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Abstract 

For many years, genetic screening for male infertility 

was limited to a few analyses: karyotyping, screening 

for Y microdeletions, and tests for the most frequent 

cystic fibrosis transmembrane conductance regulator 

(CFTR) gene variants. The development of new 

technologies, such as chromosome microarray or new 

genome sequencing, has broadened access to whole-

genome analyses. Over the last decade, many genetic 

defects have been described, and new strategies seem 

to emerge. Hence, by focusing on peripheral (rather 

than central) failures of spermatogenesis, the 

objectives of the present study were to review the 

latest data on clinical practice (rather than the 

physiopathology of these genetic abnormalities) and 

suggest new guidelines for the genetic screening of 

male infertility. 
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Introduction 

The World Health Organization (WHO) considers 

infertility (defined as the inability to conceive after 

12 months of sexual intercourse without the use of 

contraceptives) to be a major health concern. In about 

half of these couples, infertility is of male origin [1]. 

Semen analysis is the first-line test for infertile 

couples and can often reveal congenital or acquired 
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causes of male infertility; these notably include 

quantitative and/or qualitative abnormalities in 

spermatogenesis, which affect the sperm count, 

motility and/or morphology. These abnormalities 

lead to oligo/azoospermia, asthenospermia, and 

teratozoospermia, respectively. 47,XXY aneuploidy 

diagnosis for the Klinefelter syndrome [2], karyotype 

analysis has been proposed to infertile patients, and 

many series have reported other types of 

chromosome rearrangements [3]. Many of these 

anomalies involve the sex chromosomes or 

autosomal Robertsonian translocations. Lower the 

sperm count, higher the frequency of chromosomal 

anomalies; this is mainly due to Klinefelter 

syndrome, which is observed in 15% of men with 

azoospermia. Karyotyping revealed that Y 

chromosome rearrangements - especially those 

involving long arm deletions - are associated with 

infertility. It was suggested that these conditions 

were due to an azoospermic factor (AZF), and three 

regions (AZFa, AZFb and AZFc) were subsequently 

identified [4]. During the same period, it was found 

that almost all men with cystic fibrosis (CF) had a 

congenital bilateral absence of the vas deferens 

(CBAVD). It has further been hypothesized that 

isolated CBAVD (OMIM#277180) is due to a 

distinct genetic entity associated with an elevated 

frequency of CF gene mutations [5] – now known as 

CFTR-related disease. Until that period, many studies 

had reported an association between genetic 

polymorphisms and male infertility but routine 

clinical applications of this knowledge were lacking. 

In parallel, a variety of different syndromes and 

single nucleotide variants (SNVs) associated with 

male infertility were described but the vast majority 

of these variants were private. With the emergence of 

whole-genome molecular analyses and the 

assessment of cohorts of men with homogeneous 

teratozoospermia, a number of autosomal recessive 

causes have been reported. Firstly, a homozygous 

SNV in the gene coding for aurora kinase C 

(AURKC) was reportedly responsible for most cases 

of macrozoospermia in a population of 

consanguineous men from North Africa [6]. Later, 

some men with globozoospermia were found to have 

a homozygous deletion of the dpy-19-like 2 gene 

(DPY19L2), or compound heterozygotes for 

DPY19L2 defects [7]. Initially, the strategy was 

based on a candidate gene approach that combined 

SNP array analysis with conventional molecular 

biology. The paradigm for genetic testing has now 

been changed totally by the development of next-

generation sequencing technologies, such as whole-

exome sequencing. At present, many SNVs have 

been reported in men with multiple morphological 

abnormalities of the flagella (MMAF), azoospermia, 

and other disorders. However, in contrast to 

macrozoospermia and globozoospermia (where 

AURKC and DPY192 mutations in sperm account for 

most of the genetic defects), other syndromes are 

genetically heterogeneous. Hence, it appears to be 

necessary to define genetic testing guidelines as a 

function of the sperm phenotype, with a view to 

determining the etiology of these male infertilities 

and then choosing the best treatment strategy. 

 

Quantitative defects 

Azoospermia 

Azoospermia is defined as the total absence of 

spermatozoa in the ejaculate in two successive semen 

examinations. It accounts for around 10% of cases of 

male infertility, and affects about 1% of the men in 

the general population [8-10]. The condition can be 

classified as non-obstructive azoospermia (NOA, 

associated with spermatogenesis failure, and 

accounting for 60% of cases) or obstructive 

azoospermia (OA, characterized by normal 
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spermatogenesis and an obstruction in the seminal 

tract, and accounting for the remaining 40%) [11,12]. 

 

In almost all cases of azoospermia, the combination 

of testicular sperm extraction (TESE) with in vitro 

fertilization (IVF) and intracytoplasmic sperm 

injection (ICSI) gives the patient an opportunity to 

become a father [13]. 

