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Abstract
The endoplasmic reticulum (ER) acts as a quality control organelle 

for protein homeostasis. The systems for controlling protein quality 
include ER-associated degradation, protein chaperones, and autophagy. 
Disruptions in ER function, a process called ER stress, trigger the unfolded 
protein response (UPR), a tightly orchestrated series of intracellular signal 
transduction reactions to restore protein homeostasis. The imbalance 
between the rate of mRNA translation and the efficiency of protein folding 
leads to the accumulation of unfolded or misfolded proteins inside the 
ER lumen which triggers ER stress. UPR is characterized by the action 
of three signaling proteins: inositol-required protein-1α (IRE1α), protein 
kinase RNA (PKR)-like ER kinase (PERK), and activating transcription 
factor 6 (ATF6). The persistence of chronic ER stress and protein load 
exceeds the ER's capacity, leading to cellular dysfunction and cell death. 
Accumulating evidence implicates ER stress-induced cellular dysfunction 
and cell death as major contributing factor to diseases such as tumors, 
making modulators of ER stress pathways potentially attractive targets 
for drug discovery. In this review we focus on the mechanisms of stress-
induced pathways to apoptosis and their impact as therapeutic target in 
cancer treatment.
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Introduction
Although recent advances in tumor diagnosis and therapy have improved 

overall survival in cancer patients, cancer-related mortality remains to 
be the second cause of death worldwide (1, 2). As mentioned above, the 
development of cancer is due to the disruption of normal cellular functions 
through multi-step mechanisms mediated by various genetic and epigenetic 
alterations in normal cells. (3, 4). Once tumor development has been 
initiated, tumor cells begin to adapt to their environment through mechanisms 
mediated by interactions between tumor cells and cellular and non-cellular 
components of their microenvironment. (5, 6). As a result, uncontrolled tumor 
cell growth and significant dysregulation of cell death machinery occurs 
(7, 8). Tumor cell fate is regulated by extra- and intra cellular signaling-
dependent mechanisms (9, 10). These mechanisms are tightly regulated 
by two main pathways, the intrinsic pathway and extrinsic pathways (11, 
12). The intrinsic pathway mediates apoptosis via mitochondria-dependent 
mechanisms, whereas the extrinsic pathway mediates apoptosis via death 
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receptor-dependent mechanisms (13). In addition to the 
significant role of both intrinsic and extrinsic pathways in 
the regulation of apoptosis, the involvement of endoplasmic 
reticulum (ER)-dependent mechanisms has been investigated 
(14-16). ER is a cellular organelle that acts as quality control 
for protein production, allowing only functional proteins to 
leave their vesicles (17, 18). The main function of ER protein 
quality control systems is to maintain the homeostasis of 
proteins, including chaperones, ATPases, glucose-regulated 
protein 94 (Grp94), binding immunoglobulin protein (Bip), 
Hsp70 family members, and proteolytic systems such as 
the ubiquitin-proteasome and the lysosome-autophagy (19, 
20). In this review, we focus on the mechanisms of ER 
stress-mediated pathways to apoptosis and their impact as 
therapeutic targets on cancer treatment. 

Endoplasmic reticulum structure, function and 
dysregulation

The ER is a membranous network of elongated tubes and 
flattened discs spanning the greatest part of the cytoplasm (21, 
22). This membranous network encloses the ER lumen that 
serves to transfer molecules from and to the cytoplasm (23). 
In addition to its function as a protein synthesis factory, the 
ER is responsible for the storage of calcium and regulation of 
calcium release, synthesis and storage of lipids, and glucose 
metabolism (25). The different functions of the ER are carried 
out by different regions consisting of tubules, sheets, and 
the nuclear envelope (24, 25). Numerous identified proteins 
have been described due to their contribution to the overall 
architecture and dynamics of the ER (26, 27). In short, the ER 
is a multi-task organelle that is tightly regulated to perform 
many specific functions (24, 27).

Although numerous chaperones and folding enzymes are 
present in abundance, unfolded or misfolded proteins often 

accumulate in the lumen of the ER leading to ER stress (28, 
29). As soon as the cell underlies this type of stress, some 
cellular modifications are required to maintain ER balance 
and proper function. The most common modifications 
include the inhibition of translation and degradation of 
unfolded or misfolded proteins, which leads to significant 
increase of chaperon production and folding enzymes (30, 
31). Accordingly, the failure of the ER to restore balance 
can lead to apoptosis (32, 33). The functional structure of the 
endoplasmic reticulum is outlined in detail (Fig.1).

