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Abstract

We show that the simple and multiple linear regression coefficients and
the coefficient of determination R? computed from sampling distributions
of the mean (with or without replacement) are equal to the regression
coefficients and coefficient of determination computed with individual
data. Moreover, the standard error of estimate is reduced by the square
root of the group size for sampling distributions of the mean. The result has
applications when formulating a distance measure between two genes in a
hierarchical clustering algorithm. We show that the Pearson R coefficient
can measure how differential expression in one gene correlates with
differential expression in a second gene.

Keywords: Linear regression; Pearson R; Sampling distributions of the
mean.

Introduction

Linear regression coefficients and the Pearson R correlation have long
been used to quantify the relationship between dependent and independent
variables [1]. However, the “ecological fallacy” has shown that linear
regression and correlation coefficients based on group averages cannot
be used to estimate linear regression and correlation coefficients based on
individual scores [2, 3].

It may not be well known that if all possible groups are considered, in the
case of sampling distributions of the mean, the Pearson R coefficient computed
from the group averages is equal to the Pearson R coefficient computed from
the original individual scores for one independent variable [4, 5]. We extend
this result and show that the linear regression coefficients (for simple and
multiple regression) and the coefficient of determination R? computed from
sampling distributions of the mean (with or without replacement) are the same
as the coefficient of determination and linear regression coefficients computed
with the original individual data. The sampling distributions of the mean can
also be constructed using differences between two groups of different size.
The result has implications for hierarchical clustering of genes. Specifically,
the Pearson R coefficient can be used to measure how differential expression
in one gene correlates with differential expression in a second gene.

The standard error of estimate is a measure of accuracy for the surface
of regression [6]. Using the coefficient of determination, we show that the
standard error of estimate is reduced by the square root of the group size for
sampling distributions of the mean.

In Section 1, we recall and reformulate the system of equations
that are solved to determine the linear regression coefficients
for individual scores. In Section 2, we prove the assertion that
the same system of equations needs to be solved for sampling
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distributions of the mean with and without replacement or differences between two
groups of sampling distributions. In Section 3, we show that the coefficient of
determination is the same whether it is calculated using individual scores or all possible
group averages from sampling distributions. Section 4 shows that the standard error of
estimate is reduced by the square root of the group size for sampling distributions of the
mean. Section 5 performs numerical simulations to illustrate these principles. Section 6
applies these results and shows that the Pearson R coefficient can be used to measure
how differential expression in one gene correlates with differential expression in a second
gene when the z-statistic is used.

1 Computing regression coefficients

Multiple regression requires one to compute the coefficients {ﬁ; ,7=0,..., K} that
minimize the sum of squares

N K ' 2
min vi— > Bl - 5; (1)
=1 j=1
where (M, 2@ 25 represent K different independent variables, y is the

dependent variable, and the i*" realization of variables (/) and y are xgj ) and Yi,
respectively, 1 < i < N. Note that for simple linear regression, K = 1. We recast the

sum (1) in the form

N K A 4 2
Yol wi-0-> 8@ —z9) -8, 2)
i=1 j=1
where N NG
i Y -(j) _ i % _
y_ N ) z - N ’.7_1725"‘K (3)
and the coefficients are related by
K .
Bo=B; -5+ Bz, (4)
j=1
Bi = Bj i=12..K. (5)
To solve for By, we set the partial derivative of (2) with respect to By to zero which
yields
N K N ' ‘
S0 -> 8 (Z(az?) - afm)) = Nf. (6)
i=1 j=1 i=1
However
N N . ,
Swi-9)=0 > @V -z)=0vj 1<j<K (7)
i=1 i=1

which implies that 8y = 0. Thus one can redefine the problem of computing multiple
regression coefficients (1) to be selection of the coefficients {f;,j =1, ..., K'} that
minimizes the sum of squares

