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Abstract 

The results of the theory of modeling for obtaining 

nanocylinders have been described. A case of a 

nanocylinder whose diameters are shorter than the 

Tolman length has been considered. This important 

issue is taken into account in studying a 

nanocylinder for which, in the simplest model, the 

thickness of the interfacial layer cannot be 

determined because it supposedly has a small size. 

At the same time, it has been shown that the 

introduction of a special form of anisotropy energy 

makes it possible to analytically describe the origin 

of an interfacial layer whose sizes can be regarded 

as sizes comparable to the Tolman length. 
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1. Introduction 

The modern statistical mechanics of curved 

interfaces, mainly spherical and cylindrical, is 

equally important to the simple thermodynamics of 

planar interfaces (maybe even more important). 

However, this statistical mechanics theory needs a 

more subtle analysis than the thermodynamics of 

flat geometry, for which a great progress has been 

achieved in understanding the properties [1–5]. 

  

The first studies of the effect of only one curvature 

on the properties of drops (Jung and Laplace) date 

back to the nineteenth century [1, 2]. Laplace 

considered a drop of radius R enclosing a 
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homogeneous liquid-like phase (interior phase) 

separated from a homogeneous bulk vapor phase 

(exterior phase) by a mathematical dividing 

surface, where the density changes abruptly from a 

constant value inside the drop to a constant value 

outside; to provide the stability of the drop against 

the surface tension (regarded as a mechanical 

force) of the vapor–liquid interface, it is necessary 

to set up a pressure difference over the interface to 

balance the contracting force and maintain the 

system in equilibrium, i.e., the condition of 

mechanical equilibrium, which is referred to as the 

Laplace law [1–10]. 

 

On the other hand, the curved interface theory with 

a Tolman's intermediate phase was based on sound 

thermodynamic arguments in the late 1940s [6]; 

however, it received little attention in 

electrochemistry [3–5]. After that, this theory was 

developed in [7–10]. We will not discuss all 

reviews; we can only mention many original papers 

and reviews [11–20]. Those studies are close to our 

research. 

 

Below, we will consider a new theory [21–24] that 

takes into account the cylindrical shape and the 

intermediate phase. Moreover, the size of the 

intermediate phase can be arbitrary. 

 

2. Methods 

2.1 A Small Long Cylinder  

We consider a case of the application theory [21–

23], where nanoparticles have the form of a long 

cylinder. We used a cylindrical coordinate system 

for which the characteristic spin function [21, 22] is 

represented by angle function (r) about the 

cylinder axis z. 

  

The free energy in this model can have the 

following form [21, 22]: 

2 4
2

, 12 2

sin θ sin θ
θ ...,

2
g c

A
H k

r r

 
= + + + 

 
 (1)  

where (r) is the angle between the cylinder axis 

and the magnetization vector; r is the radial 

coordinate, and k1 is the second anisotropy 

constant.  

 

The model kinetic energy in (1) is a classical 

analog of the exchange energy in the Heisenberg 

model for the two-dimensional space at the 

continuum approximation [21], which in our case 

corresponds to the infinite cylinder model [21, 22]. 

In this case, the kinetic energy in (1) coincides in 

form with the kinetic energy of the particle (in 

cylindrical coordinates). This fact is not casual 

because the model under consideration permits 

exact analytical solutions in the form of quasi-

particles (nonlinear waves), which are referred to as 

instantons (or skyrmions [21, 22]). Note that, in our 

case, these quasi-particles are topological 

compositions, rather than dynamic particles. 

Therefore, in our case, the virtual kinetic energy of 

a topological instanton is meant by the kinetic 

energy. 

  

We introduce a relative coordinate 

 

ρ ,
c

r

R
=

                                               (2)  

where Rc is the drop equilibrium radius.  

 

In this case, there is a condition of 0    1. The 

proposed continuum model of energy (1) appears to 

be a Heisenberg model, in which the interacting 

spins have the meaning of energy states of the 

particles associated with the constant exchange 

interaction A (with the dimension for the exchange 
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energy [J/m]).  

