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Abstract

The liver dysfunction is a worldwide health problem.
It has been suggested that an imbalance of gut
microbiome is associated with a variety of diseases.
The goal of the present clinical trial is to evaluate the
effectiveness of Lactobacillus plantarum SN13T on

hepatic function and fecal microbiota. This study
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enrolled 22 subjects, aged between 20 and 70 years,
and who had any of the following conditions:
40<AST<100 U/L, 40<ALT<100 U/L, or 70<y-
GTP<210 U/L for males; 30<y-GTP<90 U/L for
females. The subjects were assigned to the live or
heat-killed SN13T group. The intake period was 16

weeks followed by an 8-week follow-up period.
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Although no difference was observed between the
two groups in the changes of AST, ALT, and y-GTP,
the subgroup analyses of subjects with over a certain
level at baseline showed significant decreases in AST
(-14.6 U/L, P=0.028) and ALT (-15.4 U/L, P=0.023)
by SN13T, regardless of live or dead. The fecal
microflora analysis showed an increase of Firmicutes
and the decreases of Bacteroidetes and Fusobacteria
in both groups. Bifidobacterium was increased only
in the live SN13T group. In conclusion,
Lactobacillus  plantarum  SN13T  alters the
composition of gut microbiota and improves liver

function in subjects with mild liver dysfunction.

This clinical trial was registered with University
hospital Medical Information Network Clinical Trials
Registry (UMIN-CTR) as UMIN000027440.

Keywords: A plant-derived lactic acid bacterium;
Mild liver dysfunction; AST; ALT

Abbreviations: LAB: lactic acid bacteria; Lb:
Lactobacillus; SN13T: lactobacillus plantarum
SN13T; CTCAE v4.0: Criteria for Adverse Events

version 4.0

Introduction

Alcoholic liver disease (ALD) and non-alcoholic
fatty liver disease (NAFLD) are major health
concerns in industrialized countries. The increase of
NAFLD is in parallel with the increasing prevalence
of obesity and other components of the metabolic
syndrome [1]. NAFLD is the most common liver
disease in the United States, and NAFLD prevalence
was 30% according to the National Health and
Nutrition Examination Survey (NHANES) 1999-
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2012 [2]. In Asia, the NAFLD prevalence was
approximately 34% between 2012 and 2017 [3]. A
fatty liver is generally caused by the excess intake of
alcohol and food. Therefore, the treatments for fatty
liver are mainly lifestyle changes, such as weight
loss, exercise, and restriction of alcohol intake, as
well as drug therapy for co-morbidity, including
insulin resistance and hyperlipidemia [4]. However,
no standardised pathophysiologically directed

therapy is currently available [4].

Recent studies suggest that intestinal dysbiosis—an
imbalance of the microbiome—is associated with
various diseases, including obesity, diabetes mellitus,
inflammatory  bowel disease, celiac disease,
colorectal cancer, Alzheimer’s disease, and multiple
sclerosis [5-7]. Thus, the improvement of gut
microbiota is one of the key targets to overcome

these diseases.

Lactic acid bacteria (LAB) are known as probiotics
and health-beneficial bacteria and are traditionally
used to produce fermented foods, such as yogurt,
cheese, pickles, and kimchi. Some LAB strains have
beneficial effects on constipation, immunity, cancer,
obesity, and ulcerative colitis; they also contribute to
reducing serum lipid [8-12], and are likely to
improve gut microflora composition [13,14].

We have previously shown that a plant-derived lactic
acid, Lactobacillus plantarum SN13T, improves
hepatic function, according to the subgroup analyses
of subjects with elevated AST, ALT, or y-GTP [8].
However, since the previous study was designed for
persons with a gastrointestinal complaint, in this
study, we conducted another clinical trial at a small

scale, enrolling subjects with slightly elevated liver
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function test values to determine whether SN13T
strain consumption results in the improvement of

liver function.

Materials and Methods

Materials and participants

A plant-derived Lactobacillus plantarum SN13T has
been isolated from the banana leaf. Both
experimental beverages produced as carrot juices
were kindly provided by Nomura Dairy Products Co.,
Ltd. Each 120 mL beverage was individually packed

without a package label.

