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Abstract
We show that the simple and multiple linear regression coefficients and 

the coefficient of determination R2 computed from sampling distributions 
of the mean (with or without replacement) are equal to the regression 
coefficients and coefficient of determination computed with individual 
data. Moreover, the standard error of estimate is reduced by the square 
root of the group size for sampling distributions of the mean. The result has 
applications when formulating a distance measure between two genes in a 
hierarchical clustering algorithm. We show that the Pearson R coefficient 
can measure how differential expression in one gene correlates with 
differential expression in a second gene.

Keywords: Linear regression; Pearson R; Sampling distributions of the 
mean.

Introduction
Linear regression coefficients and the Pearson R correlation have long 

been used to quantify the relationship between dependent and independent 
variables [1]. However, the “ecological fallacy” has shown that linear 
regression and correlation coefficients based on group averages cannot 
be used to estimate linear regression and correlation coefficients based on 
individual scores [2, 3]. 

It may not be well known that if all possible groups are considered, in the 
case of sampling distributions of the mean, the Pearson R coefficient computed 
from the group averages is equal to the Pearson R coefficient computed from 
the original individual scores for one independent variable [4, 5]. We extend 
this result and show that the linear regression coefficients (for simple and 
multiple regression) and the coefficient of determination R2 computed from 
sampling distributions of the mean (with or without replacement) are the same 
as the coefficient of determination and linear regression coefficients computed 
with the original individual data. The sampling distributions of the mean can 
also be constructed using differences between two groups of different size. 
The result has implications for hierarchical clustering of genes. Specifically, 
the Pearson R coefficient can be used to measure how differential expression 
in one gene correlates with differential expression in a second gene.	

The standard error of estimate is a measure of accuracy for the surface 
of regression [6]. Using the coefficient of determination, we show that the 
standard error of estimate is reduced by the square root of the group size for 
sampling distributions of the mean.

In Section 1, we recall and reformulate the system of equations 
that are solved to determine the linear regression coefficients 
for individual scores. In Section 2, we prove the assertion that 
the same system of equations needs to be solved for sampling 
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distributions of the mean with and without replacement or differences between two 27

groups of sampling distributions. In Section 3, we show that the coefficient of 28

determination is the same whether it is calculated using individual scores or all possible 29

group averages from sampling distributions. Section 4 shows that the standard error of 30

estimate is reduced by the square root of the group size for sampling distributions of the 31

mean. Section 5 performs numerical simulations to illustrate these principles. Section 6 32

applies these results and shows that the Pearson R coefficient can be used to measure 33

how differential expression in one gene correlates with differential expression in a second 34

gene when the z-statistic is used. 35

1 Computing regression coefficients 36

Multiple regression requires one to compute the coefficients {β∗
j , j = 0, ...,K} that 37

minimize the sum of squares 38

min
β∗
j

N∑
i=1


yi −

K∑
j=1

β∗
j x

(j)
i − β∗

0




2

(1)

where x(1), x(2), ..., x(K) represent K different independent variables, y is the 39

dependent variable, and the ith realization of variables x(j) and y are x
(j)
i and yi, 40

respectively, 1 ≤ i ≤ N . Note that for simple linear regression, K = 1. We recast the 41

sum (1) in the form 42

N∑
i=1


(yi − ȳ)−

K∑
j=1

βj(x
(j)
i − x̄(j))− β0




2

(2)

where 43

ȳ =

∑N
i=1 yi
N

, x̄(j) =

∑N
i=1 x

(j)
i

N
, j = 1, 2, ...K (3)

and the coefficients are related by 44

β0 = β∗
0 − ȳ +

K∑
j=1

β∗
j x̄

(j), (4)

45

βj = β∗
j , j = 1, 2, ...K. (5)

To solve for β0, we set the partial derivative of (2) with respect to β0 to zero which 46

yields 47

N∑
i=1

(yi − ȳ)−
K∑
j=1

βj

(
N∑
i=1

(x
(j)
i − x̄(j))

)
= Nβ0. (6)

However 48

N∑
i=1

(yi − ȳ) = 0,
N∑
i=1

(x
(j)
i − x̄(j)) = 0 ∀j, 1 ≤ j ≤ K (7)

which implies that β0 = 0. Thus one can redefine the problem of computing multiple 49

regression coefficients (1) to be selection of the coefficients {βj , j = 1, ...,K} that 50

minimizes the sum of squares 51

min
βj

N∑
i=1


(yi − ȳ)−

K∑
j=1

βj(x
(j)
i − x̄(j))




2

. (8)
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In the matrix approach to minimizing the sum of squares which can be derived by 52

setting the partial derivatives ∂
∂βj

of (8) to zero, the system of equations in (8) is 53

written in matrix form [8] 54

y − ȳ = Xβ (9)

where 55

y − ȳ =




y1 − ȳ
y2 − ȳ
y3 − ȳ

...
yN − ȳ




N×1

, β =




β1

β2

β3

...
βK




K×1

,

and X is a N by K matrix whose entries are: 56

X =




x
(1)
1 − x̄(1) x

(2)
1 − x̄(2) · · · x

(K)
1 − x̄(K)

x
(1)
2 − x̄(1) x

(2)
2 − x̄(2) · · · x

(K)
2 − x̄(K)

...
...