2

N K
min 3 | (i —9) = B —29) | (8)
Ii=t j=1
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In the matrix approach to minimizing the sum of squares which can be derived by

setting the partial derivatives a%- of (8) to zero, the system of equations in (8) is
J

written in matrix form [§]

y-y=Xp (9)
where
y1—y B1
Y2 — Y B2
y—y=| ¥-0 . B=| B ,
YN =Y ) Ny Bk Kx1

and X is a IV by K matrix whose entries are:

X —

One can solve for the multiple regression coefficients in the vector @ by left multiplying
(9) by the transpose X7 and solving the linear system

X™X)B=X"(y-9). (10)

The elements in the square K by K matrix X7 X will be sums of the form

N
XTX Z (J) —z0). (11)
p=1

Similarly the entries in the K by 1 vector b = X’ (y — ¥) will be sums of the form

N
- Z(xl(oi) - j(i))(yp -y), 1=12,.. K. (12)

p=1

It should be noted that for each pair of fixed indices ¢ and j, the sum in either
expression (11) or (12) can be represented using a sum of the form

N
S:Z(up_a)(vp_@)~ (13)

p=1

In the following section, we show that if the variables (1), 2, .., 2®) and y are
replaced with all the elements from the sampling distributions of the mean, the system
(14) is obtained

a(X'X) B =oX" (y - 3) (14)

for some constant . Moreover, we obtain a closed form for the constant «. If m is the
group size and we account for order, the size of the matrix X will be N™ x K for

selections with replacement and % x K for selections without replacement.

However, the resulting system (14) will still be a K x K system. Since the system (14)
is equivalent to the system (10), the regression coefficients for the sampling
distributions of the mean will be the same as the regression coefficients computed from
the original data according to (5) for 1 < j < K. The equivalence of 3§ follows from
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Bo = 0, equation (4), and the fact that the means of the original data (7 and z\)) are
the same as the means computed using all the elements from the sampling distributions
of the mean (with or without replacement). If we assume that there are IV, elements in
the sampling distribution, this can be stated mathematically as

Z Wpy +Wpy+-- -+ Wpyy,
P m

—w 15
v . (15)
or
2 (wpl e T W w) — 0 (16)
m

P

where w can represent y or ) and w = (Zf\il wz> /N. The sum ) is a sum over all
possible index values in the sampling distribution.

2 Regression with averages

Let us create elements from the sampling distribution of the mean using elements
chosen from the groups

U={uy|p=12,..,.N}, V={v,|p=12,..,N} (17)
by averaging all possible groups of size m; and size my

Upy + Up, + ..o+ Up,,, Upy + Upy + ... + Up,,
mi ’ mo

(18)

chosen from the sets U and V. We assume without loss of generality that m; > mso.
The first mo choices are paired

{(uplavm)’ (upzrvm) AR (upm2 ) U;DmQ)} C {(ulv Ul)v (u2, UQ) R (UN’ UN>})
while the remaining choices remain unpaired
u; € {ug,us,...un}t, i =mg+1,...my.

If the selections are done without replacement, p, # ps if r # s. However, if the
selections are formed with replacement, p, can equal p;.

Let us now replace u, and v, in (13) with all possible averages of m; and ms
elements as shown in (18),

Up, + Upy + .- + Up,
Sap = Z {( P1 pa Pmy ) _ “]
= my

!H2

where

N N N
SEDID D o)
P p1=1p2=1 Pmq =1
&r er
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for selections without replacement where £ is used to denote the exclusion of
previously chosen indices

glp = {pl | Yz # Pk, k= L2 7l - 1} (22)

The means of the original scores 4 = (Zil u,) /N, v = (Zil vi) /N are used in (19)
since they are equal to the means of the sampling distributions by (15). Note that order
matters in the way the sums are written in (20-21). For example, (u1,uz,ug) is
considered a different choice then (us,uq,u;). Disregarding order would lead to m;!
fewer terms in (21). However the same system (14) would be generated if order was not
considered for sampling distributions without replacement.