Subjects suitable for the study criteria were recruited
from Hiroshima city and its provincial area Japan.
The inclusion criteria were as follows: (1) male or
female between the ages of 20 and 70 years and (2)
fit into any of the following ranges: 40<AST<100
U/L, 40<ALT<100 U/L, or 70<y-GTP<210 U/L for
males; 30<y-GTP<90 U/L for females. The exclusion
criteria were as follows: (1) diagnosis of virus
hepatitis, autoimmune hepatitis, or cirrhosis of the
liver; (2) taking medicines for chronic disease or
continuously taking antiflatulent, antibiotic, or
purgative drugs that may affect the intestinal flora;
(3) allergy to milk; (4) participation in any clinical
trial within 90 days of the commencement of the
trial; (5) pregnant or nursing a child; or (6) judged as
ineligible by clinical investigators. Tests for virus
hepatitis were performed by measuring the HCV
antibody and HBs antigen, and the possibility of
autoimmune hepatitis was excluded using an
antinuclear antibody test. The Ethics Committee of
Hiroshima University approved the clinical study.
The study was performed in accordance with the

guidelines of the Helsinki Declaration, and all
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participants provided written informed consent prior

to enroliment.

Study design

The current clinical trial was a randomized, double-
blind, and parallel study conducted at Hiroshima
University Hospital from July 2017 to Mar 2018. The
eligible subjects were enrolled by an investigator and
randomly assigned to one of two groups, the live or
heat-killed SN13T group. The allocation ratio was
1:1, and the allocation sequence was generated by a
non-clinical staff using a Microsoft Excel
randomization function. The assignment was
performed by the same staff. The subjects, clinical
staff, and data analyst were blinded. Primary
outcomes were 16-week changes in ALT, AST, and
v-GTP. The secondary outcomes were 16-week
changes in total cholesterol, HDL cholesterol,
triglyceride, fasting blood glucose, insulin, HOMA-R
(homeostasis model assessment ratio), TNF-a (tumor
necrosis factor-a), intestinal flora, and defecation

frequency.

The subjects each drank 120 mL of the experimental
beverage containing 1.2x10" of either the live or
heat-killed SN13T daily, at any time of day, for 16
weeks. The subjects were instructed to (1) keep their
ordinary lifestyle and not to eat or drink too much
during the study period; (2) keep a dairy of their
beverage consumption, healthy condition, medicines,
supplements, and defecation frequency; (3) avoid
eating too much fermented food, such as yogurt,
kimchi, or natto; (4) record the contents of their
meals, including shacks and alcoholic drinks, for 3
days before the examination; and (5) refrain from
donating blood. Clinical visits were scheduled for
weeks 0, 4, 8, 16, and 24. A biochemical blood test,
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hematological assessment, blood pressure check, and
physiological test were carried out at every visit. The
blood samples were taken after over 9 h of fasting.
Feces was collected at week 0 and week 16 within 3
days of the clinical visit for gut microbiome analyses.
In the case that the subjects took antibiotics, feces
collection was postponed at least 7 days from the last
antibiotic administration. The serum TNF-alevel was
measured at week 0 and 16. The extraction of DNA
from fecal samples was done by the method using
Iytic enzymes [15, 16]. Metagenome analyses of the
DNA extracted from the intestinal bacteria were
outsourced to a University start-up company,
MyMetagenome  Co., Ltd (Tokyo, Japan).
Metagenome analyses were performed as previously
described [15, 16]. Briefly, the V1-V2 region of
bacterial 16S rRNA-encoding gene was amplified by
27Fmod 5’-AGRGTTTGATYM TGGCTCAG-3’
and 338R 5’-TGCTGCCTCCCGTAGG AGT-3’
primers. The amplified DNA fragment was
sequenced using the MiSeq benchtop sequencer
according to the Illumina protocol. All 3,000 filter-
passed reads were rearranged in descending order
according to the quality value and then clustered into
OTUs with a 97% pairwise-identity cutoff using the
UCLUST program (https://www.drive5.com, version
5.2.32).

For safety outcomes, newly emerged or a worsened
case in the grade of the Common Terminology
Criteria for Adverse Events version 4.0 (CTCAE

v4.0) was counted as an adverse event.