Using (1), it is simple to derive the Euler–Lagrange 

equation: 

3

12 2

θ (ρ) sinθcosθ sin θcosθ
θ (ρ) ... 0.

ρ ρ ρ
k


 + − − − =

 (3)  

For simplicity, it is sufficient to use only a 

particular solution of this equation describing the 

nucleation process under simple boundary 

conditions:  

π, ρ 0,

θ(ρ) π
, ρ 1.

2

=


= 
=

                              (4)  

The solutions of equations (3) and (4) are as 

follows: 

2

1

θ 1
tan ~ 1 ρ ... ,

2 ρ
k

 
 − −   

 
                 (5)  

k1<1  

(if k1=0, then 
θ 1

tan
2 ρ

 
= 

 
),                  (5a) 

 

which is convenient for further analysis.  

Let us introduce the model surface energy to obtain 

the Euler–Lagrange equations for the scale-

invariant theory as well:  

2

2

θ (ρ) sinθ cosθ
θ (ρ) 0,

ρ ρ

a a a
a

a
 + − =

 (6)  

where a2 is the ratio of the anisotropy energy to 

exchange interaction constant A. The a2 parameter 

is determined in [21, 22]: 

2 1,
B

a
A

= +
                                           (7)  

with the determined anisotropy function (model as 

the Rapini modified potential [21, 22]: 

 

2

2

sin θ
,

2ρ

aB

                                                (8)  

where B is the positive energy quantity whose 

dimension coincides with A. 

 

For agreement with the previous solution, we 

assume that, in (6), anisotropy does not occur at B 

= 0 and occurs at B > 0. The solution of equation 

(6) is as follows:  

 

θ 1
tan .

2 ρ

a

a

 
= 

                                            (9)  

Note that solutions (5) and (9) analytically join; 

therefore, the indices are later omitted. 

 

Let us consider one general solution (9). The 

diagram of this solution is shown in Figs. 1a and 

1b. 

 

It is easy to show that the (r) function has no point 

of inflection at a = 1 and 0    1. This point 

appears only at a > 1. This means that the surface 

layer in our model can exist only at a > 1. In this 

case, a certain volume whose energy is the surface 

energy of the cylindrical particle can be chosen as a 

surface layer. For definiteness, we suppose, for 

example, that the surface layer begins to clearly 

manifest itself from a value of a > 4. Thus, we 

suppose that at a = 1 there is no anisotropy in the 

system, and the Tolman length actually coincides 

with the drop sizes. If a >> 1, then, in the proposed 

model, the specific anisotropy is higher than the 

exchange interaction, and in the drop there appears 

a parameter (Tolman length) that characterizes the 

dimension of the interfacial region. 
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Figure 1a: Diagrams of solution (9) at different values of parameter a [22]. 

 

 

Figure 1b: Diagrams of solution (9) at the different values of parameter a: a = (1) 1, (2) 10, (3) 50, and (4) 100 

[21]. 

 

The case of a < 1 corresponds to the negative 

surface energy (in Fig. 1a, this case is shown for a 

= 0.5); it is not discussed in detail in this paper, 

because it is associated with the condensed phase 

instability. 

  

The change in the free energy from the particle 

center to the particle surface can be estimated. This 

estimation allows the physical interpretation of the 

introduced parameters of the model and their 

comparison with conventional energy 

characteristics used to describe the nucleation 

process. 

Let us initially consider the layer-by-layer change 

in this free energy of a cylindrical drop. Let us 

return to the formula for the energy that was used 

to derive the equation of motion. It is as follows: 

E(r) = T + U. Taking into account solution (9), we 

find that the kinetic energy is equal to the potential 

energy: T = U. This important result for the closed 

dynamic system is associated with the virial 

theorem for the finite motion; in our case, it is the 

test to verify whether this approach to the problem 

solution is correct. For the total full energy, we 

have:  
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2 2

2 2

ρ
(ρ) 4 .