Factoring out —~— from (19) yields

mima2

0.5 1= > [(upy — @) + (up, — ) + oo + (up,,, — )]

: [(Um =)+ (vp, — V) + ... + (vpm2 - 5)] . (23)

Sections 2.1 and 2.2 show that Sz 5 will be equal to a factor « times .S as defined by
(13) for sampling distributions with and without replacement respectively. Section 2.3
generalizes these results to differences of two groups of sampling distibutions. In all
cases, the elements of the matrix (XTX) and the vector X” (y — ¥) will be multiplied
by the same factor a when elements from the sampling distributions of the mean are
used.

2.1 Sampling distributions with replacement

Start with Sz 5 as defined by (23). Since we are considering sampling distribution with
replacement, the values chosen for summation indices p; do not need to be different. We
will show that

Sus = > (up — 1) (v, — D). (24)
p=1
If we distribute the sums inside the parentheses in (23), two types of terms are formed.
The first type of term takes the form

(up, —a)(vp, —0), i=1,....,mo (25)

where the same summation index p; is used for u,, and v,,. The second type of term
takes the form

(upi - ’EL)(’Up]. - 6)7 i 7& j7 = 17 -y M, .7 = 17 -y 02 (26)
where different summation indices, p; and p; are used.

All the terms of the form shown in (26) are zero since when the sums Zgzl and

Zgzl from ), are moved to apply directly to (u,, — @)(v,, — ¥), each term can be

summed independently

N N N N
Z Z (up, — a)(vpj —-7) = Z(U’m — 1) Z (U;Dj —0), i#].
pi=1p;=1 pi=1 pi=1
However
N N
Z (upi - I_L) =0, Z (Upj - 77) =0 (27)
pi=1 p;j=1
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as noted by equation (7). Thus we must only consider terms of the form (25). The sum
(20) acting on (up, — @)(vp, — ¥) can be rearranged as

N N N N N N
S (up, =W (vp, =) =D D> > D> D (up, — W) (v, — D)

P p1=1pa=1 pi—1=1p;y1=1 Pmy=1p;=1

and simplified to

Z(um u)(vp, — = N™~ Z Up, — W) (vp, — V), 1=1,...,mg, (28)

P pi=1

N N N .
since each sum Zpl 1 DTS S Dpiiamt me:l contributes a factor of N.

p2=1" Pi—1=1

Multiplying the right side of (28) by ms to ensure all summation indices p;,i =1, ..., mo
are accounted for and multiplying by the factor m11m2 present in (23) yields (24). One
can also derive (24) using random variables and expected values.

Since Sg 5 is a multiple of S defined by (13), the system of equations (14) will be

formed where a = %_1 when we set m = m; = mo. Thus the multiple regression

coefficients B computed from sampling distributions of the mean with replacement will
be equal to the multiple regression coefficients computed from the original scores.

2.2 Sampling distribution without replacement

We will show that

Sup = o > (up — ) (29)

— 1)
(N mi ]. =1

for sampling distributions created without replacement. If we distribute the sums inside
the parentheses of (23), we again distinguish between two types of terms: terms of the
form (u,, —)(vp, — ©), i =1,...,my and terms of the form (u,, —u)(v,, — ),
) 7£ j, 1= 1, My, ] = 1, cey Mo

Choose a summation index p;. The sum (21) applied to (up, — @)(vp, — U) can be
written as

where the sum Zgzl with summation index p; is placed first and the term

<S‘lljz = {pl | b1 7épk37k = 1723 7l - 1}\{]71}

excludes previously chosen index values and the index value chosen for p;. The right
side of (30) can be simplified to

N
_ 1 B
| : : upl Up1 U)
pi=1

since the choice made for p; in the first sum Z;\Zzl leaves N — 1 choices for the second
sum, N — 2 choices for the third sum, up to N — (m; — 1) choices for the last sum.
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Moreover there are mqy terms similar to (30) for each summation index, p;. Thus the
terms of the form (u,, — @)(v,, — ¥) contribute

N
ma g5 Y — )y~ 0 (31)

g

to the sum Sy 5.
We now consider terms of the form (u,, — u)(v,, — v) with two different summation
indices p; and p;. The sum (21) applied to (u,, —u)(vp, — ), # j can be written as