...
...

x
(1)
N − x̄(1) x

(2)
N − x̄(2) · · · x

(K)
N − x̄(K)




N×K

.

One can solve for the multiple regression coefficients in the vector β by left multiplying 57

(9) by the transpose XT and solving the linear system 58

(
XTX

)
β = XT (y − ȳ) . (10)

The elements in the square K by K matrix XTX will be sums of the form 59

(
XTX

)
ij
=

N∑
p=1

(x(i)
p − x̄(i))(x(j)

p − x̄(j)). (11)

Similarly the entries in the K by 1 vector b ≡ XT (y − ȳ) will be sums of the form 60

bi =
N∑

p=1

(x(i)
p − x̄(i))(yp − ȳ), i = 1, 2, ...,K. (12)

It should be noted that for each pair of fixed indices i and j, the sum in either 61

expression (11) or (12) can be represented using a sum of the form 62

S =

N∑
p=1

(up − ū) (vp − v̄) . (13)

In the following section, we show that if the variables x(1), x(2), ..., x(k), and y are 63

replaced with all the elements from the sampling distributions of the mean, the system 64

(14) is obtained 65

α
(
XTX

)
β = αXT (y − ȳ) (14)

for some constant α. Moreover, we obtain a closed form for the constant α. If m is the 66

group size and we account for order, the size of the matrix X will be Nm ×K for 67

selections with replacement and (N−m+1)!
(N−m)! ×K for selections without replacement. 68

However, the resulting system (14) will still be a K ×K system. Since the system (14) 69

is equivalent to the system (10), the regression coefficients for the sampling 70

distributions of the mean will be the same as the regression coefficients computed from 71

the original data according to (5) for 1 ≤ j ≤ K. The equivalence of β∗
0 follows from 72
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β0 = 0, equation (4), and the fact that the means of the original data (ȳ and x̄(j)) are 73

the same as the means computed using all the elements from the sampling distributions 74

of the mean (with or without replacement). If we assume that there are Np elements in 75

the sampling distribution, this can be stated mathematically as 76

∑
P

(
wp1

+wp2
+...+wpm

m

)

Np
= w̄ (15)

or 77∑
P

(
wp1

+ wp2
+ ...+ wpm

m
− w̄

)
= 0 (16)

where w can represent y or x(j) and w̄ =
(∑N

i=1 wi

)
/N . The sum

∑
P is a sum over all 78

possible index values in the sampling distribution. 79

2 Regression with averages 80

Let us create elements from the sampling distribution of the mean using elements 81

chosen from the groups 82

U = {up | p = 1, 2, ..., N}, V = {vp | p = 1, 2, ..., N} (17)

by averaging all possible groups of size m1 and size m2 83

(
up1

+ up2
+ ...+ upm1

m1

)
,

(
vp1

+ vp2
+ ...+ vpm2

m2

)
(18)

chosen from the sets U and V . We assume without loss of generality that m1 ≥ m2.
The first m2 choices are paired

{(up1
, vp1

), (up2
, vp2

) . . . , (upm2
, vpm2

)} ⊂ {(u1, v1), (u2, v2) . . . , (uN , vN )},

while the remaining choices remain unpaired

ui ∈ {u1, u2, . . . uN}, i = m2 + 1, . . .m1.

If the selections are done without replacement, pr �= ps if r �= s. However, if the 84

selections are formed with replacement, pr can equal ps. 85

Let us now replace up and vp in (13) with all possible averages of m1 and m2 86

elements as shown in (18), 87

Sū,v̄ :=
∑
P

[(
up1

+ up2
+ ...+ upm1

m1

)
− ū

]

·
[(

vp1
+ vp2

+ ...+ vpm2

m2

)
− v̄

]
. (19)

where 88

∑
P

=
N∑

p1=1

N∑
p2=1

. . .

N∑
pm1=1

(20)

for selections with replacement and 89

∑
P

=
N∑

p1=1

N∑
p2=1
Ep
2

. . .
N∑

pm1=1
Ep
m1

(21)
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for selections without replacement where Ep
l is used to denote the exclusion of 90

previously chosen indices 91

Ep
l := {pl | pl �= pk, k = 1, 2, ..., l − 1}. (22)

The means of the original scores ū =
(∑N

i=1 ui

)
/N , v̄ =

(∑N
i=1 vi

)
/N are used in (19) 92

since they are equal to the means of the sampling distributions by (15). Note that order 93

matters in the way the sums are written in (20-21). For example, (u1, u2, u3) is 94

considered a different choice then (u3, u2, u1). Disregarding order would lead to m1! 95

fewer terms in (21). However the same system (14) would be generated if order was not 96

considered for sampling distributions without replacement. 97

Factoring out 1
m1m2

from (19) yields 98

Sū,v̄ :=
1

m1m2

∑
P

[
(up1 − ū) + (up2 − ū) + ...+ (upm1

− ū)
]

