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Abstract
Tumor-Stroma Ratio, a marker of tumor microenvironment, proved to 

be a reliable independent prognostic predictor in many solid tumors but it’s 
value in transitional carcinoma is still under research. Visual quantification 
of tumoral and stromal areas is possible but is time consuming and 
subjective. Machine learning image segmentation can improve diagnostic 
precision. Our research interest is to evaluate how precision pathology 
tools (machine learning segmentation of whole slide images) may improve 
quantification of the tumor-stroma ratio in early muscle invasive bladder 
tumors and increase histologic diagnostic prognostic value. 10 cases of 
pathology stage T2A bladder cancers whole slide images were carefully 
matched (sex, age and smoking status) with 10 cases of pT2B form the 
same open database (Cancer Genome Atlas Urothelial Bladder Carcinoma 
dataset, TCGA-BLCA). The machine learning segmentation used a trained 
approach and was performed under 3 labels (tumor, stroma, other). The 
mean tumor to stroma ratio was significant higher (tumor>stroma) in 
pT2A cohort (p<0.0001). Vital prognostic was different between groups: 
90% of subjects were alive at 3 years after diagnostic in pT2A cohort and 
only 40% in pT2B cohort. Our proof-of-concept study suggest the utility 
of the tumor-stroma ratio in differentiating challenging diagnostics of early 
muscle invasive urothelial carcinoma. A larger, real world data study will 
have to confirm the benefits of this marker in everyday clinical settings.
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Introduction
Urothelial bladder carcinoma (UBC) is a common urinary malignancy 

[1]. It represents more than 10% of new cancer diagnostics, worldwide [2]. 
It is often found in elderly males (sex-ratio males to females of 3.5:1), with 
a median age at diagnostic of 65 years [3]. Environmental factors (like air 
pollution and tobacco use) and genetics are considered responsible for the 
significant morbidity and mortality associated with this disease [4]. UBC 
originates in the epithelial layer of urothelium, a highly specialized, multi-
stratified tissue existing in the distant urinary tract [5]. The normal urothelial 
tissue characteristics may explain the numerous forms and variants of UBC 
and the complexity of the histologic diagnostic [6]. A precise histologic 
characterization (types, forms and variants) of any UBC is important as it 
will ultimately dictate the patient prognostic under treatment. The dominant 
UBC histologic type (90%) is transitional carcinoma [7]. More than 70% of 
transitional carcinomas are low grade, with a uniform papillary architecture 
and are Non-Muscle Invasive (NMIBC), but are still susceptible to recurrence 
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and progression [8]. Muscle-invasive BC (MIBC) have a 
marked tendency to histological diversity and is frequently 
associated with stromal and inflammatory reaction, 
fibroblastic proliferation and fibrosis [9], all factors that 
will add supplementary challenges to the routine diagnostic. 
MIBC demonstrates an aggressive clinical behavior even 
in early stages [10]. Improving UBC grading precision 
(both clinical and pathological) was a continuous and 
strenuous exercise over time with results that are still under 
evaluation [11-14]. The advent of new, specific, histologic 
biomarkers provided more clarity in pathology grading [15] 
but both immunohistologic and biomolecular procedures are 
costly, time consuming and sometimes subjective, most of 
these methods having a high degree of inter-observational 
variability [16,17]. In early MICB, pathological grading 
remains the mainstay for treatment option but a precise 
differentiation between early forms is not always easy as 
changes at muscularis propria level are often subtle [18]. 
Optical detection of muscularis propria invasion in early 
MIBC can be difficult to substantiate as it can be subject of 
multiple technical challenges but the right diagnostic will 
dictate an adequate therapeutic approach and will show 
tremendous prognostic value. The capacity to interact with the 
surrounding microenvironment is a critical characteristic of 
any solid malign tumor [19]. The tumoral microenvironment 
(TME) is a complex and continuously evolving tumor entity 
that influences tumoral invasiveness and progression [20]. 
Components of tumor microenvironment can be recognized 
within the routine microscopic exam but a precise visual 
characterization of the tumor based on these characteristics 
is difficult as is subjective, with serious inter and intra 
observational variability. One important actor in the complex 
TME landscape is tumoral surrounding stroma, a protective 
canvas that increase tumor aggressiveness and shield the 
tumor against treatment [21]. It is generally accepted [22] that 
stromal development (enhanced local vasculature, modified 
cellularity, increased inflammatory response, and imbalanced 
protease activity) often precedes tumor progression. It was 
also signaled that, at least for some tumors, an active stroma 
may play a protective role against cancer progression [23, 
24]. The ratio between tumor cells and stroma (tumor stoma 
ratio - TSR) can be measured. A low ratio (more stroma, less 
tumor) characterized most of the aggressive tumors. The 
ratio was validated in many solid tumors as an independent 
prognostic predictive factor [25]. An accepted definition of a 
high TSR is when more than 50% of tumor are represented 
by cells. In many tumors, a high TSR was associated with a 
better clinical prognosis.