P
N N N N N
S S S5 S SR @
Pi=1p=1 p1=1ps=1  Ppm;=1
PjFPi ‘Ef,z,j Sg,i,j Efnl Q.5

where the sums Z 1 Z p;=1 with summation indices p; and p; are placed first and
pj #pi

glzjid' = {pl |pl 7é pkak = 1727 al - 1}\{p’b7p]}

excludes previously chosen index values and the index values chosen for p; and p;.
Equation (32) can be simplified to

the term

N N
Z > (up, — u)(vy, — )
iy

since the choice made for p; in the first sum Zgzl and p; in the second sum Z%:L

D #Pi
leaves N — 2 choices for the third sum, N — 3 choices for the fourth sum, up to

N — (my — 1) choices for the last sum. Moreover there are ma(my — 1) sums of the form
(32) that can be identified when the terms in (23) are distributed. Therefore the terms
of the form (u,, — @)(vy,, — ¥) contribute

N N
ma(my — 1)” ; S (up — @) (v, — 0) (33)

to the sum Sz 5. Remove mg(mq — 1)% terms of the form E (up — 1) (v, — 0)

from (31) and add them to (33) to form

(N=-2)! L& . N
ma(my — 1)m ZZ(% —u)(vg — V) =

p=1 q=1
which is zero by (27). This leaves
VDb~ 1) =D S, ), —5)
m — ma(my — up — ) (v, — 0
(N —mq)! ! (N—mﬂ!FIP

69
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remaining terms from (31) which simplifies to (29) after multiplying by the factor mllmz

present in (23).

Since Sz 5 is a multiple of S as defined by (13), the system of equations (14) will be
formed where oo = % when we set m = m; = mso . Thus the multiple regression
coefficients B computed from sampling distributions of the mean without replacement
will be equal to the multiple regression coefficients computed from the original scores.

2.3 Difference between two groups

The results in Sections 2.1 and 2.2 generalize to a difference of two groups of sampling
distributions. Let mj be the size of Group 1 and mo be the size of Group 2. The two
groups can be composed to allow or exclude common elements.

2.3.1 Group 1 and Group 2 can share elements

Consider the expression Sy shown in (34). The sum } , composed of m; iterated sums
is essentially the same sum shown in either (20) or (21) except that the indexing is done
with ¢ instead of p. We first examine the case where Group 1 and Group 2 can share

elements: i.e. p; may be equal to g;.

Up, + Upy + oo+ Up,,. ) B (U’QI + Ugy + oo U, )}

RN (G

ma
. Upy + Upy + .o + Upyy B Vg + Vgy + oo + Vgyny (34)
mq mo .

Sy can be written in the form
uPl + upz + + upm1

. %; K ml... - > - <uq1 +uq2;;... +ug,, _ﬂ)}

|V + Upy, + .o T Up,,, 5 - Vg, + Vg, + oo + Vg, % (35)
mq ma .

el

Distributing gives

. Up, T Upy + oo T Up, Up, + Upy + ..o F Ypm,
si= LY (M e -

Q P

_ZZ[(“ql tUg + .+ U, —a> (vm t U+t U, >
o P m2 my

_ ZZ [(um T Upy, Tt Up,,, —a (%1 t Vg + o+ Ygmy >
o P m mz

+ZZ Ugy T Ugy + oo+ Ug,,, —a Vg, Vg + o +qu2
o P mz m2
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After one accounts for the sums ), in the first term and » , in the fourth term, one

can write
S, = AZ [(Um + umn—‘;— et up,, B u) <vp1 —|—vp2;— et U, B U>}
1 1
P
B (vp1+vp2+ + Vp,,., _ﬁ>z<uq1+uq2—l— + uq,,, —ﬂ)
p= mi o ma

Q
Ug, + Ugy + .. + Uq,, B Vg, + Vgy + - +0g,, B
By (e e ) (M = oo)| e
) mo ma

where
A N™2 with replacement
B % without replacement
and

N!

B {N mi with replacement
(N—m)!

without replacement.