·
[
(vp1 − v̄) + (vp2 − v̄) + ...+ (vpm2

− v̄)
]
. (23)

Sections 2.1 and 2.2 show that Sū,v̄ will be equal to a factor α times S as defined by 99

(13) for sampling distributions with and without replacement respectively. Section 2.3 100

generalizes these results to differences of two groups of sampling distibutions. In all 101

cases, the elements of the matrix
(
XTX

)
and the vector XT (y − ȳ) will be multiplied 102

by the same factor α when elements from the sampling distributions of the mean are 103

used. 104

2.1 Sampling distributions with replacement 105

Start with Sū,v̄ as defined by (23). Since we are considering sampling distribution with 106

replacement, the values chosen for summation indices pi do not need to be different. We 107

will show that 108

Sū,v̄ =
Nm1−1

m1

N∑
p=1

(up − ū) (vp − v̄) . (24)

If we distribute the sums inside the parentheses in (23), two types of terms are formed. 109

The first type of term takes the form 110

(upi
− ū)(vpi

− v̄), i = 1, ...,m2 (25)

where the same summation index pi is used for upi and vpi . The second type of term 111

takes the form 112

(upi − ū)(vpj − v̄), i �= j, i = 1, ...,m1, j = 1, ...,m2 (26)

where different summation indices, pi and pj are used. 113

All the terms of the form shown in (26) are zero since when the sums
∑N

pi=1 and∑N
pj=1 from

∑
P are moved to apply directly to (upi

− ū)(vpj
− v̄), each term can be

summed independently

N∑
pi=1

N∑
pj=1

(upi
− ū)(vpj

− v̄) =

N∑
pi=1

(upi
− ū)

N∑
pj=1

(vpj
− v̄), i �= j.

However 114

N∑
pi=1

(upi − ū) = 0,

N∑
pj=1

(vpj − v̄) = 0 (27)
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as noted by equation (7). Thus we must only consider terms of the form (25). The sum
(20) acting on (upi

− ū)(vpi
− v̄) can be rearranged as

∑
P

(upi − ū)(vpi − v̄) =

N∑
p1=1

N∑
p2=1

. . .

N∑
pi−1=1

N∑
pi+1=1

. . .

N∑
pm1=1

N∑
pi=1

(upi − ū)(vpi − v̄)

and simplified to 115

∑
P

(upi − ū)(vpi − v̄) = Nm1−1
N∑

pi=1

(upi − ū)(vpi − v̄), i = 1, ...,m2, (28)

since each sum
∑N

p1=1

∑N
p2=1 . . .

∑N
pi−1=1

∑N
pi+1=1 . . .

∑N
pm1=1 contributes a factor of N . 116

Multiplying the right side of (28) by m2 to ensure all summation indices pi, i = 1, ...,m2 117

are accounted for and multiplying by the factor 1
m1m2

present in (23) yields (24). One 118

can also derive (24) using random variables and expected values. 119

Since Sū,v̄ is a multiple of S defined by (13), the system of equations (14) will be 120

formed where α = Nm−1

m when we set m = m1 = m2. Thus the multiple regression 121

coefficients β computed from sampling distributions of the mean with replacement will 122

be equal to the multiple regression coefficients computed from the original scores. 123

2.2 Sampling distribution without replacement 124

We will show that 125

Sū,v̄ =
(N − 2)!

m1(N −m1 − 1)!

N∑
p=1

(up − ū) (vp − v̄) (29)

for sampling distributions created without replacement. If we distribute the sums inside 126

the parentheses of (23), we again distinguish between two types of terms: terms of the 127

form (upi − ū)(vpi − v̄), i = 1, ...,m2 and terms of the form (upi − ū)(vpj − v̄), 128

i �= j, i = 1, ...,m1, j = 1, ...,m2. 129

Choose a summation index pi. The sum (21) applied to (upi
− ū)(vpi

− v̄) can be 130

written as 131

∑
P

(upi
− ū)(vpi

− v̄) =

N∑
pi=1

N∑
p1=1
Ep
1,i

N∑
p2=1
Ep
2,i

. . .
N∑

pi−1=1
Ep
i−1,i

N∑
pi+1=1
Ep
i+1,i

. . .
N∑

pm1=1

Ep
m1,i

(upi
− ū)(vpi

− v̄) (30)

where the sum
∑N

pi=1 with summation index pi is placed first and the term

Ep
l,i := {pl | pl �= pk, k = 1, 2, ..., l − 1}\{pi}

excludes previously chosen index values and the index value chosen for pi. The right
side of (30) can be simplified to

(N − 1)!

(N −m1)!

N∑
pi=1

(upi
− ū)(vpi

− v̄)

since the choice made for pi in the first sum
∑N

pi=1 leaves N − 1 choices for the second 132

sum, N − 2 choices for the third sum, up to N − (m1 − 1) choices for the last sum. 133
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Moreover there are m2 terms similar to (30) for each summation index, pi. Thus the 134

terms of the form (upi
− ū)(vpi

− v̄) contribute 135

m2
(N − 1)!

(N −m1)!