Endoplasmic reticulum stress-induced unfolded 
protein response-dependent pathways

UPR is initiated and regulated by the ER stress response 
and is mediated through three sensors located at the ER 
membrane: serine/threonine-protein kinase/endoribonuclease 
inositol-requiring enzyme 1α (IRE1α), activating 
transcription factor 6 (ATF6), and the protein Kinase RNA-
Like ER Kinase (PERK) (34, 35). The release of UPR is 
attributed to competition between unfolded proteins with the 
immunoglobulin protein (BiP)-binding receptor, leading to 
the activation of IRE1α, ATF6, and PERK via BiP dissociation 
(34, 36). The target genes of the UPR are mostly associated 
with protein folding, ER-associated degradation (ERAD), 
oxidative stress, autophagy, mitochondrial and metabolic 
pathway dysregulation, and their induction both variable 
and tissue specific (37, 38). Binding of the unfolded protein 
to PERK leads to its conformational changes, which in turn 
facilitate the auto-multimerization and auto-phosphorylation 
of PERK (39, 40). Inactivation of eIF2α, the ubiquitous 
translation initiation factor, results from PERK activation and 
reduces protein synthesis and load (41, 42). Thus, sustained 
ER stress is required to trigger ATF4 mRNA translation and 
activate the C/EBP homologous protein (CHOP) promoter 
(42, 43).

Figure 1: Functional structure of the endoplasmic reticulum
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IRE1 is a single-spanning transmembrane protein with 
dual protein kinase and ribonuclease activity. Once IRE1 has 
been activated, it dimerizes and/or oligomerizes to trigger the 
transphosphorylation of positive regulatory sites within the 
IRE1, whose phosphorylation requires adenosine nucleotides 
(ATP/ADP) as cofactors to exhibit nuclease activity (36, 44-
46). Once nuclease activation is complete, IRE1 excises an 
intron (a 26-nucleotide segment) from the mRNA encoding 
a UPR-specific transcription factor, X-box binding protein 
1 (XBP1), to convert unspliced XBP1 (XBP1u) into spliced 
XBP1 (XBP1s) (47, 48). ATF6 is a 90-kDa protein that is 
constitutively expressed in cells and is a membrane-bound 
transcription factor that activates genes in the ER stress 
response (49, 50). After accumulation of unfolded protein in 
the ER, ATF6 is cleaved to release its cytoplasmic domain 
and enters the cell nucleus (51, 52). The processing of ATF6 
cleavage is mediated by both site-1 and site-2 proteases 
(53). Of note, ATF6 is characterized by its cytosolic NH2- 
terminal domain that can act as a transcription factor of the 
basic-leucine-zipper (bZip) family (54-56). The downstream 
effects of ER stress are mediated by UPR-induced protective 
and pro-apoptotic pathways (19, 57). Under stress conditions 
misfolded proteins can be removed from the folding apparatus 
by translocating from the ER to the cytosol (58, 59). In the 
cytosol the degradation of the misfolded protein is regulated 
by the cellular ubiquitin-proteasome system through ERAD 
(60, 61). The sustained accumulation of misfolded proteins 
in the lumen of the ER is the main cause for stress leading 
to the generation of an adaptive response (UPR) (62, 63). 
Consequently, ER stress-induced UPR results in the inhibition 
of protein synthesis, dysregulation of gene expression, and 
induction of cell death (16, 64). The mechanisms regulating 
the removal of misfolded protein are outlined in Figure 2

ERAD is a part of an ER-mediated protein quality control 
system responsible for restoring protein conformation and 
eliminating abnormal proteins on the ER membrane or in 
the cytoplasm (65, 66). The ERAD degradation mechanism 
is mediated by a process involving substrate recognition by 
chaperones and lectin, VCP/p97-directed dislocation across 
the ER membrane, polyubiquitination by E3 ligases, and 
degradation by the 26S proteasome (26, 67). The different 
proteasome degradation ERAD substrates include ERAD-L, 
ERAD-M, and ERAD-C proteins with folding problems or 
degradation signals located in the ER lumen, transmembrane, 
or cytoplasmic domain (68, 69). ERAD can attenuate ER 
stress induced or inhibited by UPR-dependent mechanisms 
(31, 70). Prolonged UPR has been reported to impair protein 
synthesis and exacerbate ERAD (30, 71). Furthermore, 
ER stress can modulate eIF2α phosphorylation, leading to 
attenuation of protein synthesis, while subsequent activation 
of ATF4/CHOP can increase protein synthesis and trigger 
apoptosis (72, 73). CHOP encodes a regulatory subunit of 

