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Abstract
Background: Accurately subtyping diseases, particularly in cancer 
research, is crucial for enhancing the precision of treatment decisions 
and improving outcomes across various cancers, including hematological 
malignancies like acute myeloid leukaemia (AML). 

Methods: Consequently, we utilised an unsupervised K-means clustering 
on transcriptomics data from 173 acute myeloid leukaemia samples profiled 
by The Cancer Genome Atlas (TCGA). In our analysis, we categorised 
patients into two distinct groups: Subtype-1, comprising 68 individuals, 
and subtype-2, encompassing 105 individuals. 

Results: Analysis revealed that individuals within subtype-2 experienced 
a markedly prolonged period of disease-free survival compared to those in 
subtype-1, as evidenced by the Log-rank test (p = 0.00273). Furthermore, 
it was observed that patients in subtype-1 presented with elevated white 
blood cell counts, suggesting a potential biomarker of disease progression 
within this subgroup. We also identified differentially expressed genes 
linked to poor survival, prognosis, and chemoresistance, involving 
pathways like Aminoacyl-tRNA biosynthesis, apoptosis, NF-kappa B and 
HIF-1, through bioinformatics analysis of subtype-1. Our findings show 
that AML patients categorised within subtype-1 exhibit a more aggressive 
form of the disease compared to those allocated to subtype-2. 

Conclusion: Consequently, these observations underscore the feasibility 
of employing subtype-specific precision treatments for AML patients, 
offering a tailored therapeutic approach based on the distinct disease 
characteristics of different patient subtypes.
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Introduction
Acute myeloid leukaemia (AML) represents a malignant 

haematological condition that impacts myeloid cells, a subset 
of white blood cells, within the blood and bone marrow [1]. 
This aggressive cancer is marked by a swift progression and 
is defined by the presence of more than 20% blast cells in the 
bone marrow or blood [1]. It arises from the malignant clonal 
expansion of myeloid progenitor cells, which is accompanied 
by a failure in the cells' ability to differentiate appropriately 
[2]. In 2023, the estimated incidence of AML was 20,330, 
accounting for 1% of all cancers, with an estimated death rate 
of 11,310 and a 5-year relative survival of 31.7% [3]. AML is 
characterised by numerous genetic aberrations, providing key 
insights into the mechanisms underlying its development and 
progression [4, 5]. Genetic aberrations in AML alter cellular 
transcriptional programs, allowing for the categorisation of 
patient’s classification based on gene expression signatures, 
which offer valuable insight into disrupted signalling 
pathways and help identify potential targets for personalised 
therapeutic approaches [6, 7]. 

Machine learning (ML) methods offer significant 
opportunities for refining the definition of disease subtypes 
and enhancing risk prediction across various diseases 
[8]. ML can facilitate a more nuanced understanding of 
disease characteristics by leveraging complex datasets 
and identifying patterns that may not be evident to human 
observers. With the continuous refinement of classification 
schemes, further specific molecular markers correlated with 
patient survival and cancer aggressiveness are anticipated 
to be identified [9, 10]. As classification schemes improve, 
additional specific molecular correlates of patient survival 
and cancer aggressiveness are expected to be uncovered 
[11-13]. Unsupervised clustering algorithms, a cornerstone 
of machine learning methodologies, have been instrumental 
in elucidating cancer heterogeneity by discerning distinct 
subtypes across a spectrum of malignancies [14-16]. This is 
achieved through the meticulous analysis of gene expression 
data, where these algorithms identify natural groupings or 
clusters within the data that correspond to varying cancer 
subtypes [17]. Such advancements in computational biology 
have paved the way for more nuanced understandings of 
cancer biology and the potential for more personalised 
approaches to cancer treatment [18]

Numerous researchers have applied machine learning 
algorithms to the task of cancer subtyping across various 
cancer types, including but not limited to breast cancer [19, 
20] and pancreatic cancer [21]. In our research, we utilise an 
unsupervised K-means clustering machine learning algorithm 
to delineate transcriptomic subtypes of AML by analysing 
gene expression data from The Cancer Genome Atlas 
(TCGA) [22]. After identifying AML subtypes, we identified 
differentially expressed genes across these groups. We then 
conducted bioinformatics analyses to uncover variations in 
the genetic landscape of these subtypes, aiming to reveal the 
molecular distinctions between them. This approach deepens 
our understanding of AML's heterogeneity and supports the 
development of targeted therapies.