N∑
p=1

(up − ū)(vp − v̄) (31)

to the sum Sū,v̄. 136

We now consider terms of the form (upi
− ū)(vpj

− v̄) with two different summation 137

indices pi and pj . The sum (21) applied to (upi
− ū)(vpj

− v̄), i �= j can be written as 138

∑
P

(upi
− ū)(vpj

− v̄) =

N∑
pi=1

N∑
pj=1
pj �=pi

N∑
p1=1
Ep
1,i,j

N∑
p2=1
Ep
2,i,j

. . .
N∑

pm1=1

Ep
m1,i,j

(upi
− ū)(vpj

− v̄) (32)

where the sums
∑N

pi=1,
∑N

pj=1
pj �=pi

with summation indices pi and pj are placed first and

the term
Ep
l,i,j := {pl | pl �= pk, k = 1, 2, ..., l − 1}\{pi, pj}

excludes previously chosen index values and the index values chosen for pi and pj .
Equation (32) can be simplified to

(N − 2)!

(N −m1)!

N∑
pi=1

N∑
pj=1
pj �=pi

(upi
− ū)(vpj

− v̄)

since the choice made for pi in the first sum
∑N

pi=1 and pj in the second sum
∑N

pj=1,
pj �=pi

139

leaves N − 2 choices for the third sum, N − 3 choices for the fourth sum, up to 140

N − (m1 − 1) choices for the last sum. Moreover there are m2(m1 − 1) sums of the form 141

(32) that can be identified when the terms in (23) are distributed. Therefore the terms 142

of the form (upi
− ū)(vpj

− v̄) contribute 143

m2(m1 − 1)
(N − 2)!

(N −m1)!

N∑
p=1

N∑
q=1
q �=p

(up − ū)(vq − v̄) (33)

to the sum Sū,v̄. Remove m2(m1 − 1) (N−2)!
(N−m1)!

terms of the form
∑N

p=1(up − ū)(vp − v̄)

from (31) and add them to (33) to form

m2(m1 − 1)
(N − 2)!

(N −m1)!

N∑
p=1

N∑
q=1

(up − ū)(vq − v̄) =

m2(m1 − 1)
(N − 2)!

(N −m1)!

N∑
p=1

(up − ū)
N∑
q=1

(vq − v̄)

which is zero by (27). This leaves

[
m2

(N − 1)!

(N −m1)!
− m2(m1 − 1)

(N − 2)!

(N −m1)!

] N∑
p=1

(up − ū)(vp − v̄)
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remaining terms from (31) which simplifies to (29) after multiplying by the factor 1
m1m2

144

present in (23) 145

Since Sū,v̄ is a multiple of S as defined by (13), the system of equations (14) will be 146

formed where α = (N−2)!
m(N−m−1)! when we set m = m1 = m2 . Thus the multiple regression 147

coefficients β computed from sampling distributions of the mean without replacement 148

will be equal to the multiple regression coefficients computed from the original scores. 149

2.3 Difference between two groups 150

The results in Sections 2.1 and 2.2 generalize to a difference of two groups of sampling 151

distributions. Let m1 be the size of Group 1 and m2 be the size of Group 2. The two 152

groups can be composed to allow or exclude common elements. 153

2.3.1 Group 1 and Group 2 can share elements 154

Consider the expression Sd shown in (34). The sum
∑

Q composed of m2 iterated sums 155

is essentially the same sum shown in either (20) or (21) except that the indexing is done 156

with q instead of p. We first examine the case where Group 1 and Group 2 can share 157

elements: i.e. pi may be equal to qj . 158

Sd :=
∑
Q

∑
P

[(
up1

+ up2
+ ...+ upm1

m1

)
−
(
uq1 + uq2 + ...+ uqm2

m2

)]

·
[(

vp1 + vp2 + ...+ vpm1

m1

)
−
(
vq1 + vq2 + ...+ vqm2

m2

)]
. (34)

Sd can be written in the form 159

Sd =
∑
Q

∑
P

[(
up1

+ up2
+ ...+ upm1

m1
− ū

)
−
(
uq1 + uq2 + ...+ uqm2

m2
− ū

)]

·
[(

vp1 + vp2 + ...+ vpm1

m1
− v̄

)
−
(
vq1 + vq2 + ...+ vqm2

m2
− v̄

)]
. (35)

Distributing gives 160

Sd =
∑
Q

∑
P

[(
up1 + up2 + ...+ upm1

m1
− ū

)(
vp1 + vp2 + ...+ vpm1

m1
− v̄

)]

−
∑
Q

∑
P

[(
uq1 + uq2 + ...+ uqm2

m2
− ū

)(
vp1

+ vp2
+ ...+ vpm1

m1
− v̄

)]

−
∑
Q

∑
P

[(
up1

+ up2
+ ...+ upm1

m1
− ū

)(
vq1 + vq2 + ...+ vqm2

m2
− v̄

)]

+
∑
Q

∑
P

[(
uq1 + uq2 + ...+ uqm2

m2
− ū

)(
vq1 + vq2 + ...+ vqm2

m2
− v̄

)]
. (36)
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After one accounts for the sums
∑

