancer 

in nurses working night shift with various shift schedules 

(OR 2.9) [11]. A more recent European pooled population 

based case-control study also confirmed that cumulative 

rotating night shift work is associated with increased breast 

cancer risk [14]. While most studies indicate that night shift 

work is significantly associated with higher breast cancer 

risk, other studies have provided insignificant evidence for 

this relationship [20-23]. However, a recent meta-analysis 

identifying a positive association between night shift work 

and breast cancer, concludes that cancer risk increases with 

cumulative years of night shift work [15]. 

  

Although most of the epidemiological studies are 

suggestive of an association between shift work and breast 

cancer, the mechanisms are not well studied. Shift work 

may involve disruption of several biological pathways 

including the disruption of metabolic and biological 

circadian clock. Shift work, implying exposure to light at 

night (LAN) and the subsequent disruption of the synthesis 

of melatonin, has been suggested as a potential biological 

mechanism causing disruption of the circadian rhythmicity 

[24, 25]. Accordingly, LAN exposure leads to decreased 

melatonin levels that are important for regulation of 

circadian rhythmicity, as melatonin regulates the 

transcriptional activity of circadian and circadian targeted 
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genes [26]. Melatonin acts through its membrane bound 

receptors melatonin receptor 1A and 1B, which are encoded 

by the MTNR1A and MTNR1B genes. Melatonin may also 

act through binding to intracellular proteins, such as 

calmodulin, or through binding to orphan nuclear receptors. 

In addition to melatonin’s role in the regulation of the 

circadian clock, a role of melatonin in the regulation of 

apoptosis has also been suggested [27], although, not all 

studies have confirmed this [28]. Finally, melatonin may 

influence steroid hormone levels by affecting protein levels 

of gonadotropin releasing hormone and thereby the 

secretion of follicle stimulating hormone (FSH), and 

luteinizing hormone (LH) that controls the activity of the 

gonads [29]. Moreover, melatonin may modulate the 

activity of the aromatase enzyme, converting androgens to 

estrogens, i.e. androstendione to estrone and testosterone to 

estradiol [30]. The steroid hormones estrogen and 

progesterone are known risk factors and play important 

roles in breast tumorigenesis by regulating breast epithelial 

cell proliferation, differentiation, and apoptosis. The action 

of estrogen is regulated by its receptors, estrogen receptor 

alpha (ERα) and beta (ERβ), which are encoded by the 

ESR1 and ESR2 genes, respectively. Similarly, the effect of 

progesterone is regulated by the two major receptor protein 

isoforms PGRA and PGRB, which are encoded by a single 

progesterone receptor (PGR) gene. Estrogen and 

progesterone levels define the hormone-responsive 

phenotypes of breast tumors [31], allowing classifications 

of breast cancer subgroups by ESR and PGR status, i.e. 

being positive or negative for these receptors. Interestingly, 

melatonin suppresses both ESR1 expression and estrogen-

induced transcriptional activity of ESR1 in ER-positive 

human breast cancer cells [32], and night shift has been 

found to be associated with ESR1 hypomethylation [33]. 

Furthermore, melatonin may also regulate the 

transcriptional activity of other enzymes involved in 

estrogen metabolism [26]. Understanding the biological 

mechanisms behind development of shift work-related 

breast cancer may aid in evidence-based regulatory 

policymaking. The present case-control study aimed to 

address the hypothesis that night work might influence 

cancer risk through epigenetic mechanisms, namely through 

5-methyl cytosine (5mC) in female steroid and melatonin 

hormonal pathways. To achieve this, our analyses focused 

on two melatonin (MTNR1A and MTNR1B) and three 

steroid hormone (PGR, ESR1and ESR2) receptor genes. 

The 5mC in the proximal promoter regions of these genes 

were mapped using pyrosequencing in DNA from breast 

cancer cases and matched controls stratified by shift work 

parameters. 

 

2. Materials and methods 

2.1 Study population 

Approval for the study was obtained from the Regional 

Committee for Medical and Health Research Ethics, South-

East region (S-08430a, 2008/10453). All participants signed 

an informed consent document. Study subjects were 

participants of a larger cohort of 49,402 female nurses 

graduated between 1914 and 1985. The design of the nested 

case-control study has been described in detail previously 

[9] and is outlined in Supplementary Figure S1. All 

participants in the study had worked as nurses for at least 

one year. Cases were diagnosed with breast cancer between 

1990 and 2007 at an age of 35-74 years and alive by 

February 2009. Controls were frequency matched to cases 

in five-year age groups by diagnostic year of the case. Only 

controls that were cancer-free at and prior to the year of 

diagnosis of the case were included. All participants were 

interviewed by telephone to obtain information on potential 

breast cancer risk factors and lifetime occupational history. 