Results
Transcriptomics subtypes of acute myeloid 
leukaemia 

We applied an unsupervised K-mean clustering machine 
learning algorithm with a squared Euclidian distance metric to 
the transcriptomics data on acute myeloid leukaemia samples 
from the TCGA. We came up with two consistent subtypes 
of cancer patients. One subtype, which we named subtype-1, 
consisted of 68 samples, whereas the second subtype, named 
subtype-2, consisted of 105 samples (Figure 1).

Clinical characteristics and survival outcomes of the 
transcriptomics subtypes of acute myeloid leukaemia 

We used the Kaplan Meier [23] test to compare the survival 
outcomes between patients with the two transcriptomics 
subtypes of AML. We found a similar overall survival 
(OS) duration (Log-rank test; p = 0.109) between patients 
with subtype-1 (13.6 months) and subtype-2 (26.3 months); 

 

Figure 1: Clustering of acute myeloid leukaemia; the first and 
second principal components of the PCA are the plot on the X axis 
and the response on the Y axis. Points are coloured according to 
subtypes defined by K-means clustering.
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Differentially expressed genes between subtype-1 
and subtype-2 

To understand the biological differences between the 
two transcriptomics Subtypes of acute myeloid leukaemia, 
we applied the Negative Binomial test [24] to determine the 
differentially expressed genes [25] between the two Subtypes. 
We found 310 mRNA transcripts that were significantly 
upregulated in Subtype-1 than in Subtype-2 AML, whereas 
248 were significantly upregulated in Subtype-2 (Figure 3a 
and b; Supplementary file 1).

Altered signalling pathways and molecular processes 
distinguish disease Subtypes

Transcription factors and kinases are critical in the 
progression of cancer. In order to understand the genetic 
landscape and signalling networks of the two transcriptomics 
Subtypes of AML, we utilised the expression-2-kinase [26] 
software to extract the transcription factors and kinases 
associated with the two AML Subtypes. 

Our findings showed considerable enrichment for 
transcription factors in the two Subtypes of AML. Several 

Figure 2a. However, the Disease-free survival (DFS) status 
for patients with subtype-2 acute myeloid leukaemia was 
significantly longer (26.2 months) than that for patients with 
subtype-1 AML (12 months), Log-rank test; p = 0.0273; 
Figure 2b. We further evaluated differences in other disease 
outcomes, including disease progression or recurrence at 
the end of follow-up between the two AML transcriptomics 
subtypes. Our findings showed that 45% of subtype-1 
AML patients were disease-free, while 55% experienced 
disease progression or recurrence, with only 26% surviving. 
In comparison, 57% of subtype-2 AML patients were 
disease-free, while 43% experienced disease progression 
or recurrence, with 39% surviving; Figures 2c and 2e. A 
comparison of the mean ages of the two disease subtypes 
revealed a close distribution of 57 years for subtype-1 and 
54 years for subtype-2; Figure 2d. We also performed the 
Wilcoxon rank sum test to assess differences in white blood 
cell count (WBC) between the two AML subtypes. This 
analysis revealed a significant discrepancy in WBC values (Z 
= 3.0552, p = 0.0022), with patients in Subtype-1 exhibiting 
markedly higher WBC counts than those in Subtype-2, as 
illustrated in Figure 2f.

 

Figure 2: (a)Kaplan-Meier curve for overall survival months for patients with AML across the two AML transcriptomics subtypes; (b) Kaplan-
Meier curve for Disease-Free Survival months for patients with AML across the two transcriptomics subtypes; (c) bar chart showing vital 
statistics after follow-up across the two AML subtypes; (d) bar chart showing the distribution of age of AML patients across the two cancer 
subtypes; (e) bar chart showing disease outcome after treatment across the two AML subtypes; (f) Box plot showing the median values of WBC 
counts for the two AML subtypes
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were shared, and others were unique to either Subtype (Figure 
4a; Supplementary file 2). The shared transcription factors 
include RNF2 (subtype-1 p = 1.40 X 10-9 and subtype-2 p 
= 4.74 X 10-11), JARID2 (p = 1.82 X 10-10 and p = 1.63 X 
10-22), TP53 (p = 4.90 X 10-4 and p = 1.90 X 10-10), EZH2 
(p = 1.62 X 10-9 and p = 1.33 X 10-18), FOXA2 (p = 2.89 X 
10-6 and p = 0.006) respectively among others. 