an eIF2α-mediated phosphatase complex that helps ER-
stressed cells restore protein synthesis (74, 75). Concurrently, 
cytoplasmic ATF6 released through the ATF6 signaling 
pathway is essential in controlling genes encoding the 
components of ERAD (i.e. Derlin-3) (37, 76) .Alternatively, 
the IRE1/XBP1 pathway triggers protein folding, maturation, 
and degradation, as well as induces the expression of genes 
encoding for protein chaperones like Erd (16, 77), p58IPK, 
EDEM, RAMP-4, PDI-P5, and HEDJ (78). The three sensors 
and their downstream-dependent pathways and biological 
sequences are outlined in figure 3.

Apoptosis 
Apoptosis is one of three major types of morphologically 

distinct cell death: apoptosis (type I cell death), the autophagic 
cell death (type II), and necrosis (type III) (80, 81). All three 
types are executed through distinct mechanisms with some 
overlapping signaling pathways in response to specific stimuli 
(82, 83). Apoptosis is a tightly regulated process that occurs 
frequently in multicellular organisms and plays an essential 
role in cell survival (84, 85). The regulation of apoptosis both 
in normal and tumor cells is mediated by various signaling 
pathways whose activation is both tissue type and effectors/
stimulators-specific (7, 8). The induction of apoptosis in 

Figure 2: Endoplasmic reticulum (ER) luminal misfolded proteins 
are recognized by machinery including ER chaperone BiP, DnaJ 
family ERdj5, and lectins such as ER degradation enhancing 
alpha-mannosidase-like protein (EDEM) family members, OS-9, 
and XTP3-B. Following its recognition, the terminally misfolded 
protein is recruited to the HRD1 complex via binding with SEL1L 
and is brought to a putative retrotranslocon channel, which may 
include derlin family proteins, HRD1, or the Sec 61 complex. The 
protein is finally dislocated from the ER to the cytosol. Cytoplasm-
exposed substrates are ubiquitinated by E3 ubiquitin ligase HRD1 
and extracted by the p97-Npl4-Ufd1 complex anchored on the ER 
transmembrane through VIMP in an ATP-dependent manner. The 
extracted substrate is deglycosylated by PNGase, deubiquitinated, 
and degraded by the proteasome.
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and tissue-specific, whereas its initiation and execution is 
mediated by either extrinsic or intrinsic pathways-dependent 
mechanisms (11, 80). While extrinsic and intrinsic pathways 
are different in their initiation, the mechanisms of their 
execution are similar (11, 80). Apoptosis induced by the 
extrinsic pathway is initiated by transmembrane receptor(s) 
through ligation to corresponding ligand(s) or agonist(s), 
whereas its progression and execution is mediated by 
mitochondrial and non-mitochondria-dependent mechanisms 
(99, 100). In contrast, apoptosis induced by the intrinsic 
pathway is initiated by a non-receptor dependent signal, 
and its progression and execution are mediated only by 
mitochondria- dependent mechanisms (11, 80). 

Activation of the extrinsic pathway results from an 
extracellular signal that occurs following ligand(s)/agonist(s) 
ligation of membrane receptors (101, 102). The most common 
membrane receptors and corresponding ligands and agonists 
include FasL/FasR, TNF-α/TNFR1, Apo3L/DR3, Apo2L/
DR4, and Apo2L/DR5 (80, 103). The tumor necrosis factor 
(TNF) receptor superfamily is one of the best characterized 
death receptors; all have similar cysteine-rich extracellular 
domains and cytoplasmic death domains (80, 103). The main 
function of the extracellular domain is to receive extracellular 
signals through appropriate ligand or agonist binding, where 