Q in the first term and
∑

P in the fourth term, one 161

can write 162

Sd = A
∑
P

[(
up1 + up2 + ...+ upm1

m1
− ū

)(
vp1 + vp2 + ...+ vpm1

m1
− v̄

)]

−
∑
P

(
vp1

+ vp2
+ ...+ vpm1

m1
− v̄

)∑
Q

(
uq1 + uq2 + ...+ uqm2

m2
− ū

)

−
∑
P

(
up1

+ up2
+ ...+ upm1

m1
− ū

)∑
Q

(
vq1 + vq2 + ...+ vqm2

m2
− v̄

)

+B
∑
Q

[(
uq1 + uq2 + ...+ uqm2

m2
− ū

)(
vq1 + vq2 + ...+ vqm2

m2
− v̄

)]
(37)

where

A =

{
Nm2 with replacement

N !
(N−m2)!

without replacement

and

B =

{
Nm1 with replacement

N !
(N−m1)!

without replacement.

The expression for A can be derived by recognizing that N choices are available for each 163

of the m2 sums in
∑

Q when the selections are made with replacement. When the 164

selections are made without replacement, there are N choices for the first sum, N − 1 165

choices for the second sum, up to N − (m2 − 1) for the m2’th sum. The same reasoning 166

can be used to derive the expression for B. By (16), the second and third terms in (37) 167

are zero and can be eliminated. Using equations (24) and (29), one can simplify (37) to 168

Sd = C
N∑

p=1

(up − ū)(vp − v̄), (38)

where

C =
Nm2Nm1

N

(
1

m1
+

1

m2

)

when selections are made with replacement and

C =
N !(N − 2)!

(N −m1 − 1)!(N −m2 − 1)!

[
1

m1(N −m2)
+

1

m2(N −m1)

]

when selections are made without replacement. 169

Note that the mean of a difference of two groups of sampling distributions of the 170

mean is zero. When ū and v̄ are set to zero in (19) and a difference of two groups of 171

sampling distributions are used, it is evident that Sd is similar in format to (19). Thus 172

the system of equations (14) will be formed where α = C. Thus the multiple regression 173

coefficients β computed from a difference of two groups of sampling distributions of the 174

mean will be equal to the multiple regression coefficients computed from the original 175

scores. 176

2.3.2 Group 1 and Group 2 do not simultaneously share elements 177

We also consider the case where Group 1 and Group 2 do not simultaneously share any 178

elements. We assume the selections are done without replacement. Under these 179
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restrictions, one can write (36) as 180

S̃d = Ã
∑
P

[(
up1

+ up2
+ ...+ upm1

m1
− ū

)(
vp1

+ vp2
+ ...+ vpm1

m1
− v̄

)]

−
∑
P

(
vp1

+ vp2
+ ...+ vpm1

m1
− v̄

) ∑
Q

Q�=P

(
uq1 + uq2 + ...+ uqm2

m2
− ū

)

−
∑
P

(
up1 + up2 + ...+ upm1

m1
− ū

) ∑
Q

Q�=P

(
vq1 + vq2 + ...+ vqm2

m2
− v̄

)

+B̃
∑
Q

[(
uq1 + uq2 + ...+ uqm2

m2
− ū

)(
vq1 + vq2 + ...+ vqm2

m2
− v̄

)]
(39)

where

Ã =
(N −m1)!

(N −m1 −m2)!
without replacement.

and

B̃ =
(N −m2)!

(N −m1 −m2)!
without replacement.

The notation Q �= P is used to exclude any elements in the sum Q from indices
previously selected in the sum P. The Ã coefficient can be derived by noting that for
the distinct m1 indices {p1, p2, . . . , pm1

} chosen in
∑

P , there remain N −m1 choices
for the first sum in

∑
Q, N −m1 − 1 choices for the second sum, and so on up to

N −m1 − (m2 − 1) choices for the m2’th sum. Similarly, the B̃ coefficient can be
derived by noting that for the distinct m2 indices {q1, q2, . . . , qm2

} chosen in
∑

Q, there
remain N −m2 choices for the first sum in

∑
P , N −m2 − 1 choices for the second sum,

and so on up to N −m2 − (m1 − 1) choices for the m1’th sum. Turning to the second
half of the second term of (39), which we define to be

Su :=
∑
Q

Q�=P

(
uq1 + uq2 + ...+ uqm2

m2
− ū

)
=

181

1

m2

N∑
q1=1
Eq,p
1

N∑
q2=1
Eq,p
2

. . .

N∑
qm2

=1
Eq,p
m2

(
(uq1 − ū) + (uq2 − ū) + ...+ (uqm2

− ū)
)

(40)

where
Eq,p
l := {ql | ql �= qk, k = 1, 2, ..., l − 1}\{p1, p2, . . . , pm1

}

excludes previously chosen indices in the
∑

Q sum and any previously chosen indices
{p1, p2, . . . , pm1

} selected from the
∑

P sum. Applying the sum to the specific term
(uqi − ū), the sum

∑
Q can be rearranged as

Sui
:=

1

m2

N∑
qi=1
Eqi,p

N∑
q1=1
Eq,p
1,i

N∑
q2=1
Eq,p
2,i

. . .