 

Sperm can be retrieved successfully from more than 

95% of men with OA. The most challenging question 

for men with congenital bilateral or unilateral 

absence of the vas deferens (OMIM #277180) is the 

need to fully sequence the CFTR gene in both the 

man and his partner, in order to evaluate the risk of 

CF in the offspring [14]. Given that almost 80% of 

men with CBAVD carry one or two CFTR mutations 

[14], it is impossible to consider aTESE before 

genetic testing and counseling. Furthermore, a 

general check-up on the patient’s respiratory and 

pancreatic functions appears to be useful. However, a 

quarter of men lacking a known CFTR mutation have 

a defect in the AGDRG2 gene associated with X-

linked CBAVD (OMIM #300985) [15]. No recurrent 

CFTR and ADGRG2 mutations have been reported, 

however, although various candidate genes (such as 

PANK2 and SLC9A3) have been suggested in the 

literature [16]. 

 

For men with NOA, the sperm retrieval rate is around 

40 to 50%. Many genetic defects are associated with 

this condition, and sperm extraction may be 

contraindicated by the results of genetic testing in 

some of these. The first-line analysis is based on 

karyotyping and Y chromosome microdeletion 

screening [3,17]. A 46,XX karyotype (usually 

46,X,der(X)t(X;Y)(p22.3;p11.2) results from an 

unbalanced de novo X-Y translocation and the 

translocation of the sex-determining region of the Y 

chromosome to the X chromosome) contraindicates 

TESE. The second one contraindication is AZFa 

and/or AZFb microdeletion, leading respectively to 

Sertoli-cell-only syndrome and sperm maturation 

arrest [18]. Although other chromosome 

abnormalities (such as Klinefelter syndrome), do not 

constitute a contraindication to TESE, genetic 

counselling is required to evaluate the risk of an 

unbalanced karyotype in the offspring; this mainly 

applied to reciprocal or Robertsonian translocations 

and inversions. Karyotyping leads to a diagnosis in 

more than 15% of cases, and so it has been 

hypothesized that most of the genetic causes of male 

infertility have yet to be characterized - probably 

because of the large number of genes involved [19]. 

The emergence of whole-exome sequencing has led 

to a great increase in the number of different gene 

defects reported [16]. Initially, only TEX11 (an X 

linked coding gene) was reported recurrently 

reported in the literature. However, recurrent 

abnormalities in genes such as SYCE1, MEI1, 

STAG3, TEX14, and TEX15 have now been described 

[20,21]. Many of the latter (except TEX11) have 

been identified in consanguineous families, and are 

meiosis-specific and are observed in men with sperm 

maturation arrest, a condition in which sperm cannot 

be retrieved by TESE. In view of (i) the development 

of genetic analysis software that facilitates the 

interpretation of test results and (ii) decreases in the 

cost of whole-exome sequencing, whole-exome 

sequencing analysis needs to be rapidly implemented 

in clinical practice - especially for consanguineous 

men, after karyotyping and Y chromosome 

microdeletion screening. The identification of gene 

defects also facilitates a discussion of the risk/benefit 

balance of TESE with the patient. 
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Oligospermia 

For men with a low sperm count, karyotyping alone 

should be suggested as a guide to the etiology. 

Subsequent genetic counseling can evaluate the risk 

for the offspring (see the previous paragraph) as a 

function of the type of chromosomal segregation 

during meiosis. 

 

Quantitative defects 

Teratozoospermia 

Here, we only considered homogeneous 

teratozoospermia, i.e. conditions in which more than 

99% of spermatozoa are affected: macrozoospermia, 

globozoospermia, acephalic sperm, and MMAF. 

 

Macrozoospermia 

Macrozoospermia (MIM # 243060, also referred to 

as macrocephalic sperm head syndrome) was first 

described in 1977 [22]. The spermatozoa have large, 

abnormally shaped heads, and multiple flagella 

(usually four). The condition leads to primary 

infertility, with no chance of paternity. All 

spermatozoa are aneuploid, with 96 chromosomes in 

general – regardless of the technique used for sperm 

selection [23]. According to the literature data, this 

syndrome is due to AURKC mutations. In North 

African populations, a founding event led to a 

recurrent missense SNV (c.144delC) [6]. A few other 

mutations have been detected elsewhere in the world, 

with a recurrent c. p.Y248* SNV in the European 

population, for example [24]. At present, genetic 

screening for AURKC mutations is recommended for 

men in whom all sperm are macrocephalic, with a 

focus on particular recurrent mutations as a function 

of the ethnic origin. Whole-exome sequencing is only 

recommended for syndromic men in whom 2 

deleterious SNVs have not been identified. For men 

with homozygous or compound heterozygous 

mutations in AURKC (deleterious SNVs), only sperm 

donation or adoption is possible. Hence, the genetic 

diagnosis may help the patient to weigh up the 

various options. Genetic screening is not useful for 

men with a diagnosis of inhomogeneous 

teratozoospermia. For men with some normally 

shaped sperm and in whom no mutation has been 

found, the results of a sperm FISH analysis and a 

sperm DNA decondensation assay will give an idea 

of the chances of paternity [25]. 