normal and tumor cells is characterized an enhancement of 
DNA fragmentation, chromatin condensation, shrinkage of 
the cytoplasm, and membrane blebbing (86, 87). Apoptotic 
initiation is mediated by extra- and intracellular signal 
transduction processes, while its regulation is mediated by 
an intracellular proteolytic cascade (80, 83). The mechanisms 
regulating apoptosis are similar across all eukaryotic cells 
(88, 89). Intracellular regulation is mediated by a family 
of proteases characterized by their active sites containing 
cysteine residues; these proteases cleave target proteins/ 
caspases at their specific aspartic acid residues (90, 91). 
Caspases are target proteins expressed as an inactive protein 
in the form of pro-caspases (92, 93). The activation of 
pro-caspases is mediated by their cleavage at aspartic acid 
residues via an upstream caspases-dependent mechanism 
(90, 94). Activated caspases cleave other key proteins such 
as nuclear Lamins which leads to an irreversible breakdown 
of the nuclear lamina (95, 96). While other caspases are 
known for their ability to cleave proteins, such as the DNA 
degradation enzymes responsible for inactivating DNase (97, 
98). Signaling pathways leading to cell apoptosis or survival 
are outlined in figure 4.

Mechanisms of apoptosis initiation and execution 
In summary, induction of apoptosis is agent-dependent 

Figure 3: Endoplasmic reticulum (ER) stress-dependent pathways conditions. The accumulation of misfolded proteins results in the activation 
of three ER stress sensors: ATF6 (activating transcription factor-6), IRE1 (inositol-requiring transmembrane kinase/endoribonuclease 1), and 
PERK (double-stranded RNA-dependent protein kinase)-like eukaryotic initiation factor 2α (eIF2α). The activation of ATF6 is mediated by its 
cleavage with S1P and S2P, upon which it is transported to the Golgi. Activated ATF6 serves as a transcription factor to induce the expression 
of ER chaperones and XBP1. Activated IRE1 is essential in triggering the splicing of XBP1 messenger RNA (mRNA); spliced XBP1 proteins 
(XBP1s) translocate to the nucleus and control the transcription of ER-resident chaperones and genes involved in the regulation of lipogenesis 
and ER-associated degradation (ERAD). The main function of activated PERK is to block general protein synthesis via phosphorylation of 
eIF2α and translation of eIF2α-activating transcription factor-4 (ATF4). Thus, once ATF4 is translocated to the nucleus it can induce the 
transcription of numerous genes required for quality control in the ER.
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the death domain transduces the external death signal to the 
intracellular signaling pathways via its cytoplasmic adaptor 
protein FAS-associated death domain (FADD), recruiting and 
activating caspase-8 (80, 104). Once caspase-8 is activated, it 
triggers the activation of both apoptotic pathways. One of these 
pathways triggers the activation of type I apoptosis, mediated 
by the activation of caspase-3 and induces PARP cleavage as 
a marker of apoptotic cell death (80, 105). The other pathway 
is involved in the initiation of type II apoptosis, mediated via 
a mitochondria-dependent mechanism (80, 106).

Activation of the intrinsic apoptosis pathway is mediated 
by intracellular signaling which initiate apoptosis via two 
mechanisms (11, 83). One of these mechanisms is mediated 
by the suppression of inhibitors of cell death machinery, 
including growth factors, hormones, and cytokines (107, 
108). The other mechanism is mediated by the direct action of 
radiation, toxins, hypoxia, and viral infections in the cell (80, 
109). Mitochondrial dysregulation results from the localization 
of pro-apoptotic proteins such as BH3-only proteins and Noxa 
protein on the outer mitochondrial membrane which increase 
mitochondrial membrane permeability and induce the loss 
of mitochondrial membrane potential (Δψm), cytochrome 
c (cyt c) release, and the induction and formation of Smac/
DIABLO, serine protease HtrA2/Omi, apoptosis inducing 
factors (AIF), and caspase-activated deoxy-ribonuclease 
(CAD) (110, 111). The release of these proteins leads to 
the activation of caspase-9 and caspase-3, with Poly (ADP-
ribose) polymerase (PARP) cleavage signaling apoptosis 

(112, 113). The execution phase of apoptosis is mediated by 
caspases, cytoplasmic endonucleases, and proteases which 
degrade nuclear materials and cytoskel et al proteins (11, 
80). The mechanisms involved in the regulation of apoptosis 
by extrinsic and intrinsic apoptotic pathways are outlined in 
figure 5