Statistical analysis
We determined the sample size to be 22 for a small
pilot study to compare the effects of live and dead

cells of the SN13T grown in carrot juice on liver
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function. Since 16-week changes in AST,
triglycerides, and HOMA-R did not follow a normal
distribution based on the Shapiro—-Wilk test, these
parameters were analyzed after logarithmic
transformation. The changes during intake of the
SN13T-fermented beverage were compared between
or within the groups using Student’s t-test or paired t-
test. The subgroup analyses were exploratory
performed to evaluate the effects of baseline values
on the reduction of AST or ALT (>=28 U/L at
baseline) and AST/ALT ratio (>1.0 or <=1.0 at
baseline). The data analyses were carried out as a
full-analysis set (FAS), and the missing data were
filled in using the multiple-imputation method,
creating 20 datasets. Fisher’s exact test was applied
for categorical variables to determine the difference
in adverse events between groups. The statistical
analyses were performed using the IBM SPSS
(Statistical Package for the Social Sciences) Statistics
22. The data are expressed as the mean = SD in
tables and mean = SE in figures, and P<0.05 was

considered significant.

Results

Twenty-two subjects were enrolled in the study for
assessment of the efficacy of the beverage containing
live or heat-killed Lb. plantarum SN13T on liver
function. One subject belonging to the live SN13T
group dropped out before the second visit for
personal reasons and thus was excluded from the
analysis based on the predefined FAS rule, since no

data existed after beverage intake (Fig. 1).
The background data are shown in Table 1. Only the

LDL/HDL ratio was significantly different between
the groups at baseline (P=0.039).
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Assessed for eligibility (n=92)

Excluded (n=70)
Not met inclusion criteria (n=64)
v Declined to participate (n=6)

Registered (n=22)

A4

A 4

Randomly assigned (n=22)

,, l

Assigned to heat-killed SN13T (n=11) Assigned to live SN13T (n=11)

}

Dropped out before the second visit (n=1)
withdrew from the study by personal reasons (n=1)
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10 completed trial 11 completed trial

A v

10 included in FAS 11 included in FAS

Figure 1: Progress of participants through the study.

Heat-killed SN13T Live SN13T

Al (n=21) (n=10) (n=11)

Age (Y) 54.2+9.2 55.2 +10.9 53.4+7.8
Sex (n [%])

Male 8(38.1) 3(30.0) 5 (45.5)

Female 13 (61.9) 7 (70.0) 6 (54.5)
Height (cm) 161+9 160 + 10 161+8
Body weight (kg) 60.5 + 10.4 59.1+9.9 62.1+11.2
BMI (kg/m?) 23.4+35 22.7+3.1 24.1+3.9
Body fat percentage (%) 28.1+8.3 27.3+85 28.3+84

Archives of Clinical and Biomedical Research Vol. 4 No. 6 — December 2020. [ISSN 2572-9292]. 609



Arch Clin Biomed Res 2020; 4 (6): 605-625

Systolic blood pressure (mmHg)
Diastolic blood pressure (mmHg)
Heart rate (beats per min)

White blood cell count (x10%/mL)
Red blood cell count (x10°/mL)
Haemoglobin (g/dL)
Haematocrit (%)

Platelet count (x10%/mL)

AST (U/L)

ALT (U/L)

y-GTP (U/L)

Alkaline phosphatase (U/L)
Total protein (g/dL)

Total bilirubin (mg/dL)
Albumin (g/dL)

Uric acid (mg/dL)

Creatinine (mg/dL)

eGFR (ml/min/1.73m?)

Ferritin (ng/mL)

Total cholesterol (mg/dL)

LDL cholesterol (mg/dL)

HDL cholesterol (mg/dL)
LDL/HDL ratio

Triglyceride (mg/dL)

Fasting blood glucose (mg/dL)
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116 + 13