Prior to the interviews, an information letter containing a 

checklist for work history, a letter of consent, a request for 
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saliva samples, and an Oragene saliva sampling kit (DNA 

Genotek Inc, Kanata, ON, Canada) was sent to the 

participants. A total of 563 cases and 619 controls were 

included in the study based on the availability of obtained 

saliva samples and information of past history of shift work. 

 

2.2 Exposure assessment 

Information of night shift work was obtained by telephone 

interviews conducted in 2009. Work history including 

information on job duration, workplace, proportion of 

fulltime work and work schedules (only day, only night, or 

both day and night shifts) were collected. Night shift was 

defined as a shift including work between 12 pm and 6 am. 

Night work included working periods from both rotating 

and permanent night schedules. For each night shift 

working period, information on number of consecutive 

night shifts (intensity) was obtained. For more detailed 

information of the exposure assessments the reader is 

referred to our previous publication [9]. Exposure metrics 

based on a combination of duration and intensity of night 

work were used in this study. The utilized exposure metric 

involved the intensity of night work (i.e. more or less than 

three consecutive night shifts) with duration of night work 

(i.e. more or less for less than five years). Accordingly, 

participants were grouped into four groups based on their 

night work exposure patterns: no exposure (day workers, 

never), low exposure (< three consecutive night shifts), 

medium exposure (≥ three consecutive night shifts < five 

years) and high exposure (≥ three consecutive night shifts ≥ 

five years). 

 

2.3 Methylation analysis 

A random subset of cases (n=354) and controls (n=356) 

was included in the epigenetic analysis of 5mC. Cases and 

controls were matched according to the work schedules 

across the defined night work exposure groups. Methylation 

of MTNR1A, MTNR1B, PGR, ESR1, and ESR2 promoters 

were analyzed by pyrosequencing using Pyromark Q24 

Advanced technology (Qiagen). Pyrosequencing primers 

were designed using the PyroMark Assay Design software 

(Qiagen), Supplementary Table S1. Primers were located to 

functional regions based on transcription factor binding 

sites utilizing ENCODE project database 

(www.encode.org) and the PROMO software in the 

TRANSFAC database (http://gene-

regulation.com/pub/databases.html) [34], Supplementary 

Figure S2 and Supplementary Table S2. For each gene the 

number of analyzed CpG dinucleotides was as follows: 

MTNR1A=12, MTNR1B=6, PGR=9, ESR1=7 and ESR2=4. 

In short, DNA from saliva samples was extracted using 

Oragene DNA isolation kit as described by the 

manufacturer (DNA Genotek Inc.). DNA samples were 

bisulfite treated using EpiTect Fast Bisulfite Conversion kit 

(Qiagen, Hilden, Germany) and PCR amplified using 

unbiased nested primers and the PyroMark PCR kit 

(Qiagen) according to the manufacturer’s instructions. The 

percentage methylation for each of the target CpG sites for 

each of the respective genes was calculated using the 

PyroMark CpG Software (Qiagen). A methylation index 

(MI) was calculated for each CpG site as the mean 

percentage of methylation across all analyzed CpG 

dinucleotides. 

  

2.4 Statistical analyses 

Characteristics of the study subjects were assessed by Chi-

square or Mann-Whitney U-test as appropriate in IBM 

SPSS software version 23.0. Differences in MI between 

cases and controls, and between different exposure 

categories were analyzed for each gene. Odds ratios of 

breast cancer were analyzed using logistic regression. The 

data was ln-transformed prior to analysis to ensure normal 

distribution of the data. Separate analyses were performed 
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for 1) cancer status and 2) interaction between night work 

exposure and cancer status. In all analyses, the list of 

potential confounders tested included: alcohol consumption, 

parity, duration of daily occupational exposure to x-rays, 

hormonal treatment during the last two years before 

diagnosis, age at saliva test, years since cancer diagnosis, 

and occurrence of familiar breast cancer. All possible 

combinations of adjustment variables were compared and 

the combination that minimized the AIC was chosen. Final 

correction variables are listed in the footnote of each table. 

In each analysis crossed random intercepts were included 

for subject and CpG island to take into account the repeated 

observations for the CpG islands. All presented data were 

transformed back to the original scale. P≤0.05 was 

considered statistically significant.  