Mechanisms of endoplasmic stress-mediated 
pathways to apoptosis

In addition to their significant role in the modulation 
of UPR, the ER stress-dependent PERK, ATF6, and IRE1 
pathways are essential for the modulation of ER stress-
induced apoptosis (34, 114). PERK-dependent signaling 
pathways have been shown to trigger pro-apoptotic signals 
that can immediately initiate the mechanisms of cell death 
machinery, leading to rapid cell death (38, 114). While 
PERK is essential in phosphorylating eIF2α to enhance 
protein translation, the main function of IRE1α and ATF6 is 
to mediate the regulation of ERAD of the PI3K/Akt/mTOR 
pathways (115, 116). Of note, the continuous activation of 
PERK, but not those of IRE1α and ATF6, is essential for the 
regulation of E2-induced apoptosis in response to ER stress 
(15, 117). Accordingly, sustained activation of PERK triggers 
the phosphorylation of eIF2α, leading to the activation of 
ATF4 and the pro-apoptotic protein CHOP (38, 118). The role 
of PERK in the modulation of ER stress-induced apoptosis is 
not mediated only through phosphorylation of eIF2α, but also 
via its ability to trigger mitochondrial dysregulation, Ca2+ 

Figure 4: Mechanisms of apoptosis. The regulation of apoptosis via binding of agonists or antagonists (e.g. FASL, TNF-α, or TRAIL) to 
their corresponding receptors is mediated by two pathways. Once these receptors have been activated, their apoptotic signal can be mediated 
through the autophosphorylation of procaspase-8 to caspase-8. In type I cells, activated caspase-8 can activate caspase-3, leading to apoptosis. 
In type II cells, activated caspase-8 can hydrolyze Bid to tBid, tBid interacts with mitochondrial located Bax/Bak, and apoptosis is induced. 
In the intrinsic apoptosis pathway, DNA damage, growth factor withdrawal, oxidative stress, or toxic damage can destroy the homeostasis 
of the mitochondria, typically controlled by the Bcl-2 family members, leading to increased mitochondrial membrane permeability allowing 
cytochrome c release from the intermembrane space of the mitochondria. Released cytochrome c interacts with Apaf-1 and caspase-9 to 
activate caspase-3 and induce apoptosis.
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overload, accumulation of reactive oxygen species (ROS), 
and the induction of the expression of BH3-only proteins 
(114, 119).

The ability of continuously activated IRE1 and CHOP 
to induce apoptosis in cells under physiological and 
pathophysiological conditions has been described in several 
studies (34, 155). UPR is primarily a pro-survival response 
which can switch to apoptosis upon sustained or severe ER 
stress, either in a UPR-dependent or -independent mechanism 
(120, 121). ER stress-induced apoptosis is involved in 
pathological processes of human diseases and is mediated 
by GADD153, the transcription factor CCAAT, enhancer-
binding protein (C/EBP) homologous protein (CHOP), IRE1, 
and caspase 12 (122, 123). CHOP also stimulates growth 
arrest and the DNA damage-inducible gene 153 (GADD153) 
(124, 125). As stated above, apoptosis induced by irreversible 
ER stress is increasingly recognized as an important 
pathogenic factor in human diseases like tumors (114, 115). 
In addition to the adverse environmental conditions caused 
by tumors, genetic alterations in cancer cells can increase ER 
stress and promote sustained activation of the UPR signaling 
pathway (126, 127). Overall, these harsh conditions have 
been reported to alter the protein folding capacity of the ER in 
both cancer cells and invading immune cells, promoting UP 
accumulation and inducing ER stress (127). UPR is activated 

to restore ER homeostasis and promote adaptation to various 
tumor insults (129, 130). Many therapies induce ER stress in 
the cancer cell which alters its normal behavior in the tumor 
microenvironment (TME) (131, 132). Depending on the 
extent of ER stress, the cell type, and the specific pathological 
context, ER stress responses can have different effects ranging 
from cellular reprogramming and adaptation to autophagy and 
apoptosis (16, 133). Due to the additive effect of various ER 
stressors that are simultaneously enriched in the TME during 
cancer initiation, cancer progression, and cancer therapy, a 
robust and sustained UPR activation is observed in vivo in 
cancer cells and tumor-infiltrating immune cells, which fail to 
recapitulate under in vitro conditions (134, 135).