721+9.2

69.4+8.2

5.38 + 1.65

4.54 +0.47

142+14

43934

245+51

32.3+19.1

325+241

72.8 +38.8

219 £ 62

7.47 £0.48

0.72+0.21

4.56 +0.25

5.81+1.64

0.686 + 0.169

99.6 +£26.1

176 + 242

217 £ 41

126 + 39

70.7 £20.7

1.94 +0.82

122 + 84

104 + 14

117 £ 14

71.5+9.7

69.2+95

4.83 +1.58

4.31+0.44

135+1.1

425+29

243+4.4

34.3+23.9

25.0+105

745 %39.7

204 + 60

7.37£0.55

0.68 £0.15

442 +0.23

5.08 +0.93

0.650 + 0.213

108.7 +£33.8

249 + 336

212 £ 41

115+ 44

76.5+23.2

162+0.71

120 + 100

107 + 18

116 + 14
72.8+9.1
69.7+7.0
5.88 + 1.61
4.75 +£0.41
148+13
452 +3.4
24.7+58
30.2+£12.9
40.7 £32.0
70.9 +39.8
232 + 64
7.56 +0.42
0.76 + 0.25
4.69 +0.20
6.47 +1.90
0.718 + 0.117
91.3+13.1
109 + 76
221 + 42
138 +30
64.2 +16.3
230+0.83 %
125 + 66

101 +9
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Fasting insulin (uW[U/mL)

HOMA-R

549 +3.75

1.45+1.07
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4.58 + 3.06 6.32+£4.25

1.29+1.09 1.59+1.09

Table 1: Baseline characteristics of participants

SN13T, lactobacillus plantarum SN13T; BMI, body
mass index; AST, aspartate aminotransferase; ALT,
alanine  aminotransferase; y-GTP, y-glutamyl
transpeptidase; eGFR, estimated glomerular filtration
rate; LDL, low-density lipoprotein; HDL, high-
density lipoprotein; HOMA-R, homeostasis model
assessment ratio

MEAN =+ SD (all such values).

+ P<0.05 versus the heat-killed SN13T group.

The compliance with taking 120 mL/day of the
SN13T beverage throughout the 16-week intake
period was 97.7 + 4.1% in the heat-killed SN13T
group and 98.2 £ 2.6% in the live SN13T group
according to the daily records. No significant
difference in compliance was observed between the
intervention groups. The changes in calorie intake
were also not significantly different, -235 + 530 kcal
and 24 + 487 kcal in the heat-killed group and the
live SN13T one, respectively.

AST and ALT were not significantly decreased by
the intake of SN13T in either group, as determined
by a paired-t test within each group (Table 2).
However, when subgroup of the AST >= 28 UIL,
whichever the intervention group, was analyzed,
AST was significantly decreased at an average of
13.3 U/L (22.6 = 20.6% reduction from baseline,
P=0.042) in the AST >=28 U/L subgroup (Fig. 2a).

The same phenomenon was observed for ALT at the

Archives of Clinical and Biomedical Research

same threshold (26.6 = 23.7% reduction from
baseline, P=0.039, Fig. 2b). The effect size between
the subgroups were large in both AST and ALT (1.45
and 1.67, respectively). Furthermore, even after
terminating the intake of SN13T at week 16, the
values of AST and ALT continued to decrease until
week 24 in higher baseline subgroups (Fig. 2a and
2b). Although the AST/ALT ratio did not change in
either group (Table 2), the subgroup analysis with
AST/ALT>1 at baseline showed the significant
reduction in the AST/ALT ratio. In contrast with
AST, ALT, or the AST/ALT ratio, this tendency was
not seen in y-GTP or alkaline phosphatase, lacking
obvious threshold (Table 3).
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=O=All (n=21) -0-All (n=21)

5 1 ~0-Baseline 228 UL (n=10) ~0-Baseline 228 UL (n=9)
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|
a
M
!
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*

Changes in ALT from baseline (IU/L)

20 4 *

< Intake period > < Intake period >
25 4 -25

Changes in AST from baseline (IU/L)

C
=O-All (n=21)
0.1 =0-Baseline >1.0 (n=13)
0.0 T I T T T I

( 24 (week)

Changes in AST/ALT from baseline

*

1 *
< Intake period >

Figure 2: AST and ALT in the subgroups with >=28 U/L and AST/ALT ratio with >1.0 at baseline were decreased
by SN13T intake. The changes in (a) AST, (b) ALT, or (c) AST/ALT ratio over time. *P<0.05 and ** P<0.01
versus baseline (Ow) by paired t-test. Included numbers of subjects for subgroup analyses are 10 for AST >=28 U/L,
9 for ALT >=28 U/L, 13 for AST/ALT ratio >1.0, and 8 for AST/ALT ratio<=1.0.
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Figure 3: The changes of relative abundances of predominant fecal bacterial phyla and Firmicutes/Bacteroidetes
ratio in all subjects (n=21), the heat-killed SN13T group (n=10), and the live SN13T group (n=11). (a) Firmicutes,
(b) Bacteroidetes, (c) Firmicutes/Bacteroidetes ratio, (d) Actinobacteria, (e) Proteobacteria, and (f) Fusobacteria.

