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Abstract
Genetic variation for a quantitative trait is detected by the correlation 

of trait values between relatives.  Genetic markers reveal relationship and 
can be used to make inferences about quantitative genetic variation.  In this 
paper, we infer quantitative genetic variance for the general situation of two 
observed individuals, using a model that involves the squared difference 
for quantitative traits.  From this, the genetic variance for a quantitative 
trait, and Qst, can be estimated.  Qst measures the proportion of quantitative 
genetic variance that lies within populations and is analogous to Fst but can 
differ from Fst due to natural selection. No method has been published to 
estimate Qst, from purely morphological variation. 
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Introduction
The correlation of phenotypes between relatives is the basis for inferring 

the additive genetic variance underlying the quantitative trait.  Classical 
methods for inferring genetic variance involves comparisons of variances 
among relative of known degree.  In natural populations, relatives are largely 
unknown. We now enter this unknown.

One common measure of population differentiation for a quantitative trait 
is Qst.  Wright (1951) showed that  where the total genetic variance 
is   However, Qst requires separate estimates of additive genetic 
variation within populations. One of the greatest limitations of methods 
for estimating quantitative genetic variance components is the requirement 
of known relatedness, but molecular marker-based methods for inferring 
variance components offer the opportunity to overcome this limitation [1]. 

Inferring natural quantitative genetic variance
To estimate the additive variance, the main approach is the "squared pair 

difference" [2].  Let a quantitative trait, such as human height or monkeyflower 
corolla width, take a numerical value  for individual k at locus i.  This value 
is the squared difference between the two traits multiplied by the coefficient 
of relatedness, 

   (1)

The expectation of equation is

  (2)

and since population estimates of relatedness have a mean of zero, and the 
average quantitive gene effect is zero, equation (2) becomes.
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For a total sample size of N pairs, the general estimator is  

				           (3)

Estimation of relatedness 
To estimate relatedness, there is a choice of many 

estimators of pairwise relatedness, but with natural, complex 
population structures, a joint estimation of two- and four-
gene relatedness coefficients is warranted, such estimators 
are given in [1].  A joint estimator can confer reduced bias 
and variance for either or both coefficients.  At one locus, if 
individual X has alleles i and j, and individual Y has alleles j 
and l, the joint estimate of relatedness for that locus is

  		        (4)

where the indicator variables δ are equal to one if the two 
subscripts have the same numerical value, otherwise they 
equal zero.  For multilocus estimates, this locus has weight 

 and multilocus estimates are the 
weighted average over loci. 

Estimation of QST
With adaptive population divergence, directional 

selection is expected to increase FST of selected loci.  The 
FST analogue for a quantitative trait is proportion of additive 
genetic variance that exists among populations.  The total 
genetic variance, in the denominator, consists of within- and 
between- population components, and within-population 
component is the nemisis of QST which normally requires 
outside estimates of heritability.  

  
where  and  denote the additive quantitative genetic 

variances, between and within populations, respectively.   
is calculated from a quantiative genetic breeding design, and  

 is estimated as the among-population variances of mean 
trait values.  

However, precise Qst estimates are poor [3].  Classical 
studies of Qst suffer from a number of biases of estimation. 
[4]. Ideally, individuals should all be raised in a common 
garden, but then questions about environmental interactions 
and phenotypic plasticity arise.  Natural selection alters Qst 
due to differential survival in the common garden, when the 
phenotype is correlated with survival such as plant size. The 
presence of dominance genetic variance causes estimates of 
parent offspring correlations to be biased upwards, hence the 
additive genetic variance component of Qst is overestimated.  
The joint estimation of two and four gene components of 
quantitative genetic variance using markers may obviate this 
problem.

The data is arranged as  and the paired 
differences fall into to classes.

 becomes  and  so that 

while if sampled from different populations, the genetic 
variance has two terms,

Solving for Qt, gives the marker-based estimator of QST:

Discussion
The correlation of relationship between loci allows 

prediction of relatedness at quantitative trait loci based 
on relatedness at marker loci, and hence allows estimation 
of heritability [5]. This inference relies on the presence of 
variation of relatedness among pairs, i.e., some pairs are full 
sibs, some half-sibs, some unrelated, etc.  At the population 
level, longer term pedigree relationships enter.  This variation 
results in a correlation of relatedness between marker and 
quantitative trait loci, and is the critical factor to quantify for 
the estimation of heritability. 

Both types of estimation use what was originally termed 
"gene-identity disequilibrium" by Weir and Cockerham 
(1969). This type of association can be confused with linkage 
disequilibrium because both have similar genetic effects. For 
example, apparent overdominance can be caused by linkage 
disequilibrium between allozyme alleles and deleterious 
alleles, or by identity disequilibrium between allozyme 
loci and heterotic loci.  Populations with high identity 
disequilibrium (consanguineous or bottlenecked populations) 
could be propitious for using marker-based animal models, but 
are also more likely to deviate from the standard assumptions 
of quantitative genetics models (non-additive variance) [6]. 