Tumor growth and progression is a multi-step process 
associated with a dramatic increase in protein synthesis 
and uncontrolled proliferation of tumor cells (136, 137). 
Consequently, proliferating tumor cells require rapid ER 
expansion, which enables rapid cell division and allocation 
of the newly produced tumor cells (28, 138). Controlled 
regulation of ER stress responses is a dynamic cellular process 
involving the triggering of opposing cellular functions in 
tumor cells, leading to either cell survival or death, depending 
on the strength and duration of the induced UPR (127, 139). 
We and others demonstrated the mechanisms through which 
ER stress triggers apoptosis in tumor cells (81, 103, 140, 141). 

Figure 5: Cell death signaling by the ER stress response/UPR. In case of severe and sustained ER stress, several pro-apoptotic events occur 
and lead to apoptosis. Transcription factors ATF4 and ATF6-p50 stimulate CHOP expression; CHOP stimulates the expression of GADD34, 
which associates with PP1, resulting in dephosphorylation of eIF2α and reactivating global cellular protein synthesis. CHOP also inhibits anti-
apoptotic proteins of the Bcl-2 family and stimulates pro-apoptotic Bim, altogether leading to heterodimerization and activation of pro-apoptotic 
Bax and Bak. CHOP stimulates expression of cell surface death receptor DR5, which sensitizes cells to pro-apoptotic stimuli, presumably via 
calibrating the extrinsic apoptotic pathway involving caspase 12. Similarly, activated JNK complements the pro-apoptotic efforts of CHOP. 
JNK becomes phosphorylated and activated by protein kinase ASK1 upon association of TRAF2 with activated IRE1. Association of TRAF2 
with activated IRE1 also leads to activation of caspase 12. Calcium release from the ER via Inositol trisphosphate (IP3) receptors can activate 
calpains, which further stimulate caspase 12 activation via proteolytic cleavage of its inactive procaspase precursor.
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The involvement of ER stress-induced apoptosis in head 
and neck squamous cell carcinoma (HNSCC) is activated in 
response to treatment with tumor necrosis factor -α (TNF-α). 
(103) or treatment with imiquimod (81), Bortezomib (140),
and Vinblastine (141); ER stress-induced apoptosis is also
activated in response to the inhibition of ubiquitin-specific
protease 1 in hepatocellular carcinoma (25). ER stress-
induced apoptosis in tumor cells is regulated by UPR-induced
activation of the IRE1α-TRAF2-JNK pathway (132, 138), or
PERK activation which activates IRE1α that, in turn, triggers
the activation of ATF‐4 to trigger the activation of the
transcriptional complex of CHOP (122, 142). This increased
expression of CHOP triggers the activation of two parallel
pathways, including the CHOP-ERO1α-IP3R1-CaMKII
and Bcl-2/Bim axis (115, 143). ER stress can also trigger
apoptosis through increased levels of cytoplasmic Ca2+,
leading to calpain degradation that s initiates the cleavage of
caspase‐4, caspase‐9, caspase‐3, and finally apoptosis (114,
144).

Endoplasmic reticulum as therapeutic target for 
tumor treatment

Numerous ER stress-related proteins and signaling 
pathways are dysregulated during cancer initiation and 
development (129, 145). Inhibition of these signaling 
molecules is thought to slow disease progression, providing 
exciting potential therapeutic targets. Various classes of 
cancer therapeutics have been developed which target ER 
stress pathways (146, 147). Advances in drug discovery have 
enabled the development of new small molecules that target 
the enzymatic activity of specific UPR regulators (148, 149). 
Since aberrant UPR signals are present in cancer, controlling 
their pharmacological action to limit tumor growth is a 
very useful strategy. IRE1α, PEEK, and ATF6 are the 
most promising targets whose inhibition controls disease 
progression after the UPR onset (129, 150) 129, 151). 

BIP/GRP78 is an important molecular chaperone of the 
UPR, as well as a marker for tumor cells associated with 
aggressive tumor growth, invasiveness, and metastasis (152, 
153).  The development of BIP/GRP78-specific inhibitors 
is therefore considered a possible strategy for cancer 
treatment. Bip inhibitors, including HA15 and OSU-03012, 
exhibit increased toxicity to osteosarcoma cells compared to 
osteoblastic progenitor cells derived from normal bone (154, 
155). HA15 induces cancer cell death and inhibits melanoma 
development both in vivo and in vitro (155, 156). Another 
Bip inhibitor, IKM5, has been shown to inhibit breast tumor 
growth and complement the inhibitory effect of doxorubicin 
in the early phase of breast cancer therapy (157, 158). The Bip 
inhibitor KP1339 was approved in Phase I clinical trials as a 
promising anti-cancer agent (159, 160). Functional analysis 
of KP1339 in a colorectal cancer model exhibited increased 