*P<0.05 and ** P<0.01 versus corresponding baseline (Ow) by paired t-test.
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Baseline Week 16 Week 24 Changes in 16 Changes in 24
weeks weeks

AST (U/L)

Heat-killed SN13T 350+251 30.3+83 27.8+8.1 -4.7+223 -7.2+213

Live SN13T 299+123 28.0%56 27.8+6.2 -19+88 -2.1+9.38
ALT (U/L)

Heat-killed SN13T 245+109 274136 22266 29+18.0 -2.3+89

Live SN13T 39.7+305 385+265 33.0+17.6 -1.2+16.5 -6.7 £19.9
AST/ALT

Heat-killed SN13T 140+£0.63 1.23+042 1.27+0.23 -0.17%0.31 -0.13 £ 0.60

Live SN13T 1.00+£039 092+034 100+0.37 -0.08+0.28 0.00 +0.34
y-GTP (U/L)

Heat-killed SN13T 67.8+348 9361716 744+583 25.8+59.2 6.6 + 35.2

Live SN13T 77.3+£432 819+553 852+656 4.6=x37.7 7.9+49.8
Alkaline phosphatase (U/L)

Heat-killed SN13T 204 = 60 247 £ 65 230+ 90 42 £ 56 25+ 49

Live SN13T 232 + 64 244 + 59 238 + 59 11+ 25 6+ 26
Total cholesterol (mg/dL)

Heat-killed SN13T 212 £ 41 226 £51 227+ 34 14 +22 15+ 22

Live SN13T 221+ 42 226 + 36 223+ 48 5+11 1+12
HDL cholesterol (mg/dL)

Heat-killed SN13T 785+235 812+296 828=%315 27x129 4.3+136

Live SN13T 63.5+157 665+132 64.2+11.2 29+59 0.6+55
LDL cholesterol (mg/dL)

Heat-killed SN13T 113 + 46 121 +48 117+ 35 7x23 4+22

Live SN13T 137 £ 29 138 £ 24 134 +£30 1+11 -3+12
LDL/HDL ratio

Heat-killed SN13T 156+0.71 163+0.76 1.60+0.70 0.07+0.21 0.04 £0.37

Live SN13T 229+0.79 219+071 214+0.67 -0.11+0.19 -0.15+0.34
Triglyceride (mg/dL)
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Heat-killed SN13T 122 + 105 128 £51 128 £ 100 6+ 85 760

Live SN13T 122 + 63 121 +£81 144 £ 111 -1+38 21 +61
Fasting blood glucose (mg/dL)

Heat-killed SN13T 107.9+18.6 107.5+16.1 1065+122 -04+7.4 -1.4+145

Live SN13T 101.1+84 1025+151 1014+9.7 15%£83 0.3+£5.0

Fasting insulin (u[U/mL)

Heat-killed SN13T 458+3.06 496+235 498+250 0.38+3.12 0.40 £3.43

Live SN13T 6.32+4.25 6.99+372 568+272 0.67%1.56 -0.64 £2.97
HOMA-R

Heat-killed SN13T 1.29+109 128+053 1.30+0.67 -0.01+0.96 0.01+1.25

Live SN13T 159+109 1.78+x092 142+067 019044 -0.17+0.78

Serum TNF-a (pg/ml)
Heat-killed SN13T 330+042 296+034 - -0.34 £ 0.49 -
Live SN13T 335+051 313+031 - -0.22 +0.36 -

Table 2: Liver enzymes and other serum biochemical variables at pre-and post-intervention period

SN13T, lactobacillus plantarum SN13T; BMI, body mass index; AST, aspartate aminotransferase; ALT, alanine
aminotransferase; y-GTP, y-glutamyl transpeptidase; eGFR, estimated glomerular filtration rate; LDL, low-density
lipoprotein; HDL, high-density lipoprotein; HOMA-R, homeostasis model assessment ratio; TNF-o: tumor necrosis
factor-a; MEAN = SD (all such values).