The expression for A can be derived by recognizing that N choices are available for each
of the my sums in ), when the selections are made with replacement. When the
selections are made without replacement, there are N choices for the first sum, N — 1
choices for the second sum, up to N — (mg — 1) for the mo’th sum. The same reasoning
can be used to derive the expression for B. By (16), the second and third terms in (37)
are zero and can be eliminated. Using equations (24) and (29), one can simplify (37) to

N
Sa=C (u, —u)(v, — D), (38)
p=1
where s ) )

when selections are made with replacement and

C:

NI(N —2)! [ 1 1

(N — s — DN —ma — 1)1 | m0(N —ma) | ma(N —my)

when selections are made without replacement.

Note that the mean of a difference of two groups of sampling distributions of the
mean is zero. When @ and @ are set to zero in (19) and a difference of two groups of
sampling distributions are used, it is evident that Sy is similar in format to (19). Thus
the system of equations (14) will be formed where o« = C. Thus the multiple regression
coefficients B computed from a difference of two groups of sampling distributions of the
mean will be equal to the multiple regression coefficients computed from the original
scores.

2.3.2 Group 1 and Group 2 do not simultaneously share elements

We also consider the case where Group 1 and Group 2 do not simultaneously share any
elements. We assume the selections are done without replacement. Under these
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restrictions, one can write (36) as

gd _ AZ [(um +up, + ...t up,,, B u> (vpl +vp, + ... +0p,,, B v)]

m m
P 1 1

—Z (vpl + Up, + .. + Vp,,,, —v) Z <uq1 +ug, + .o+ g, —u>
P mi /o)
QP

mo
_Z (Upl T Upy + U, B ) (”ql T Vg, + oo+ Vg, _1_)>
p mi ma

Q
QFP
1B Z [(“ql T Ugy e+ Ug,, _ <Uq1 T Vg + s+ Vg, B 6)] (39)
) ma ma

where N |

A= (N(— 7;177117)7'12)! without replacement.
and N |

B= (N = mo)! without replacement.

(N —my — mz)'

The notation Q # P is used to exclude any elements in the sum O from indices
previously selected in the sum P. The A coefficient can be derived by noting that for
the distinct m; indices {p1,p2,...,Pm, } chosen in ), there remain N —m; choices
for the first sum in » 5, N —m; — 1 choices for the second sum, and so on up to

N —my — (mg — 1) choices for the my’th sum. Similarly, the B coefficient can be
derived by noting that for the distinct my indices {q1,q2, - -, ¢m,} chosen in )5, there
remain N — mg choices for the first sum in ) 5, N —mg — 1 choices for the second sum,
and so on up to N —mgy — (m; — 1) choices for the m;’th sum. Turning to the second
half of the second term of (39), which we define to be

Ug, + Ug, + ... + U
S = q1 q2 dmoy = —
=3 (et i

Q#P
N N N
Z ST > ((ug — 1)+ (ugy — @) + ... + (ug,,, — 1)) (40)
111 1g2=1 gmy=1
gq sP gg P 5,3{5

where
E = la#a k=12 0=1}\{p1,p2,. -, Pm, }

excludes previously chosen indices in the 3 o sum and any previously chosen indices
{p1,p2,---,Pm, } selected from the ), sum. Applying the sum to the specific term
(ug, —u), the sum ), can be rearranged as

1 N N N N N N
By o= - Z Z Z Z Z Z (ug;— 1),
< gi= — =1 git+1=1 Gmo =1

gi=1 gq1= -1
q4i:P £9.P r.* P q.p q.p qp
£ gl.l 2 Si—l.i 5i+1 i £

my i

where the term
WP = {qi | qs # pr, k= 1,2,...,m1} (41)

72
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excludes previously chosen indices {p1,p2,...,Pm, } selected from the ), sum and
where the term

glq,;p = {ql | q # Qkyk = 1727"'7l - 1}\{(]7;,2717]927” ’ ’pml}

excludes previously chosen indices in the ), sum, the index g; chosen in the qu_1
Sap
sum, and any previously chosen indices {p1,pz,...,pm, } selected from the 3, sum.