immunogenic cell death (ICD), leading to a sustained immune 
response against the tumor (161, 162).. Established GRP78 
inhibitors, including epigallocatechin gallate (EGCG), have 
been shown to bind to the ATP-binding structural domain 
of GRP78 and block its function (163, 164), as well as 
protect against hormone-related tumors, including breast and 
prostate cancer (165).  Colorectal cancer (CRC) has likewise 
been inhibited by potassium 3-beta-hydroxy-20-oxopregn-
5-en-17-alpha-yl (PHOS, the inhibitor of GRP78 activity)
(166, 167). Treatment of the human colorectal carcinoma-
derived cell line HCT116 with KP1339/IT-139 was found to
induce apoptosis via depletion of GRP78, the key chaperone
molecule (167, 168).. In recent years the new inhibitor HA15,
known as the main component of thiazolebenzenesulfonamide 
which inhibits ATPase activity, has been reported to trigger
GRP78 (166, 169). HA15 has both antitumor activity and can
overcome drug resistance in various tumor types, including
breast, pancreatic, adrenal cortex cancer, and melanoma
(166, 169).  Targeted treatment of GRP78 with HA15 induces
apoptosis in lung cancer cells and triggers both ER stress
and autophagy (169, 171). There have been several studies
on small molecule inhibitors of IRE1, such as STF-083010,
which have demonstrated significant antitumor activity in
human multiple myeloma (MM) xenografts via inhibition of
the endonuclease activity of IRE1 both in vitro and in vivo
(172, 173).

Inhibition of IRE1 RNase activity by the selective 
inhibitor B-I09 blocks the transmembrane receptor for IRE1 
and inhibits leukemia progression in a mouse model of 
chronic lymphocytic leukemia (CLL) (41, 174). The IRE1α-
specific inhibitor 4µ8C, which may block the production of 
β-catenin, a key factor in the development of colon tumors, 
suppresses the spread of colon cancer cells (175, 176).  In 
addition, the IRE1α kinase inhibitor compound 18 showed 
inhibition of tumor growth (114, 127, 173).  Another inhibitor 
of IRE1α RNase activity, stearoyl-CoA desaturase 1 (SCD 
1), is effective in attenuating cytotoxicity induced by standard 
chemotherapeutic agents in Burkitt's lymphoma, characterized 
by the overexpression of c-Myc (177, 178). Inhibition of 
IRE1α RNase with MKC8866 inhibitor significantly improves 
survival in the glioblastoma multiforme (GBM) mouse model 
(179, 180). Taken together, these preclinical studies suggest 
that pharmacological inhibitors of IRE1α may be helpful in 
delaying tumor growth and improving treatment outcomes. 

Inhibitors of IRE1 activity target the structural domain 
of the ATP kinase, an ATP-competitive IRE1α kinase that 
inhibits RNase attenuators such as sunitinib (180, 181). 
Although sunitinib has been reported to inhibit VEGF and 
PDGF, sunitinib can effectively inhibit IRE1 phosphorylation 
by inhibiting autophosphorylation and subsequently RNase 
activation (34, 150). In contrast to first-generation IRE1 
drugs, second-generation drugs are characterized by their 
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ability to directly target the RNase structural domain and 
inhibit endogenous IRE1α oligomerization, in vivo XBP1 
mRNA cleavage, and ER-localized mRNA decay in a dose-
dependent manner (182, 183). Of note, the inhibitors already 
identified, including B-I09, STF-083010, 4μ8C, toyocamycin, 
and a number of MKC compounds, directly target this RNase 
structural domain and share a common hydroxyarylaldehyde 
(HAA) fraction (184). B-I09 was approved as anticancer agent 
due to its potential to control the aggressiveness of chronic 
lymphocytic leukemia cells in vivo (185, 186). The small 
molecules STF-083010 and 4μ8c exert their inhibitory effects 
through the formation of a specific lysine residue (Lys907) 
with the Schiff base in the RNase structural domain. (150, 
187). In addition to forming this reversible Schiff base with 
Lys907, these drugs form hydrophobic contacts with His910 and 
Phe889 and hydrogen bonds with Tyr892 in the IRE1 RNase 
structure to inhibit its function. (188, 189). The mechanisms 
of both small molecules STF-083010 and 4μ8c which lead to 
IRE1 inhibition are outlined (Fig.6). 