In addition, our study indicates unique expression of VDR 
(p = 0.025) in subtype 1 AML. Increased VDR expression is 
associated with good prognosis in acute myeloid leukaemia 
[27, 28]. Transcription factors uniquely expressed in 
Subtype-2 AML include GLI1 (p = 0.008) and DMRT1 
(0.04). High GLI1 expression has be shown to be an indicator 
of poor prognosis in acute leukaemia patients [29] and  also 
reduces drug sensitivity by regulating the cell cycle in AML 
[30]. However, studies have shown that GLI1 is a strong 
target to treat AML patients and is also an excellent approach 
for developing novel therapies [31, 32].

Our kinase enrichment also showed an overlap for many 
kinases between the two transcriptomics Subtypes of AML. 
However, some kinases were still unique to each of the two 
Subtypes (Figure 4b; Supplementary file 3). The kinases 
overlapping between the two groups include; CSNK2A1 
(subtype -1 p = 0.002 and subtype -2 p = 1.54 X 10-5), AKT1 
(p = 0.002 and p = 0.001), TAF1 (p = 0.005 and p = 0.001), 
HIPK2 (p = 1.67 X 10-4 and p = 0.01), ABL1 (p = 0.01 and 
p = 0.02), and CDK2 (p = 0.013 and p = 0.001), respectively 
among others. 

Kinases uniquely expressed in subtype 1 AML include 
MAPKAPK3 (p = 0.003), PKN2 (p = 0.03) and PTK6 (p = 

0.04). Expression of high levels of PTK6 promotes tumour 
development and is associated with poor prognosis in breast 
cancer [33, 34]. However, among the kinases exclusively 
expressed in subtype 2 AML patients, only STK17A (p = 
0.03) was significantly expressed. 

We further applied Gene Set Enrichment Analysis (GSEA) 
[35] to extract knowledge of the KEGG signalling pathways 
enriched in subtype-1 AML compared to subtype-2 AML. 
Among the signalling pathways more enriched or upregulated 
in subtype-1 AML are those involved in Aminoacyl-tRNA 
biosynthesis, apoptosis, NF-kappa B and HIF-1 signalling 
pathways with Normalised Enrichment Score p values of 
0.001, 0.03, 0.03, and 0.03, respectively. NF-kB transcription 
factors are critical regulators of immunity, stress response, 
apoptosis, and differentiation. These transcription factors 
have recently become potential targets for cancer treatment 
[36]. However, the diversity in the defects that lead to 
abnormal NF-κB activation makes the possibility of finding 
a universal target difficult [37] (Figure 4c, 4d, 4e and 4f; 
Supplementary file 4).

The mutational landscape of acute myeloid 
leukaemia transcriptomics subtypes

With a focus only on the consensus cancer genes [38], 
we evaluated the extent to which copy number variations 
and gene mutations affect patients with AML. We found 
no statistical difference in the mutations and copy number 
variations between the two AML subtypes (Supplementary 
file 5). However, across the two transcriptomics subtypes, 
we found that the gene mutations were similar to those 
reported in other studies [39-41], mainly affecting FLT3 