Bear in mind that the sums

N N
Z S D (ug,—n) (42)

a1 pl 2= %;1?:1 qIJqﬁlp:l Qmoy =1
ey & e &N, Emy i

will contribute the same factor to (ug, — @) regardless of the selected value for the
summation index ¢;. Taking care to avoid selecting a index that has been already

chosen, we note that m; choices have already been made for the set {p1,p2,...,Pm, }-
In addition, for each choice of ¢; in Zé\izl there remain N — my — 1 choices left for the
g‘ZivP
first sum Zé\izl, N — my — 2 choices left for the second sum, up to N —m; — (mg — 1)
gLy
choices for the (mg — 1)’th sum or
(N — my — mz)'

total choices. Thus

N
1 (N - —1)!
Sy, = — ( e uql —a) (43)

‘ mo (N—m1 '
5

Using the definition of the excluded terms £97 (41) in the sum ¥ 5 =1 (ug, —u),
Sqi’p

N N my

Z (ug, — 1) = Z (g, — ) — Z(”PJ —a), (44)

gi=1 qi=1 j=1
£%iP

one can replace 32,1 (ug, — @) in (43) with the right hand side of (44) to yield,
qiFp;

N mi
1 (N —mq — ].)'
Suy = — ~
T OV )t | 2 (e 2 o

q;=1

The sum E(Z:l (uq, — ) is zero by (27). Since there are my terms of the form (u,, — )
in (40), S, can be written as

N —my —1)! &
8“27( o 'Z

(N—m1
or
S — _—m (N_ml_l)! uP1+uP2+"'+upmlia
v 1(N—ml—mg)! my '
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We can apply the same steps to the second half of the third term of (39), which we

define to be S,
L Vg + Vqz +o Tt vqm2 -
Sy 1= g < s -7

Q#P

to show that

Sv = —m

(N —mq —1)! (v, +Vp, + .. +0p,,, .
(N—m1 —mg)! mq '

Using these results in (39),

gd _ AZ [(um +up2n—&l—1... + up,,, B ﬂ) <Up1 +vp27;1|—1... + Up,,, B 6)}
P

+2D2<upl+up2+...+upml —*U,) <’U1 +?)2+...+Upml _@)
P

ma ma
~ Ug, + Ug, + ... + U Vg, + Vg, + ... +0
+BZ |:< g1 q2 qmg u) ( q1 q2 9mg ”U>:| (45)
ma ma
Q
where N "
~ —my — .
D= .
m (N —my — mg)'

Using equation (29), (45) simplifies to

. N
d = CZ(UP —a)(vp — 0), (46)

where

. (N—2) (N —my)! (N — my)!
C_ (N—ml—mz)! (ml(N—ml—l)! +m2(N—m2—1)! +2>’

keeping in mind that the selections are made without replacement. Again Sy is a
multiple of S. Therefore the system of equations (14) will be formed where oo = C..

3 Coefficient of determination

The coefficient of determination R? is the proportion of variability in the dependent
variable that can be accounted for by the independent variables [6]. It is defined using

R2— Zicai—9)*

= (i~ 9)? o
where ¢; is the prediction provided by the surface of regression
K
(5 —5) = > B! — &), (48)
j=1

Substituting (48) into (47),

S (SE, 6 —0)
R?> = - - , (49)
Zi:l(yi - Z/>2
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S SN BBy N (@ — D) (2 — z)
SN (g — g)?

Again we see the presence of sums SN | (2 — a_;(j))(:vz(-/) —zU0), N (y; — §)? of the
form (13). Both numerator and denominator will be multiplied by the same constant
according to (24), (29), (38), and (46) leaving the coefficient of determination R?
unchanged when elements of the sampling distribution of the mean or differences of two
groups of sampling distributions of the mean are used. For one independent variable,

R will have the same sign for sampling distributions of the mean and individual scores since
R shares the same sign as the linear regression slope.

R* =

(1)

4 Standard error of estimate

The standard error of estimate is a measure of accuracy for the surface of regression [7].