Across pairs of individuals i and j, we seek the additive 
genetic variation , where E denotes the expectation 
over all individuals X. Thus in this simplest approach we 
consider pairs of individuals to estimate variances.  First 
consider the general case of two individuals sampled at 
random, irrespective of population origin.  Different pairs 
of individuals should have different stength of relatedness, 
as this is a critical component of estimating quantitative 
genetic variance with neutral genetic markers.  However, we 
note that if we have a second individual Y with phenotype 
QY, the product itself QXQY cannot estimate genetic variance, 
correlations between relatives are needed.  

Using wild populations
Estimates of "heritability in the field" have been few in 

the literature.  Reviewing empirical and simulation studies 
of quantitative genetics in wild populations using marker-
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based estimates of relatedness confirms that it is extremely 
difficult to derive reliable estimates for quantitative genetic 
parameters in wild populations using Ritland’s pairwise 
regression model, as suggested by several authors [26], [65], 
[66].  However, the loss in rigor from abandoning artificial 
experiments is offset by the gain in realism, as the genetic 
components of characters in the field are estimated entirely 
free of artificial manipulation. 

Because one uses natural levels of gene identity and 
relationship, one has very little choice over "efficient" 
experimental designs. One cannot design natural populations 
with a specified, optimal pattern of relationships. The options 
available are (1) to increase sample size, either through more 
loci or (preferably) through more individuals, (2) to choose 
Mendelian loci with greater polymorphism, and (3) to choose 
species and populations with moderate levels of inbreeding 
and/or relatedness (and with maximal potential for variation 
of inbreeding and/or relationship). The third option can 
introduce a type of bias, as only species that are nonclonal, 
show limited dispersal, and have local genetic differentiation 
can be used. For example, to estimate the viability of selfing, 
species must show natural selfing rates of at least 10%. 

Also, the power of estimators of relatedness is limited 
by the numbers of independent loci so that increasing the 
number of markers does not necessarily increase statistical 
power.  Alternative ways to increase power were suggested 
by [7]: (i) first selecting small subsets of independent and 
maximally informative markers to be used in relatedness 
estimation or (ii) using pedigree reconstruction methods to 
build a relationship matrix based on relationships implied by 
the reconstructed pedigree. 

One approach to get around this problem is to estimate 
and approximation for QST, termed "PST", as proposed by 
Leinonen et al 2006:  

			          (7)

where the subscript p denotes the phenotypic variances, 
and where h2 is the heritability and c is a proportion of additive 
phenotypic variance among populations ).  
However, possible values of QST depend on a range of both 
h2 and c, and required educate guesses about both, or at least 
heritability measured in the artificial environment.  

Utilization of the information from entire pedigrees in 
wild populations can be used for superior estimats to those 
based upon pairwise comparisons [8].

“Onomics era” data
The availability of genome-wide dense sets of molecular 

markers (Slate et al. 2009) has made possible heritability 
estimation in wild populations with varying levels of 
unknown relatedness between the sampled individuals 

(e.g. Kruuk 2004; Frentiu et al. 2008; Kruuk & Hill 2008; 
Pember-ton 2008; Van Raden 2008).  These approaches may 
suffer from small sibships and incomplete sampling (Wang 
2004).   Subtle features of population structure which is weak 
but detectable with genome scale datasets.  Analysis with 
traditional marker sets, on the order of dozens of markers, 
does not give the power to detect weak levels of variation, 
and in particular, variation of relatedness. 

Recent reports of substantial heritability for gene 
expression and new estimation methods using marker data 
highlight the relevance of heritability in the genomics era 
[9]. The use of high-density genetic marker technologies 
allows novel estimation methods of heritability, for example, 
estimation in unpedigreed populations and estimation within 
families, which are free of assumptions about variation 
between families.

Model problems
Ritland (1996) defined "phenotypic similarity" of two 

individuals X and Y where the means are first subtracted 
off from both from X and Y.  This definition works fine 
for estimates of heritability within populations and requires 
that the expected means are same as for X and Y, as we 
assume both drawn from same population.  Technically the 
problem arises when there are slight differences of 'xQ in the 
larger expression [ ] [ ' ' ]XYw XYw x ywr E r Q Q

 
Even small changes the 

expectations of 'xQ  and 'ywQ lead to large changes of estimates 
and potential biases.

This approach seems to be loosely related to the gene 
mapping method of [10], which is also based on pairs 
of observations and the regression of pairwise estimates 
of phenotypic similarity. Although the effect of shared 
environment can be included, the limitation of this approach 
is, in contrast with our main approaches, that it does not allow 
inclusion of individual-level covariates.  [11] (e.g. year of 
measurement, hatching data or nest of rearing) into the model 
(Frentiu et al. 2008) because Ritland’s model is built on pairs 
of observations.  Despite performing slightly better than the 
Ritland method, the relationship classes method requires a 
known family structure with only two classes of relatedness 
and is therefore of restricted use [6].  

The most similar approach here is the use of the sharing 
of human height in relation to exact identity at SNP loci.  For 
natural populations with complex (but known) pedigrees the 
"animal model" has been developed to estimate heritability.  
The program GCTA for genome-wide complex trait 
analysis does estimate genetic variance explained by SNPs 
in an arbitrary population. However, SNPs must be directly 
associated and not indirectly as in our current approach. 
In such approaches, if relatedness coefficients are used 
to estimate quantitative genetic parameters in association 
studies, the variance of relatedness needs to be incorporated.
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