Compared to other solid cancers (colorectal, 
hepatopancreatic, breast), the TSR concept was not extensively 
tested yet in UBC [26]. Previous published research suggested 
that a low TSR (a high stroma presence) may reflect a poor 
prognostic over time [27]. There are several reasons for 

adopting TSR as part of the routine diagnostic toolkit in 
UBC [28]. It is measured in Hematoxylin-Eosin (HE) stained 
slides. It had a demonstrated prognostic predictive value in 
many solid tumors. As no other stains are needed, there is a 
possibility to better control diagnostic costs. In early MICB, 
TSR may support the histologic diagnostic and provide 
objective arguments for making the differentiation between 
pT2A and pT2B, simple. The challenge comes from visual 
quantification of TSR, a method that is subjective and time 
consuming even for highly specialised uro-pathologists. A 
machine learning analysis (using a technique named semantic 
segmentation) can differentiate between tumor and stroma 
and provide an objective ratio, fast and at low costs. Our 
research interest is to evaluate how precision pathology tools 
(machine learning segmentation of whole slide images - WSI) 
may improve quantification of the tumor-stroma ratio in early 
muscle invasive bladder tumors and may increase histologic 
diagnostic prognostic value.

Materials and Methods
Data selection. 10 cases with pathological stage (p)T2A 

UBC diagnostic were selected from The Cancer Genome 
Atlas (TCGA), a public, open database available at National 
Institute of Health-National Cancer Institute (access @ 
https://portal.gdc.cancer.gov). Each case had at least one 
diagnostic WSI and an associated pathology report that 
served as “ground truth” (pathology data available @ https://
cancer.digitalslideatlas.org). The ten selected cases were 
carefully matched (age, sex, smoking status) with 10 (p)T2B 
cases, from the same databases. The (p)T stage (based on 
AJCC criteria) was decided based on the degree of muscularis 
propria invasion (inner or outer half). All sampled cases 
were classified, based on cellular architecture, as high grade. 
Epidemiologic, clinical and genomic biomarkers information 
was available for all selected cases. Cases with an extreme 
number of genetic mutations (both at high and low ends) 
were excluded.

Data processing 20 WSI were downloaded and evaluated 
using QuPath software [29]. At a 10x magnification (1 µm=1 
pixel), a 1024/1024 pixels rectangular region of interest 
(ROI) was selected by both investigators, in consensus. 
Selected ROIs images (area=1048576 pixels2) were 
deconvoluted (normalized) using the FIJI software [30]. 
Only the hematoxylin channel image was used for semantic 
segmentation (figure 1), under 3 labels (tumor, stroma, other). 
For segmentation we used a dedicated WEKA machine 
learning platform plugin [31]. The area covered under each 
label was finally measured and recorded using FIJI capacities. 
In order to avoid segmentation overfitting, the classifier was 
initially trained on a single pT1 image and then tested on 
another single pT3 image (pT3) (procedure known as the data 
veracity test). Once the classifier was considered performant, 
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Results
10 pT2A cases (80% males, 40% smokers, mean age 

68.5±8.43 years) were carefully matched with 10 pT2B 
cases (80% males, 40% smokers, mean age 70.7±8.7 years) 
from TCGA-BLCA project (412 cases). From each WSI, 
a region of interest (ROI) was selected, in consensus. The 
ROI image was sampled and prepared. Finally, images were 
segmented using a previously trained segmentation plugin 
and areas were measured. The pT2A group had a mean 
tumor area of 58.25%, a mean stroma area of 38.6% and a 
3% area for “other”. pT2B group had a mean tumor area of 
40.8% (“tumor”), 57% (“stroma”) and 2.1% (“other”) on 
similar ROIs (table 1, figure 2). All cases were papillary, high 
grade UBC and all were considered histological grade 2. In 
pT2A group, the multi-tumor diagnostic was an exception. 
In pT2B, 2 cases were squamous (>10%) and 3 cases had 
a CIS associated diagnostic. In terms of invasiveness, in 
pT2A group, 1 case was multi-centric. In pT2B 5 cases were 
characterized as multicentric, 3 cases demonstrated vascular 
and 1 lymphatic spread. 