 

Globozoospermia 

Globozoospermia (MIM 613958, a severe 

teratozoospermia with primary infertility) was first 

described in humans in 1971 [26]. It is characterized 

by round spermatozoa that lack an acrosome. Hence, 

the spermatozoa are unable to adhere to and penetrate 

the zona pellucida. There is a chance of fatherhood 

with ICSI, although the fertilization rate in 

globozoospermia is low because of the absence of 

phospholipase C zeta (PLCz) and thus a lack of 

oocyte activation after injection [27]. Acrosome 

biogenesis is mechanistically complex, and only a 

few related gene defects have been identified. More 

than 90% of the patients described in the literature 

have a DPY19L2 defect – a homogenous deletion in 

80% of cases. Men with globozoospermia should 

first be screened for the homozygous DPY19L2 

deletions. If none are found, whole-exome 

sequencing (including DPY19L2 and all the other 

genes previously described) appears to be justified. 

In a recent study, this strategy enabled a diagnosis in 

75% of men in whom more than 50% of the sperm in 

the ejaculate were abnormal [28]. 

 

Acephalic sperm 

Acephalic spermatozoa syndrome (MIM 617187) is a 

rare condition that was first described in 1979 [29]. 

The sperm are predominantly headless or lack 

flagella [30]. In contrast to the syndromes described 

https://omim.org/entry/617187
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above, a large variety of genetic abnormalities have 

been described - although defects in the SUN5 gene 

appears to be frequent [31]. Given that defects in 

many genes have been reported, it seems sensible to 

use first-line whole-genome sequencing. Some gene 

defects are reportedly associated with a lower chance 

of fatherhood. Hence, if more data are necessary, 

genetic screening should be performed before the 

ICSI procedure. 

 

Multiple morphological abnormalities of the 

flagella 

Although MMAF is a rare syndrome, cases have 

been reported regularly since 1984 [32]. Due to peri-

axonemal and axonemal defects, the flagella of the 

sperm in the ejaculate are short, coiled, absent or of 

irregular caliber. It has recently been demonstrated 

that MMAF is genetically heterogeneous and can 

result from defects in more than 20 genes [33]. 

Hence, whole-exome sequencing appears to be 

necessary in these men. The diagnosis is purely 

etiologic and does not have any impact on clinical 

practice. The take-home baby rate after ICSI for 

MMAF is similar to that observed in the whole 

patient population. 

 

Other situations 

Male infertility is not limited to defects in the sperm 

count, motility or morphology defect. As with 

mutations in the gene coding for PLCz [34], 

infertility is sometimes due to fertilization failure. In 

this rare, idiopathic situation (i.e. in the apparent 

absence of sperm or female defects), a whole-exome 

analysis might be a good opportunity for explain the 

inability to conceive. 

 

In conclusion, the discovery of a sperm defect should 

prompt the initiation of genetic screening based on 

whole-exome sequencing - now a diagnostic tool that 

is easily accessible, as a first or second-line genetic 

test (Table 1). However, whole-exome sequencing 

should always be preceded by genetic counselling. 

The purpose of the analysis must be clearly explained 

to the patient because gene defects unrelated to 

infertility (e.g. predispositions to cancer or early-

onset neurodegenerative diseases) could potentially 

be identified. 
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First-line genetic test 

Second-line 

genetic test 

Changes in clinical practices after genetic 

testing 

NOA 

Karyotyping and Y 

chromosome 

microdeletion 

Whole-

genome 

analysis 

1: Chromosome rearrangement: considered 

PGD or PND. 

2: 46,XX or AZFa or b microdeletion: TESE 

is contraindicated 

3: Meiosis gene defects: considered TESE 

CBAVD CFTR ADGRG2 
Only if the partner has a CFTR mutation: 

consider PGD or PND 

Oligospermia Karyotyping  None 
Chromosome rearrangement: considered PGD 

or PND 

Macrozoospermia AURKC 

Whole-

genome 

analysis 

IVF is contraindicated for patients 

homozygote for a AURKC mutation or 

heterozygote composite 

Globozoospermia DPY19L2 

Whole-

genome 

analysis 

None 

Acephalic sperm Whole-genome analysis None None 

MMAF Whole-genome analysis None None 

 

Table 1: Genetic tests and their impact on clinical practice. 

 

NOA: Non-obstructive azoospermia; CAVD: Congenital bilateral absence of vas deferent; MMAF: Multiple 

morphological abnormalities of the flagella; PGD: Preimplantation genetic diagnosis; PND: Prenatal diagnosis 
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