 
Figure 3: (a) Scatter plot of gene expressions and their significance showing fold change vs mean normalised counts in log scale. Data points 
are coloured according to adjusted p values; (b) Volcano plot showing 310 significantly upregulated genes and downregulated genes in subtype 
1 AML
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Figure 4: (a) Venn diagram showing overlap of 215 transcription factors across the two AML subtypes, with 13 expressed only in subtype-1 
and 3 only in subtype-2; (b) Venn diagram showing overlap of 154 kinases across the two AML subtypes with 42 expressed only in subtype-1 
and 13 only in subtype-2; GSEA plots showing significant enrichment for (C) Aminoacyl-tRNA biosynthesis  pathway; (d) apoptosis signalling 
pathway; (e) NF-kappa B signalling pathway and (f) HIF-1 signalling pathway in subtype-1 AML
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(31%), NPM1 (29%), DNMT3A (26%), IDH2, RUNX1, 
IDH1, TET2 and TP53 all at 10% (Figure 5). We further 
revealed that the frequent mutations in FLT3 and NPM1 were 
insertions, whereas single nucleotide polymorphisms (SNPs) 
were predominantly observed in DNMT3A, IDH2, RUNX1, 
IDH1, TET2 and TP53.

Methods
We downloaded the TCGA [22] dataset of 200 AML 

patients from cBioPortal (http://www.cbioportal.org)  [42]. 
We only returned and analysed 173 AML patient samples with 
whole genome transcriptomics data. We further utilised DNA 
copy number alterations, mutation data, and comprehensively 
de-identified clinical and sample information. 

Transcriptomics classification of acute myeloid 
leukaemia 

We used the 1000 most variable genes for the K-means 
clustering machine learning method and for principal 
component analysis (PCA) to classify AML samples 
according to their gene expression levels. We used the 
Calinski-Harabasz clustering evaluation criterion [43] to 
determine the ideal number of subtypes, and the results 
indicated that 2 was the optimum number of subtypes (Figure 
1). After that, to define the transcriptomics data and determine 
the leukaemia subtypes, we used unsupervised k means across 
1000 iterations with random initialisation to minimize the 
likelihood of the algorithm converging to local minima. This 
was done using the squared Euclidian distance metric and 
then selected the clustering solution with the highest average 
Silhouette score [44]. Next, we used Principal Component 
Analysis [45, 46] to minimize the dimensionality of the 
transcriptomics measured data, which allowed us to visualise 

the clustering of the AML clusters. Lastly, we plotted the 
first two dimensions of the principal components with points 
coloured based on the K-means clustering group assignment. 
We utilized a dataset of pre-processed and normalized read 
count mRNA expression data measured in Fragments Per 
Kilobase of transcript per Million mapped reads (FPKM). 

Survival analysis 
We compared the overall survival and disease-free 

survival of subtype-1 and subtype-2 patients using the 
Kaplan-Meier technique [23]. We further applied descriptive 
statistics to determine percentages of patients who were alive, 
deceased, disease-free, and those with disease progression or 
recurrence at the end of follow-up for each of the two AML 
subtypes. 

Identification of the differentially expressed genes
We examined mRNA expression data to determine which 

genes were expressed differently in transcriptomics subtype-1 
and subtype-2 AML patients. Using the Negative Binomial 
Model [24], we performed statistical analysis on the mRNA 
transcripts of both groups. The False Discovery Rate (FDR) 
[47] approach was utilised to correct the p-values acquired 
from the analysis. When mRNA expression showed an 
adjusted p-value of less than 0.05 and a fold-change of more 
than 4, it was deemed statistically significantly differentiable 
between subtype-1 and subtype-2 AML.

Functional enrichment analyses
We used the Expression 2 Kinase (X2K) software [48] 

to infer transcription factors and kinases from the lists of 
differentially expressed genes for the two disease subtypes. 
We independently ran the lists of significantly upregulated 

 
Figure 5: (a) Integrated plot of gene mutations, copy number alterations and clinical features of AML patients. From top to bottom 
panels indicate the transcriptomic subtypes of AML; the patients’ age; patient’s gender; mutation and copy number frequency across 
all AML patients
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genes in subtype-1 and subtype-2 AML through the X2K 
software and extracted statistically significant transcription 
factors and kinases from the .csv file outputs.