Avoiding overfitting is an important step in using 
machine learning segmentation. In our case, the classifier 
was trained separately on one pT1 case (male, 50 years, non-
smoker, low grade tumor). It showed 63% tumoral area and a 
stromal area of 27%. Then the classifier was tested on a pT3 
case (male, 57 years, non-smoker, high grade tumor) with a 
measured tumoral area of 35% and a stromal area of 64% 
(similar ROI). Both cases used for classifier training/testing 
were with squamous traits (>10%). A blinded visual exam of 

Figure 1: Image preparation (HE). a. Selecting a ROI from the initial 
WSI image (QuPath) (bar=100µm). b. Sampled ROI (1024x1024px, 
1pixel=1µm). c. Normalized (deconvoluted) image (FIJI).

it was used for the segmentation of all of the 20 selected 
cases, without any other alteration. TSR was calculated 
using only tumor and stroma areas, without considering the 
“other” area label. All cases were blindly evaluated by both 
authors (visual WSI exam) looking for tumoral stromal area 
approximation (less or more than 50% of tumoral cellularity). 
A second objective of the human exam was to confirm the 
initial diagnostic criterion (invasion of muscularis propria).

Ethics Data used in this study was coming from an open, 
public database where cases are totally anonymized. The de-
identification process was performed by data curators. Our 
study followed the Canadian ethics research provisions for 
secondary data use studies (TCPs 2(2018)) and the principles 
specified in Declaration of Helsinki. The overall TSI research 
was evaluated and approved by the IRB of “Sfântul Ioan” 
Hospital Bucharest (28827/Nov 2021).

Cohort pT2A (10 cases) Cohort pT2B (10 cases) One pT1 case for training One pT3 case for testing
Diagnostic T2A T2B T1 T3

Sex 80%M 80%M M M

Age 68.5±8.43 70.7±8.7 50 57

Smoker 40% 40% No No

Histo 100% High 100% High Low High

Infiltration MM Inner Outer No Yes

Associated Histology 1 nodular 2 squamous, 3 CIS Squamous Squamous

Spread 1 multicentric 5 multicentric,
3 vascular, 1 lymphatic No Multicentric

Visual approximation 
of ROI (blinded) 40%+ tumor 50%+ tumor 55%+ tumor 50%+ tumor

Tumor area 58.25%* 40.8%* 63% 35%

Stroma Area 38.6%* 57.1%* 27% 64%

Other 3.15%* 2.1%* 10% 1%

Survival 9 Alive / 1 Death 5 Alive / 5 Death Alive Deceased

TSR 1.48±0.21# 0.72±0.11# 2.3 0.54
* Averaged data, 10 cases, MM=muscularis propria, CIS = Carcinoma in situ, #p<0.0001. Visual approximation used a five points Visual Analog 
Scale

Table 1: TSR, areas measurements and demographic data in pT2A / pT2B cohorts the classifier was trained in one pT1 and tested in another 
pT3 case.
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WSI established (based on the 50% tumoral limit) that results 
were concordant with machine learning measurements only 
in 40% of pT2A cases and in 50% of pT2B cases, with a 
high observational test-retest variability (50-55%). 9/10 cases 
in pT2A and only 5/10 cases in pT2B cohort were alive at 
3 years after the primary MIBC diagnostic (figure 3).

Discussion
UBC is a common tumor, frequently encountered in 

elderly males. The tumor may show a large diversity of 
histologic forms and variants that will dictate invasiveness 
and progression. A precise histologic diagnostic is required 
as histology remains the main pillar of treatment decision. 
Finding new biomarkers that will better characterize UBC 

in an objective, reproductible way, is a constant research 
effort. TME gained researchers’ interest as it demonstrated 
to be an effective way to characterize solid tumors. TSR, a 
histologic marker of TME, proved to be a reliable indicator of 
tumor aggressiveness, an independent prognostic indicator in 
many solid tumors. In most of the solid tumors (lung, breast, 
colorectal) distinction between low and high stroma can be 
done by visual approximation using simple visual microscopy 
tools but is still imprecise and time consuming. In UBC, the 
limit between high and low TSR is difficult to approximate 
using visual measurements (cut-off limit is 50% - Micke op 
cit. [29]). Our research objective was to evaluate how precise 
pathology (machine learning seg-mentation of WSI) [32] will 
improve TSR quantification in MIBC. We sampled 10 UBC 
pT2A cases from TCGA-BLCA project at NHI-NCI. Cases 
have at least one diagnostic WSI. Every selected case was 
carefully matched (sex, age, smoking status) with a pT2B 
case from the same database. All WSI images were obtained 
from tissues that were processed following a unique, highly 
standardized technique and have associated a complete 
pathology report that served as ground truth for diagnostic. 
As genetic data was also available, cases with a particular 
high or low load of genetic mutations were discarded 
from initial selection. All cases were high grade papillary 
transitional carcinomas. Pathologic pT2 stage was defined 
based on muscularis propria invasion (inner vs outer half) and 
was well documented in the existing pathology report. All 
tumors were considered grade 2. All images were examined 
at 10x (1pixel=1 µm). From a tumor area that showed a high 
tumor and a low artifact load, a ROI of 1024x1024 pixels 
was selected by both authors, in consensus. ROI images were 
normalized (deconvoluted) and then segmented using a pre-
trained classifier, under three labels (tumor, stroma, other). In 
order to avoid over-fitting, the classifier was initially trained 
on a pT1 case and then tested on a pT3 case.