 

3. Results 

The characteristics of the study subjects and the exposure 

variables of night shift work are shown in Supplementary 

Table S3. As expected, known risk factors such as a higher 

occurrence of familial breast cancer (P=0.001), and a lower 

number of children (P=0.033) among cases were 

significantly different from the controls. Moreover, alcohol 

consumption was higher in cases (9.5%) than in controls 

(5.3%), (P=0.052). No significant difference was observed 

for use of hormone replacement therapy the last two years 

before diagnosis, between cases and controls. MIs for each 

of the five genes were generally low in all subjects 

regardless of case- control status and the average MI ranged 

from two to eight percent with the highest mean MI in the 

MTNR1B promoter (8.38%) and the lowest MI (2.41%) in 

the ESR1 gene, Figure 1.  

 

Analysis of effects of receptor methylation status on breast 

cancer occurrence showed that increased levels of MTNR1A 

MI were associated with increased risk of breast cancer 

(OR=1.13 95% CI: 1.02 – 1.24, P=0.019), Table 1. 

Methylation status of estrogen and progesterone receptors 

was not associated with breast cancer risk. Detailed analysis 

of individual CpGs in the MTNR1A gene showed that 

methylation of predominately CpG 1 was associated with 

increased breast cancer risk (OR=1.12, 95% CI: 1.04 – 

1.20, P=0.002), Table 2. Assessment of effects of shift work 

schedules on the methylation pattern of MTNR1A in CpG 1 

in cases and controls showed that shift work did not 

considerably affect MTNR1A CpG 1 methylation, Table 3. 

 

 

 

Figure 1: Methylation indices (MIs) of the five receptor genes in cases and controls. Results represent mean methylation ± SD. 
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Gene OR (95% CI)
a
 P 

MTNR1A 1.13 (1.02 – 1.24) 0.019 

MTNR1B 1.01 (0.96 – 1.05) 0.800 

PGR 0.96 (0.80 – 1.14) 0.621 

ESR1 1.08 (0.85 – 1.39) 0.524 

ESR2 1.03 (0.95 – 1.10) 0.489 

a
OR was analyzed using logistic regression. Methylation index was averaged over all CpGs. Adjustments were made 

for parity, alcohol consumption and familiar breast cancer. Significant p-values ≤ 0.05 are indicated in bold. 

  

Table 1: Odds ratios for breast cancer according to an 1-unit increase in methylation index (M1) on breast cancer. 

 

CpG # OR (95% CI)
a
 P 

1 1.12 (1.04 – 1.20) 0.002 

2 1.08 (1.00 – 1.16) 0.048 

3 1.01 (0.98 – 1.05) 0.490 

4 1.06 (0.98 – 1.13) 0.131 

5 1.02 (0.98 – 1.06) 0.386 

6 1.02 (0.95 – 1.09) 0.611 

7 1.03 (0.97 – 1.09) 0.387 

8 1.04 (1.00 – 1.08) 0.071 

9 1.03 (0.97 – 1.09) 0.389 

10 1.04 (0.99 – 1.10) 0.133 

11 1.04 (0.98 – 1.10) 0.233 

12 0.98 (0.91 – 1.06) 0.678 

a
OR was analyzed using logistic regression. Adjustments were made for parity, alcohol consumption and familiar 

breast cancer. Significant p-values ≤ 0.05 are indicated in bold. 

  

Table 2: Odds ratios for breast cancer according to an 1-unit increase in methylation index (MI) at individual CpGs in the 

MTNR1A gene. 
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Exposure N1 Controls P1 N2 Cases P2 Cases vs controls 

Estimate (95% CI) 

P3 

never nights 88 5.19 (4.79,5.62) REF 72 5.68 (5.21,6.20) REF 0.49 (-0.15,1.15) 0.131 

never >=3 cons n 27 6.21 (5.38,7.15) 0.031 31 6.16 (5.39,7.03) 0.321 -0.05 (-1.27,1.15) 0.938 

<5 yr >= 3 cons n 58 4.80 (4.36,5.29) 0.228 51 5.61 (5.05,6.22) 0.848 0.80 (0.07,1.56) 0.033 

>= 5yr >= 3 cons n 179 4.98 (4.71,5.26) 0.407 196 5.36 (5.08,5.65) 0.260 0.38 (-0.02,0.78) 0.064 

a
Estimated differences (with 95 % CI) were analyzed using linear regression. Adjustments were made for age at 

saliva test and familiar breast cancer. P-values ≤ 0.05 are indicated in bold. 

 

Table 3: Effects of shift work and cancer status on DNA methylation of CpG1 in the MTNR1A gene. 