N∑
qi−1=1
Eq,p
i−1,i

N∑
qi+1=1
Eq,p
i+1,i

. . .

N∑
qm2=1

Eq,p
m2,i

(uqi − ū) .

where the term 182

Eqi,p := {qi | qi �= pk, k = 1, 2, ...,m1} (41)
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excludes previously chosen indices {p1, p2, . . . , pm1
} selected from the

∑
P sum and

where the term

Eq,p
l,i := {ql | ql �= qk, k = 1, 2, ..., l − 1}\{qi, p1, p2, . . . , pm1

}

excludes previously chosen indices in the
∑

Q sum, the index qi chosen in the
∑N

qi=1
Eqi,p

183

sum, and any previously chosen indices {p1, p2, . . . , pm1} selected from the
∑

P sum. 184

Bear in mind that the sums 185

N∑
q1=1
Eq,p
1,i

N∑
q2=1
Eq,p
2,i

. . .
N∑

qi−1=1
Eq,p
i−1,i

N∑
qi+1=1
Eq,p
i+1,i

. . .

N∑
qm2=1

Eq,p
m2,i

(uqi − ū) (42)

will contribute the same factor to (uqi − ū) regardless of the selected value for the
summation index qi. Taking care to avoid selecting a index that has been already
chosen, we note that m1 choices have already been made for the set {p1, p2, . . . , pm1}.
In addition, for each choice of qi in

∑N
qi=1
Eqi,p

there remain N −m1 − 1 choices left for the

first sum
∑N

q1=1
Eq,p
1,i

, N −m1 − 2 choices left for the second sum, up to N −m1 − (m2 − 1)

choices for the (m2 − 1)’th sum or

(N −m1 − 1)!

(N −m1 −m2)!

total choices. Thus 186

Sui
=

1

m2

(N −m1 − 1)!

(N −m1 −m2)!

N∑
qi=1
Eqi,p

(uqi − ū) . (43)

Using the definition of the excluded terms Eqi,p (41) in the sum
∑N

qi=1
Eqi,p

(uqi − ū) , 187

N∑
qi=1
Eqi,p

(uqi − ū) =

N∑
qi=1

(uqi − ū)−
m1∑
j=1

(upj − ū), (44)

one can replace
∑N

qi=1
qi �=pj

(uqi − ū) in (43) with the right hand side of (44) to yield,

Sui =
1

m2

(N −m1 − 1)!

(N −m1 −m2)!




N∑
qi=1

(uqi − ū)−
m1∑
j=1

(upj − ū)


 .

The sum
∑N

qi=1 (uqi − ū) is zero by (27). Since there are m2 terms of the form (uqi − ū)
in (40), Su can be written as

Su = − (N −m1 − 1)!

(N −m1 −m2)!

m1∑
j=1

(
upj

− ū
)
=

or

Su = −m1
(N −m1 − 1)!

(N −m1 −m2)!

(
up1

+ up2
+ . . .+ upm1

m1
− ū

)
.
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We can apply the same steps to the second half of the third term of (39), which we
define to be Sv

Sv :=
∑
Q

Q�=P

(
vq1 + vq2 + ...+ vqm2

m2
− v̄

)

to show that

Sv = −m1
(N −m1 − 1)!

(N −m1 −m2)!

(
vp1

+ vp2
+ ...+ vpm1

m1
− v̄

)
.

Using these results in (39), 188

S̃d = Ã
∑
P

[(
up1

+ up2
+ ...+ upm1

m1
− ū

)(
vp1

+ vp2
+ ...+ vpm1

m1
− v̄

)]

+2D̃
∑
P

(
up1

+ up2
+ ...+ upm1

m1
− ū

)(
v1 + v2 + . . .+ vpm1

m1
− v̄

)

+B̃
∑
Q

[(
uq1 + uq2 + ...+ uqm2

m2
− ū

)(
vq1 + vq2 + ...+ vqm2

m2
− v̄

)]
(45)

where 189

D̃ = m1
(N −m1 − 1)!

(N −m1 −m2)!
.

Using equation (29), (45) simplifies to 190

S̃d = C̃
N∑

p=1

(up − ū)(vp − v̄), (46)

where

C̃ =
(N − 2)!

(N −m1 −m2)!

(
(N −m1)!

m1(N −m1 − 1)!
+

(N −m2)!

m2(N −m2 − 1)!
+ 2

)
,

keeping in mind that the selections are made without replacement. Again S̃d is a 191

multiple of S. Therefore the system of equations (14) will be formed where α = C̃. 192

3 Coefficient of determination 193

The coefficient of determination R2 is the proportion of variability in the dependent 194

variable that can be accounted for by the independent variables [6]. It is defined using 195

R2 =

∑N
i=1(ŷi − ȳ)2∑N
i=1(yi − ȳ)2

(47)

where ŷi is the prediction provided by the surface of regression 196

(ŷi − ȳ) =

K∑
j=1

βj(x
(j)
i − x̄(j)). (48)