ρ (1 ρ )

a

a

a
E T U A

 
= + =  

+   (10)  

It follows from (10) that, at a = 1 and r < 1, the 

equality E(r) = A is satisfied. If В > 0, then the 

cylinder surface energy tends to Aa2 ~ B; the higher 

the B value, the sharper the limit. Thus, just this 

parameter B can be associated with the parameter 

of the specific thermodynamic surface energy that 

occurs in the thermodynamic theories (Gibbs, 

Tolman, etc.) provided that the dimension of these 

energies is different.  

 

 

Figure 2a: Plot for tan(θ/2) as function of θ for different a value. 

 

 

 

Figure 2b: Dependence of energy on parameters а and ρ [22]. 
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Figure 2c: Dependence of energy on parameters а and ρ see [21]. 

 

A sharp rise in free energy (see Figs. 2b, 2c) 

depending on parameter a is identified with the 

phase transition, which takes place in the system in 

the case of infinitely small anisotropy (for details 

see [21, 22]). To determine the total energy of the 

particle assigned to the cylinder length unit, an 

integral of E(r) over the cylinder volume should be 

taken. Let us begin with a qualitative analysis of 

the model. Note that, for a particular case of a = 1 

and В = 0, this integral should be equal to A (with 

an accuracy to the multiplier). In this case, there is 

no other energy in the system; here A is the only 

internal model energy of the system. In another 

limiting case, a certain high value of a is sufficient 

for the total energy to tend to the anisotropy energy 

B. In the general case, the total full specific energy 

(for the cylinder length unit) will be as follows: 

1 1 2 1
2

2 2

0 0

ρ ρ
2π (ρ)ρ ρ 8π 2π .

(1 ρ )

a

a

d
W E d a A a A

−

= = =
+ 

(11). 

In the Cahn–Hilliard theory [22, 23], the activation 

barrier energy is in proportion to the geometric 

mean of two energy parameters:  

 
BAEc ~

.                                             (11a) 

 

Unlike the proposed theory, the Cahn–Hilliard 

theory is not scale-invariant, and the quantity B has 

a dimension of J/m3. In our case, the integral 

formula derived from (11) for the activation energy 

has the same form; that is, the coincidence of these 

theories can be stated in calculating the mean 

activation energy (in the volume unit). Thus, we 

can deduce that the proposed theory qualitatively 

coincides with the Cahn–Hilliard theory. In terms 

of the Cahn–Hilliard theory, we obtain the same 

analytic structures [23]. 

 

( ) ( )0tgθ ρ / 2 exp ρ ρ / .ccr=  −    (12)  
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                             (A)                                                               (B) 

 

Figure 3: Schematics representations of solution (9): (A) and (12): (B) in the form of a domain wall of energy 

vectors. 

 

2.2 Physical Application 

The previously introduced parameter 
2a  (see (7)) 

can formally be less than a = 1 (in Fig. 1a, this case 

is shown for a = 0.5). This case can correspond to 

negative anisotropy energy, which can, for 

example, prevent the formation of a nanoparticle. 

Technologically, it is possible to initiate the 

formation of a nanoparticle yet limit the 

nanoparticle growth. 

 

Therefore, it is of interest to consider the case 

where 

 AB −= ,                                     (13)  

This physical situation can take place in the case 

when a nanoparticle nucleus with a size of 
0ρ 1  

(for definiteness,
0ρ 0.1= ) has already been 

formed; however, the development of it to an 

equilibrium state withρ 1=  is hindered by the 

created (artificially) anisotropy: 

 

2

2

sin θ

2ρ

aA−
 .                                  (14)  

 

We believe that this anisotropy manifests itself 

only starting from some sizes corresponding to the 

value 

 0ρ 0.1=                                                   (15) 
 

Then, for this case, the equation is greatly 

simplified: 

 

θ (ρ)
θ (ρ) 0

ρ


 + =

                         (16)  

A particular solution for equation (16) can have the 

form (in our case, we use condition (16) to compare 

it with the solution in the form of formula (9): 

 0θ ln (ρ ρ )c − = ,                      (17)  

where  

 0/ (2ln(1 ρ ))c = , (for 0ρ ρ . ). 