In this section, we show the standard error of estimate is reduced by the factor \/%

where m is the group size for sampling distributions with replacement and by
1 N—m
vmYV N—1
for sampling distributions without replacement.
The sum of squares error SSE is defined to be

N

SSE = (y; — ;)% (52)

=1

Given this definition, the standard error of estimate s, can be defined

| SSE

Now by [§]
SST =SSR+ SSE (54)
where SST is the total variation and SSR is the sum of squared regression,
N N
SST = (y;—9)°, SSR=> (4 —9)*. (55)
=1 =1

With these definitions, the coefficient of determination (47) can also be written as

_ SSR_ SST — SSE

2
R SST SST (56)
Solving (56) for SSE and dividing by N
SSE  SST
T:T(I—R2):02 (1-R?) (57)
where SST
2 _
0t = (58)
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O Original data, R? = .58
B Group size 2, R?= 58
Group size 3, R?= 58
| — Shared linear regression line
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Figure 1. Original data (x;,y;), all elements from the sampling distributions of the mean,
and the shared linear regression line. The red circles are the original 15 points, the blue
squares are the averaged data of size m = 2, and the green asterisks are the averaged
data of size m = 3 without replacement.

is the population variance. Now by (53) SSE = (N — 2)s2. Replacing SSE in (57) with
(N — 2)s? and solving for s, yields

Se=0V1—R? N (59)

N -2

When sampling distributions of the mean are used, R remains the same, but o is
replaced by oy where

o
oy = —\/m (60)
for sampling distributions with replacement and
N —
g ja-m (61)

= mV N1

for sampling distributions without replacement [7]. Thus for selections made with
replacement and for selections made without replacement (if N >> m), s. will be
reduced by ﬁ when sampling distributions of the mean are used. This result is

analogous to the reduction of the standard deviation by ﬁ when using sampling

distributions of the mean for one variable.

5 Numerical simulations

Figure 1 plots the original data {(x;,9;),1 < < 10} in red and all elements from the
sampling distribution of the mean generated without replacement for groups of size
m = 2 in blue and m = 3 in green for N = 10 original points. The original data and
elements from the sampling distribution of the mean share the same regression line and
coefficient of determination R?. The elements of the sampling distribution of the mean
are clustered more closely about the regression line compared to the original data which
is consistent with (59) and (61).

Figure 2 plots the original data {(x;,v;, 2;),1 <i < 15} in red and all elements from
the sampling distribution of the mean generated without replacement for groups of size
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Figure 2.Original data (z;,v;,2;),7 = 1,15 in red and all elements from the sampling
distribution of the mean for m = 2 (blue) and m = 3 (green), and the shared linear
regression plane.

m = 2 in blue and m = 3 in green for N = 15 original points. The original data and
elements from the sampling distribution of the mean share the same regression plane
2z = .653x — .712y and coefficient of determination R? = 0.76. For visualization
purposes, the normal distance to the plane is plotted as the z-coordinate and the
multiple regression plane is aligned with the z = 0 plane.

Figure 3 shows the convergence of sampling distributions of the mean for
{(zi,v:),i=1,2,..., N}, N = 11 scores with Pearson correlation coefficient R = 0.35
and linear regression slope 5, = 0.27. In the first simulation shown in black and red,
elements from the sampling distributions of the mean are created using groups of size
m = b without replacement. In the second simulation shown in blue and green, elements
from the sampling distributions of the mean are created using differences of two groups
of size m1; = 4 and mo = 2 without replacement. The horizontal axis plots the fraction
of total selections used in the sampling distributions. There are 11° = 161,051 total
selections for the first simulation and 11!/5! = 332,640 total selections for the second
simulation. The vertical axis plots the base 10 logarithm of the absolute difference. The
absolute difference can be between either the Pearson R = 0.35 based on individual
scores and the Pearson R computed from a fraction of the elements from the sampling
distributions of the mean (black and blue graphs), or between the linear regression
slope 81 = .27 based on the original scores and the slope computed using a
fraction of the elements from the sampling distributions of the mean (red and green
graphs). While not entirely obvious due to the density of points, all differences decrease
from approximately 107 to less than 107! in the last 0.001% of the total selections. In
addition, the differences do not always decrease monotonically as the fraction of total
selections increase, and the differences decrease to very small values (less than 107°) at
certain points during the course of the convergence as noted by the downward spikes.