Substituting (48) into (47), 197

R2 =

∑N
i=1

(∑K
j=1 βj(x

(j)
i − x̄(j))

)2

∑N
i=1(yi − ȳ)2

, (49)
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198

R2 =

∑N
i=1

(∑K
j=1

∑K
j′=1 βjβj′(x

(j)
i − x̄(j))(x

(j′)
i − x̄(j′))

)

∑N
i=1(yi − ȳ)2

, (50)

199

R2 =

∑K
j=1

∑K
j′=1 βjβj′

∑N
i=1(x

(j)
i − x̄(j))(x

(j′)
i − x̄(j′))

∑N
i=1(yi − ȳ)2

. (51)

Again we see the presence of sums
∑N

i=1(x
(j)
i − x̄(j))(x

(j′)
i − x̄(j′)),

∑N
i=1(yi − ȳ)2 of the 200

form (13). Both numerator and denominator will be multiplied by the same constant 201

according to (24), (29), (38), and (46) leaving the coefficient of determination R2
202

unchanged when elements of the sampling distribution of the mean or differences of two 203

groups of sampling distributions of the mean are used. 204

4 Standard error of estimate 205

The standard error of estimate is a measure of accuracy for the surface of regression [7].
In this section, we show the standard error of estimate is reduced by the factor 1√

m

where m is the group size for sampling distributions with replacement and by

1√
m

√
N −m

N − 1

for sampling distributions without replacement. 206

The sum of squares error SSE is defined to be 207

SSE =
N∑
i=1

(yi − ŷi)
2. (52)

Given this definition, the standard error of estimate se can be defined 208

se =

√
SSE

N − 2
. (53)

Now by [8] 209

SST = SSR+ SSE (54)

where SST is the total variation and SSR is the sum of squared regression, 210

SST =

N∑
i=1

(yi − ȳ)2, SSR =

N∑
i=1

(ŷi − ȳ)2. (55)

With these definitions, the coefficient of determination (47) can also be written as 211

R2 =
SSR

SST
=

SST − SSE

SST
. (56)

Solving (56) for SSE and dividing by N 212

SSE

N
=

SST

N

(
1−R2

)
= σ2

(
1−R2

)
(57)

where 213

σ2 =
SST

N
(58)
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214

Fig 1. Original data (xi, yi), all elements from the sampling distributions of the mean, 
and the shared linear regression line. The red circles are the original 15 points, the blue 
squares are the averaged data of size m = 2, and the green asterisks are the averaged 
data of size m = 3 without replacement.

is the population variance. Now by (53) SSE = (N − 2)se2. Replacing SSE in (57) with 
(N − 2)se2 and solving for se yields 215

se = σ
√
1−R2

√
N

N − 2
. (59)

When sampling distributions of the mean are used, R remains the same, but σ is 216

replaced by σȲ where 217

σȲ =
σ√
m

(60)

for sampling distributions with replacement and 218

σȲ =
σ√
m

√
N −m

N − 1
(61)

for sampling distributions without replacement [7]. Thus for selections made with 219

replacement and for selections made without replacement (if N >> m), se will be 220

reduced by 1√
m

when sampling distributions of the mean are used. This result is 221

analogous to the reduction of the standard deviation by 1√
m

when using sampling 222

distributions of the mean for one variable. 223

5 Numerical simulations 224

Figure 1 plots the original data {(xi, yi), 1 ≤ i ≤ 10} in red and all elements from the 225

sampling distribution of the mean generated without replacement for groups of size 226

m = 2 in blue and m = 3 in green for N = 10 original points. The original data and 227

elements from the sampling distribution of the mean share the same regression line and 228

coefficient of determination R2. The elements of the sampling distribution of the mean 229

are clustered more closely about the regression line compared to the original data which 230

is consistent with (59) and (61). 231

Figure 2 plots the original data {(xi, yi, zi), 1 ≤ i ≤ 15} in red and all elements from 232

the sampling distribution of the mean generated without replacement for groups of size 233
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Fig 2. Original data (xi, yi, zi), i = 1, 15 in red and all elements from the sampling
distribution of the mean for m = 2 (blue) and m = 3 (green), and the shared linear
regression plane.

m = 2 in blue and m = 3 in green for N = 15 original points. The original data and 234

elements from the sampling distribution of the mean share the same regression plane 235

z = .653x− .712y and coefficient of determination R2 = 0.76. For visualization 236

purposes, the normal distance to the plane is plotted as the z-coordinate and the 237

multiple regression plane is aligned with the z = 0 plane. 238

Figure 3 shows the convergence of sampling distributions of the mean for 239

{(xi, yi), i = 1, 2, ..., N}, N = 11 scores with Pearson correlation coefficient R = 0.35 240

and linear regression slope β1 = 0.27. In the first simulation shown in black and red, 241

elements from the sampling distributions of the mean are created using groups of size 242

m = 5 without replacement. In the second simulation shown in blue and green, elements 243

from the sampling distributions of the mean are created using differences of two groups 244

of size m1 = 4 and m2 = 2 without replacement. The horizontal axis plots the fraction 245

of total selections used in the sampling distributions. There are 115 = 161, 051 total 246