ER stress inhibitors have been identified for their 
therapeutic impact on cancer treatment. As such, STF-
083010, MKC-3946, and Toyocamycin inhibit the growth 
of multiple myeloma (173, 190); likewise, salicylaldehyde 
MKC-8866 potently inhibits IRE1 RNase activity and exerts 
tumor suppressive effects, as shown in a mouse xenograft 
model (PDX) of triple-negative breast cancer (TNBC) (150, 
191), as well as a glioblastoma model (179).  MKC-8866 
induces the regression of breast tumors, particularly those 
associated with MYC overexpression (179, 192). In addition 
to these pharmacological inhibitors, kinase-inhibitory RNA 
enzyme attenuators inhibit IRE1 RNase activity by serving 
as ATP-competitive ligands, best demonstrated on pancreatic 
β-cell RNase activity. (34, 193). The main function of 
peptide fragments of the IRE1cytoplasmic structural domain 
determines the oligomerization and subsequent RNase activity 
of IRE1 (34, 194). Functional analysis of methotrexate, 
cefoperazone, folinic acid, and fludarabine phosphate 
revealed an inhibition of IRE1 RNase activity in vitro and 
in human glioblastoma cell models due to IRE1 peptide 
fragment interactions (195, 196). In summary, blocking IRE1 
in mouse models is beneficial in inhibiting tumor growth, 
indicating that targeting UPR may have positive implications 
for tumor therapy.

Both GSK2606414 and GSK2656157 are common PERK 
inhibitors and have shown remarkable effects in several studies 
(133, 197). GSK2656157, often used as a first-line treatment 
for patients with advanced colon cancer, synergistically 
inhibits the growth of colon cancer cells with 5-fluorouracil 
(5-FU) in a mouse model (114, 198). Furthermore, 
GSK2656157 demonstrated efficacy in overcoming 5-FU 

resistance of colorectal cancer (CRC) cells to 5-FU treatment 
(196, 198). A PERK small molecule inhibitor showed 
excellent antitumor activity in a dose- and time-dependent 
induction of apoptosis and G2/M cell cycle arrest in a human 
colon adenocarcinoma cell line, HT-29 (38, 199). As such, 
PERK inhibitors are expected to have promising anti-tumor 
effects based on their ability to overcome tumor resistance 
associated with standard therapies and reduce drug-related 
side effects (200, 201). GSK2606414, one of the most potent 
first-generation PERK inhibitors, completely blocks PERK 
autophosphorylation under extreme ER stress conditions 
(196, 198). GSK2606414 significantly reduces ATF4, CHOP, 
and CHOP mRNA expression and blocks the activation of 
downstream ATF4-CHOP signaling pathways (150, 202). 
Alternatively, GSK2656157 is a second-generation drug that 
acts as an ATP-competitive inhibitor of PERK and exhibits 
antitumor activity in multiple myeloma and pancreatic 
cancer in immunocompromised mouse xenograft models. 
This inhibitory effect of GSK2656157 is independent of 
eIF2α phosphorylation inhibition (204, 205). Additionally, 
the integrative stress response inhibitor (ISRIB), known as 
symmetric bis (ethylene glycol) amide, binds and activates 
elongation initiation factor 2β to trigger the inhibition of 
protein translation mediated by eIF2α phosphorylation (206, 
207). In patient-based models of advanced prostate cancer, 
ISRIB has been shown to induce tumor regression and 
prolong patient survival (208, 209). Most promising regarding 
inhibitors that simultaneously target different kinases is that 
their molecular effects are well known.

Conclusion
There is increasing evidence that ER stress-induced 

apoptosis is involved in the pathogenesis or exacerbation 
of several common disease processes. Studies in this area 
have provided extensive mechanistic insights into the role 
of IRE1α and PERK–CHOP -dependent pathways that 
lead to the induction of apoptosis. Accumulating evidence 
indicates a role for ER stress-mediated cell death in various 
diseases like tumors and highlights ER stress dependent 
pathways as an attractive target for therapies. Many small 
molecule inhibitors targeting kinase components of the UPR, 
PERK, and IRE1α are potential drug candidates for cancer 
treatment. However, targeting only one key molecule of ER 
stress-dependent signaling pathways may not be sufficient in 
triggering cell death, necessitating a better understanding of 
these overall mechanisms.
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