 

4. Discussion 

Epigenetic mechanisms such as DNA methylation, 

micro/ncRNA and histone modifications are promising 

biomarkers of disease development, progression and 

prognosis for several cancer types including breast cancer 

[35, 36]. Among the epigenetic factors 5mC methylation at 

CpG dinucleotides in the regulatory (promoter and 

enhancer regions) and also gene bodies (exons and introns) 

is the most studied biomarker. The rationale is that hypo- or 

hypermethylation of CpG sequences in the promoter 

regions alter gene transcription; increasing, decreasing or 

even causing gene silencing [37]. In this study, we therefore 

analyzed the methylation levels of 5mC in targeted CpG 

sequences in five receptor genes that are biologically 

relevant for investigation of the etiology of female breast 

cancer in general, and in shift work-related breast cancer in 

particular. The overall methylation levels varied in the five 

genes and as expected [38, 39] inter-individual variations 

across the genes were similar in all subjects regardless of 

case-control status. The lowest average MI was observed 

for ESR1 and the highest for MTNR1B. This variation in 

methylation levels may be due to biological factors rather 

than the number of CpGs since the number of CpGs for 

ESR1 (n=7) and MTNR1B (n= 6) genes were similar. A 

significantly higher methylation level was observed in the 

target promoter region of the MTNR1A gene in breast 

cancer cases compared to controls. No differences in 

methylation levels were observed between cases and 

controls for the other analyzed receptor genes. It has 

previously been shown that changes in DNA methylation 

patterns may be associated with changes in MTNR1A 

expression [40]. Since the anti-cancer actions of the 

circadian melatonin signal in human breast cancer cell lines 

and xenografts heavily involve MTNR1A-mediated 

mechanisms, changes in MTNR1A expression could play a 

role in the development of breast cancer [41]. Furthermore, 

melatonin suppresses ESR1 expression and ESR1 

transcriptional activity via the MTNR1A receptor in ESR1-

positive human breast cancer. Melatonin also regulates 

transactivation of estrogen-metabolizing enzymes, 

expression of core circadian clock and clock-related genes 

[41]. 

 

Analysis of individual CpGs in the MTNR1A gene further 

showed that increased methylation in CpG 1 was 

explanatory for the observed increased in breast cancer 

associated with higher methylation levels in the MTNR1A 

gene. Bioinformatic analyses showed that several central 
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transcription factors such as CCCTC-binding factor 

(CTCF), GC-rich sequence DNA-binding factor (GCF), 

enhancer of zeste homolog 2 (EZH2), RAD21 cohesion 

complex component (RAD21), and tumor protein p53 

(TP53) may bind to the MNTR1A promoter sequences. All 

of these transcription factors are implicated in breast 

carcinogenesis through different biological pathways such 

as DNA repair (RAD21and TP53) and epigenetic regulation 

of transcription (CTCF, GCF and EZH2). Long-term shift 

work with frequently repeated exposure to LAN may alter 

DNA methylation patterns, and genome-wide DNA 

methylation analysis has shown multiple alterations, where 

3593 CpG sites were hypermethylated and 1816 CpG sites 

hypomethylated in long-term shift workers [42]. Disruption 

of the circadian nocturnal melatonin signal due to exposure 

to LAN promotes growth, metabolism, and signaling of 

human breast cancer which drives breast tumors to 

endocrine and chemotherapeutic resistance [41].  

 

In this study, cases had higher MTNR1A CPG1 methylation 

levels than controls in the group of workers with 

intermediate exposure to night work, however, this effect 

was not observed for subjects in the high exposure group. 

Although our findings identifies MTNR1A methylation as a 

risk factor for breast cancer, the dependency of shift work 

cannot be conclusively confirmed. Our study is limited in 

that the methylation levels are generally low and that the 

number of subjects in each shift work group are low, thus, 

the data need to be confirmed in larger epidemiological 

studies. The present study is novel in the sense that it uses 

relatively well-matched groups of breast cancer cases and 

controls with night work exposure to investigate 5mC 

methylation levels at specific and biologically functional 

CpG sites. Pyrosequencing is the gold standard for DNA 

methylation analysis, permitting analysis of the target 

promoter region at each of the candidate genes. 

Additionally, pyrosequencing allows quantitative analysis 

of 5mC levels at each individual CpG dinucleotide. In 

contrast to global and random genome methylation 

methods, targeted and site specific approach enable 

selection of putative biologically functional target sites 

using the bioinformatics tools for binding motifs of 

transcription factors [43, 44]. Altogether, this study 

suggests that epigenetic regulation of MTNRIA may 

contribute to increased breast cancer, and functional studies 

are warranted to investigate the correlation between 5mC 

levels and MTNR1A expression. 
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