Function graph  

( )0ln ρ ρc  is shown in Fig. 4. 
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Figure 4: Functions graphs of solution (17). 

 

2.3 Electrochemical Application 

 

 

 

Figure 5: Scheme of the physical process of nucleation for the case of electrochemical nucleation. The charge is 

q, the potential is φ. The capacity of the double layer is C. Electrode 2 (grid) can control the electrodeposition by 

changing the potential and electrical capacity of the near-electrode layer. 

 

We can study the electrochemical nature of the 

examined anisotropy for the case of electrochemical 

nucleation. This anisotropy can be generated using 

the distribution of the electric field in the near-

electrode layer, because the dimensions of the 

particles become comparable to the dimensions of 

the layer. 

 

Let the surface energy change dσ in the nucleation 

process according to the Lippman equation [25]: 

 −dσ =qdφ,                                                    (18) 

where q and φ are the charge and potential on the 

surface. In the approximation of the constant 

capacity of the double layer C. 

 

 q = С φ .                                                   (19) 

 

Note that constant capacity C is defined as a specific 

amount, namely, capacitance per unit area as surface 

energy σ is defined as the amount of energy per unit 

area. 

 

For the change in surface energy σ, we obtain 
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 σ = С (φ)2/2.                                        (20) 

 

The change in the surface energy can be attributed to 

the anisotropy introduced above. Actually, if we 

assume that an asymptotic functional dependence 

occurs, 

 (φ)2 ~ 1/ ρ2,                                                (21) 

 

then we finally obtain for parameter a2 

 a2/rс ~ С/2,                                                (22) 

 

where rс ~ 10−6 cm is the equilibrium value of the 

nanoparticle dimension. 

 

For the evaluation, we take the specific capacity of a 

mercury electrode that is known to be on the order of  

 С/2 ~ 107 (1/cm) (CGS).                           (23) 

 

If we confine ourselves to the upper limit of the rс 

value, then, for the evaluation of dimensionless 

quantity a2, we obtain  

 

 a2 ~ 10.                                                     (24) 

 

In general, the consideration results are qualitative.  

 

2.4 Mathematical Application 

In terms of the classical theory [8–10, 22–24], we 

can obtain (see Fig. 6) 

 

θ
tan ~

2 R

H 
 
   .                                       (25)  

From formulas (5)– (9), we can obtain the 

dependence 

 

θ 1
tan

2 ρ

 
= 

 
 and  

θ 1
tan .

2 ρ

a

a

 
= 

    

 

These formulas (18) and (5)– (9) have the same 

analytic structures. 

 
In terms of the Cahn–Hilliard theory, we obtain 

same analytic structures (12). Another dependence, 

which can correspond to (5)– (9), is obtained in 

[26]. 

 

 Figure 6: Dimensionless profiles of a sessile micro drop. 

 

 

 

5.Conclusion 

(i) We have obtained results associated with the 

van der Waals gradient theory, which can be 

resumed in the following way. If in the formation 
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of a nanoparticle there is only one energy form that 

plays the role of exchange interaction A, then, in 

the context of the proposed model, the additive 

separation of the system energy into the surface 

energy and the nanoparticle volume energy is 

incorrect. However, in this case, we can introduce 

the average energy of the whole nanoparticle and, 

from simple geometric considerations, derive the 

Rusanov linear formula for the surface energy [22]. 

Typically, the Rusanov formula is assumed 

universally applicable. This fact is not confirmed 

when our model of the anisotropy energy is 

complicated. 

 

(ii) The concept of anisotropy energy, which is 

introduced into the theory in the form of the 

proposed model as a modified Rapini potential, 

leads to the appearance of surface energy. Note 

that, in the conventional Rapini potential, there is 

no multiplier of the form of 1/r2 [21, 22]. 

Anisotropy energy can have the meaning of double 

electric layer energy (in electrochemistry); in 

addition, in the case of the formation of extremely 

small equilibrium particles with a differentiated 

surface energy, the electric capacity of the 

nanosystem where this nanoparticle is formed 

should be increased. Thus, it can be assumed that 

the nano-nucleation process can be efficiently 

controlled. 
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