The classifier was used in all 20 selected cases without any 
other alteration. After segmentation, each area was measured. 
The calculated mean TSR in pT2A group was significantly 

Figure 2: Area calculation on segmented images. pT1 was used for 
classifier training. pT3 was used for classifier validation. T2A and 
T2B areas were quantified and averaged. Red=tumor, green=stroma, 
blue=other (FIJI, WEKA segmentation plugin).

Figure 3: Survival of selected cases (pT2A compared with pT2B)
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different (p<0.0001) compared to T2B cohort mean. 
Repeated tests showed no results variability. We performed 
an individual blinded visual diagnostic on downloaded WSI. 
Tumor/stroma area approximation using a visual analogue 
scale (%, from low to high) showed a low precision (40-50%) 
and a high intra and inter-observational diagnostic variability 
(50%-55%). The same subjectivity of visual analogue scale in 
difficult to diagnostic UBC was confirmed by other published 
data [33]. The survival analysis of selected subjects confirmed 
the clinical predictive value of TSR marker in early MIBC. 
90% of T2A subjects were alive at 3 years after diagnostic 
(1 dead male, 74 years old). In T2B, only 40% of cases were 
still alive at 3 years from diagnostic (4 males, mean age at 
diagnostic 69 years) (Figure 3).

From a genomic perspective, the pT2A group showed 
a rather moderate altered genomic profile with variations 
in 2 genes that affected more than 50% of cases (MUC16 
50%, TP53 60%). For the pT2B cohort, the genomic picture 
was very rich, subjects showing multiple genes mutations: 
TTN (90%), TP53 (80%), MUC16 (60%), DNAH5 (60%), 
HMCN1 (50%), FBN2 (50%) and RYR2 (50%). TTN and 
TP53 are genes that affected most of the subjects included in 
the TCGA-BLCA dataset (>50% of all subjects). TP53 is a 
recognized prognostic indicator in bladder cancers. As all of 
cases were high grade, invasive transitional carcinomas, a low 
number of cases showed a FGFR3 mutation (30% in pT2A 
and none in pT2B cohort) [34]. The low number of cases 
used in our study did not allow any prediction concerning the 
effects of specific gene mutations on survival.

Machine learning TSR quantification was fast, precise 
and objective. There was no difference in results when 
similar ROIs were tested with the same classifier. In 
contemporary clinical practice, UBC is characterized using 
immunohistochemical diagnostics that are expensive, time 
consuming and not very precise as quantification is performed 
using a visual analogic scale (fast score) [35]. Routine use 
of machine learning techniques on immunohistochemical 
stained slides is controversial as the biomarker quantification 
is considered not iso-stoichiometric [36]. Quantification STR 
on HE slides can also be automated, fact that can reduce 
diagnostic time and costs. The main limitation of our study is 
the low number of cases evaluated (proof of concept). TCGA-
BLCA is structured as a genomic dataset with rich attached 
pathology information (412 UBC cases). The dataset is built 
mainly on advanced carcinomas (60% of cases being pT3 or 
more) and early cases are rare. We considered that the quality 
of data (strict inclusion criteria, well standardized histologic 
preparing techniques and the existence of a ground truth – a 
pathology report) are benefits that increased the validity of 
machine learning quantification, our main study objective. 
The complex demographic and genomic associated info were 
also seen as advantages for our study.

Conclusions
A precise machine-learning measurement of TSR in 

MIBC is possible. When performed in highly standardized 
WSI, the difference between pathology stage 2A and 2B 
ratios was highly significant. TSR reflected well the tumor 
aggressiveness and had a true prognostic prediction value. As 
the number of cases was low, any association between tumor 
staging/grading and genomic picture was not possible but it 
we have seen a clear difference between the genomic picture 
of the two analyzed cohorts. Larger studies focusing on real 
world pathologic data are needed for method validation and 
for any possible wide genomic correlations.
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