We then downloaded the Kyoto Encyclopaedia of Genes 
and Genomes (KEGG) 2019 human database and Gene 
Ontology (GO) molecular function 2021. Then, for each 
gene set within each database, we modified the gene sets 
by returning only the genes present in our gene expression 
dataset, thus limiting the gene background to genes only 
present in the mRNA expression data. Finally, we used Gene 
set enrichment analysis (GSEA) to determine the KEGG 
pathways that are enriched for in subtype-1 AML compared 
to subtype-2 AML 

We used mutation data (single nucleotide polymorphisms 
and indels) and copy number alteration data to assess the 
extent of genetic changes in AML subtypes. First, we 
combined these two genetic modification data. We then 
used information from the Sanger Consensus Cancer Gene 
Database  [38] to return only genes associated with human 
cancer. Additionally, oncogenes and tumour suppressor 
genes in the gene alteration dataset were annotated using 
information from UniProt Knowledgebase, TSGene database, 
and ONGene database [38, 49, 50]. Finally, using the chi-
square test, We compared genetic changes between disease 
subtypes. 

Statistical analysis 
All analyses described herein were conducted using 

MATLAB version 2023a. Fisher's exact test was employed 
to discern associations among categorical variables, while the 
Welch and Wilcoxon rank sum tests were utilised to evaluate 
differences in continuous variables across AML subtypes 
within various categories. Significance was established when 
the p-value was less than 0.05 for individual tests and when 
the Benjamini-Hochberg adjusted p-value was below 0.05 for 
multiple comparisons.

Discussion
Our comprehensive analysis of gene expression, clinical 

data, mutations, and copy number alterations in AML 
leveraged machine learning to discern two distinct AML 
subtypes: subtype-1 and subtype-2. This classification 
underscores the potential for personalized treatment strategies, 
reflecting the heterogeneity within AML and highlighting the 
importance of integrating diverse data types for a holistic 
understanding of the disease's molecular underpinnings [51, 
52]. The demographic characteristics of the patients in the 
two disease subtypes were relatively similar, showing that we 
were dealing with adult-type acute myeloid leukaemia.

Our findings indicate that while overall survival rates 
were similar across both AML subtypes, subtype-2 patients 
experienced significantly better disease-free survival than 
those in subtype-1. This observation suggests that subtype-2 

patients, post-treatment, had a prolonged period without 
disease relapse or progression compared to subtype-1, which 
also exhibited higher white blood cell counts found to be 
associated with poor prognosis in AML [53, 54], hinting 
at a more aggressive disease form potentially driven by an 
adverse genetic landscape. This differentiation in survival 
outcomes emphasises the critical need for subtype-specific 
therapeutic strategies in AML management. Some of the 
genetic alterations may include significant aberrations in 
the genes involved in signalling pathways associated with 
poor survival, prognosis and chemoresistance, such as the 
Aminoacyl-tRNA biosynthesis, NF-kappa B and the P53 [55-
58] signalling pathways, which we found to be more enhanced 
in subtype-1 AML after carrying out GSEA. Activation of the 
NF-kB pathway has been reported to regulate the transcription 
of target genes that promote cell survival and proliferation, 
inhibit apoptosis, and mediate invasion and metastasis [59]. 
Constitutive activation of NF-kB in AML has been associated 
with enhanced proliferation and survival of cancer cells [60], 
likely contributing to the notably higher white blood cell 
(WBC) count observed in subtype-1 compared to subtype-2 
AML.

Hyperleukocytosis in AML is linked to increased mortality 
and a higher incidence of severe complications, including 
leukostasis, disseminated intravascular coagulation, and 
tumour lysis syndrome, compared to AML patients without 
hyperleukocytosis [61]. Furthermore, hyperleukocytosis is 
associated with a significantly lower event-free survival and 
complete remission rate in AML patients [62].

Conclusion
Our investigation has effectively delineated AML patients 

into two distinct subtypes based on gene expression profiles, 
revealing notable differences in clinical characteristics and 
genetic backgrounds. Subtype-1 patients exhibited markedly 
reduced disease-free survival and were characterised by a 
more aggressive disease course underpinned by a detrimental 
genetic landscape. Notably, genes overexpressed in Subtype-1 
are implicated in signalling pathways linked to adverse 
survival outcomes, poor prognosis, and chemoresistance, 
including Aminoacyl-tRNA biosynthesis, P53, and NF-kB, 
alongside the occurrence of leucocytosis. These insights 
underscore the viability of developing subtype-specific 
precision treatments for AML, promising more targeted and 
effective therapeutic approaches.
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