selections for the first simulation and 11!/5! = 332, 640 total selections for the second 247

simulation. The vertical axis plots the base 10 logarithm of the absolute difference. The 248

absolute difference can be between either the Pearson R = 0.35 based on individual 249

scores and the Pearson R computed from a fraction of the elements from the sampling 250

distributions of the mean (black and blue graphs), or between the linear regression 251

slope β1 = .27 based on the original scores and the slope computed using from a 252

fraction of the elements from the sampling distributions of the mean (red and green 253

graphs). While not entirely obvious due to the density of points, all differences decrease 254

from approximately 10−6 to less than 10−13 in the last 0.001% of the total selections. In 255

addition, the differences do not always decrease monotonically as the fraction of total 256

selections increase, and the differences decrease to very small values (less than 10−5) at 257

certain points during the course of the convergence as noted by the downward spikes. 258

6 Gene expression and distance between genes 259

A useful way of organizing the data obtained from microarrays or RNA-seq data is to 260

group together genes that exhibit similar expression patterns through hierarchical 261

clustering. A hierarchical clustering algorithm generates a dendrogram (tree diagram). 262

However, the algorithm requires that a distance be defined to quantify similarities in 263

expression between two individual genes. 264
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Fig 3. Convergence of the Pearson R and linear regression slope for sampling
distributions of the mean.

Let Ai denote the expression level of gene A for patient i and let Bi denote the 265

expression level for gene B for patient i, 1 ≤ i ≤ N . Distances between genes can be 266

computed using many metrics [9], but two common ones are the Euclidean distance 267

DE =

N∑
i=1

√
(Ai −Bi)2, (62)

and the Manhattan distance,

DM =

N∑
i=1

|Ai −Bi|.

Correlation coefficients [10] are also used to measure the similarities between two genes. 268

One measure of distance using the Pearson R is 269

DR = 1− |R|, (63)
270

R =

∑N
i=1(Ai − Ā)(Bi − B̄)√∑N

i=1(Ai − Ā)2
∑N

i=1(Bi − B̄)2
(64)

or D′
R = 1−R2 [11] if the sign of R is not important. If R is close to 1 or -1, the 271

distances DR, D
′
R will be close to zero. 272

The purpose of the next section is to propose a new distance based on the differential 273

expression of two genes. We then show the new measure of distance is the same as the 274

Pearson R coefficient computed from the original scores (64), thus lending support to 275

the use of the Pearson R coefficient in measuring the distance between two genes. 276

6.1 Formulating a new distance between two genes 277

Let us formulate a new distance based on differential expression. Select m1 ≤ N
2 278

distinct random patients and their expression levels for gene A and assign them to 279
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Group 1. Select a second group of m2 ≤ N
2 distinct (and different from Group 1) 280

random patients and assign their expression levels to Group 2. Repeat the process using 281

the same selections for gene B. Since both groups are sampled from a population with a 282

known variance σ2, the z-statistic [12] for two independent samples can be used to 283

measure differential expression for gene A 284

zA =
Ā1 − Ā2√
σ2

m1
+ σ2

m2

(65)

which if m1,m2 ≥ 30 will be approximately normally distributed. Let zB be the 285

z-statistic for gene B for the same selection of patients using the same equation (65). 286

This process can be repeated multiple times giving a set of ordered pairs (zkA, z
k
B) for 287

each different selection (k) of groups. The Pearson R value, Rt can then be computed 288

from these ordered pairs using all possible selections K 289

Rt =

∑K
k=1(z

k
A − z̄A)(z

k
B − z̄B)√∑K

k=1(z
k
A − z̄A)2

∑K
k=1(z

k
B − z̄B)2

. (66)

The new distance will now be defined as DT or alternatively D′
T 290

DT = 1− |Rt|, DT = 1−R2
t . (67)

Given N total patients, there exist K = N !
(N−m1−m2)!

total selections. Computing all 291

selections is prohibitive for large N . However, we know from the analysis in Section 292

2.3.2, and the fact that the Pearson R coefficient is not affected by the multiplicative 293

factor
√

σ2

m1
+ σ2

m2
in (65), that the distance DR will be equal DT and D′

R will be equal 294

D′
T . 295

7 Conclusion 296

We have shown that the linear regression coefficients (simple and multiple) and the 297

coefficient of determination R2 computed from sampling distributions of the mean (with 298

or without replacement) are equal to the regression coefficients and coefficient of 299

determination computed with the original data. This result also applies to a difference 300

of two groups of sampling distributions of the mean. Moreover, the standard error of 301

estimate is reduced by the square root of the group size for sampling distributions of the 302

mean. 303

The result has implications for the construction of hierarchical clustering trees or 304

heat maps which visualize the relationship between many genes. These processes require 305

one to define a distance between two genes using their expression levels. We developed a 306

new measure of distance based on how differential expression in one gene correlates with 307

differential expression in a second gene using the z-statistic. We showed that the new 308

measure is equivalent to the Pearson R coefficient computed from the original scores, 309

thus lending support to the use of the Pearson R coefficient for measuring a distance 310

between two genes. 311
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