6 Gene expression and distance between genes

A useful way of organizing the data obtained from microarrays or RNA-seq data is to
group together genes that exhibit similar expression patterns through hierarchical
clustering. A hierarchical clustering algorithm generates a dendrogram (tree diagram).
However, the algorithm requires that a distance be defined to quantify similarities in
expression between two individual genes.
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Convergence of sampling distributions of the mean with R=.35, slope=.27
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Fig 3. Convergence of the Pearson R and linear regression slope for sampling
distributions of the mean.

Let A; denote the expression level of gene A for patient i and let B; denote the
expression level for gene B for patient i, 1 <14 < N. Distances between genes can be
computed using many metrics [9], but two common ones are the Euclidean distance

N
Dg =Y (A -B)?, (62)
i=1

and the Manhattan distance,

N
Dy =) _|Ai - Bi|.

=1

Correlation coefficients [10] are also used to measure the similarities between two genes.
One measure of distance using the Pearson R is

Dr=1-|R|, (63)
_ Yl(A-A)(Bi-B)
VEN (4 - A2 YN (B, - By

or Dy =1 — R? [11] if the sign of R is not important. If R is close to 1 or -1, the
distances Dg, DY, will be close to zero.

The purpose of the next section is to propose a new distance based on the differential
expression of two genes. We then show the new measure of distance is the same as the
Pearson R coefficient computed from the original scores (64), thus lending support to
the use of the Pearson R coefficient in measuring the distance between two genes.

R (64)

6.1 Formulating a new distance between two genes

Let us formulate a new distance based on differential expression. Select m; < %
distinct random patients and their expression levels for gene A and assign them to
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Group 1. Select a second group of my < % distinct (and different from Group 1)
random patients and assign their expression levels to Group 2. Repeat the process using
the same selections for gene B. Since both groups are sampled from a population with a
known variance o2, the z-statistic [12] for two independent samples can be used to
measure differential expression for gene A
o A Ay (65)
[o2 4 o2
mi ma
which if my, ms > 30 will be approximately normally distributed. Let zp be the
z-statistic for gene B for the same selection of patients using the same equation (65).
This process can be repeated multiple times giving a set of ordered pairs (zfz, zg) for
each different selection (k) of groups. The Pearson R value, R; can then be computed
from these ordered pairs using all possible selections K

SR (2 — 24) (2% — 2)

R, = : (66)
VIR (K — 242 S (2 — 2p)?
The new distance will now be defined as Dy or alternatively D7,
Dr=1—|Ry|, D'r=1—- R (67)
Given N total patients, there exist K = (N+1Lmz), total selections. Computing all

selections is prohibitive for large N. However, we know from the analysis in Section
2.3.2, and the fact that the Pearson R coefficient is not affected by the multiplicative

factor 1/7‘;—21 + ;’1—22 in (65), that the distance D will be equal Dy and DY, will be equal
D

7 Conclusion

We have shown that the linear regression coefficients (simple and multiple) and the
coefficient of determination R? computed from sampling distributions of the mean (with
or without replacement) are equal to the regression coefficients and coefficient of
determination computed with the original data. This result also applies to a difference
of two groups of sampling distributions of the mean. Moreover, the standard error of
estimate is reduced by the square root of the group size for sampling distributions of the
mean.

The result has implications for the construction of hierarchical clustering trees or
heat maps which visualize the relationship between many genes. These processes require
one to define a distance between two genes using their expression levels. We developed a
new measure of distance based on how differential expression in one gene correlates with
differential expression in a second gene using the z-statistic. We showed that the new
measure is equivalent to the Pearson R coefficient computed from the original scores,
thus lending support to the use of the Pearson R coefficient for measuring a distance
between two genes.
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