Heat-killed SN13T group (n=10), Live SN13T (n=11).

) Changes Changes
Baseline Week 16 Week 24 ] ]
in 16 weeks in 24 weeks
v-GTP (U/L) 72.8 +£38.8 87.5+62.2 80.0 £ 60.9 14.7 £49.0 7.3+424
Alkaline phosphatase (U/L) 219 + 62 245 + 60* 234+ 74 26 + 44 15+39
Serum TNF-a (pg/mL) 3.33+0.46 3.05+0.33** - -0.28 £0.42 -

Table 3: Whole-group analyses of y-GTP, alkaline phosphatase, and TNF-a
v-GTP, y-glutamyl transpeptidase; TNF-a.: tumor necrosis factor-a; MEAN + SD (all such values).
*P<0.05 and ** P<0.01 versus baseline (n=21).

Archives of Clinical and Biomedical Research Vol. 4 No. 6 — December 2020. [ISSN 2572-9292]. 615



Arch Clin Biomed Res 2020; 4 (6): 605-625

Other outcomes, total cholesterol, HDL cholesterol,
LDL cholesterol, LDL/HDL ratio, triglycerides,
fasting blood glucose, fasting insulin, HOMA-R, and
TNF-0, did not differ between the intervention
groups. However, both the live and heat-killed
SN13T groups showed a tendency of serum TNF-a
reduction, at P=0.054 and P=0.069, respectively.
When serum TNF-a was analyzed in all subjects
together, a significant decrease was observed
(P=0.006) at week 16 (Table 3).

The bowel movement frequencies were unchanged in

both groups (data now shown).

The phylum level analyses for fecal microbiota
revealed that a relative abundance of Firmicutes
tended to increase, no matter which group, with the
consumption of SN13T for 16 weeks (Fig. 3a). On
the other hand, a decreasing tendency and a
significant decrease (P=0.014) of Bacteroidetes in the
heat-killed SN13T group and live SN13T group were
observed, respectively (Figure 3b, all subjects:
P=0.006 vs. baseline). As a corollary, the
Firmicutes/Bacteroidetes ratio showed an increasing
tendency (Figure 3c, all subjects: P=0.015 and the
live SN13T group: P=0.043 vs. baseline).
Actinobacteria was significantly elevated in the live
SN13T group, but not in the heat-killed SN13T group
(Figure 3d, P=0.023 vs. baseline). Proteobacteria did
not change significantly in either group (Figure 3e).
The relative abundance of Fusobacteria tended to
decline in both groups (Figure 3f). These top five
phyla, namely Firmicutes, Bacteroidetes,
Actinobacteria, Proteobacteria, and Fusobacteria,
occupied 99.97% of the total bacterial count in feces.
The changes of predominant genera can be found as

Supplementary Figure 1S online.
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Bifidobacterium accounted for most of the elevation
of Actinobacteria (Figure 4, P=0.044 vs. baseline).
Furthermore, the microbiota diversity was evaluated
by means of the Chaol estimator, and it tended to

increase in both intervention groups (Figure 5).

In the assessment of safety outcomes, the body-fat
percentage and systolic blood pressure became
higher than the baselines in both groups during the
intake period. No significant difference was observed
between the groups. Other clinical tests and the
subjective symptom did not show any abnormal

change.
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Figure 4: The change of relative abundances of Bifidobacterium in all subjects (n=21), the heat-killed SN13T group
(n=10), and the live SN13T group.
*P<0.05 versus baseline (Ow) by paired t-test.
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Figure 5: The change of diversity of the fecal microbiota evaluated by Chao 1 index in all subjects (n=21), the heat-
killed SN13T group (n=10), and the live SN13T group.
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Discussion

Alcoholic liver disease (ALD) and non-alcoholic
fatty liver disease (NAFLD) are common cause of
liver disease. Although there is no targeting therapy
for ALD and NAFLD, various approaches including
probiotics have been investigated [4]. The combined
consumption of Lb. delbrueckii. subsp. bulgaricus
and Streptococcus thermophiles reduced AST, ALT,
and y-GTP within the group comparison in subjects
with  NAFLD confirmed by liver biopsy [17].
Bifidobacterium longum with fructooligosaccharides
and lifestyle modification significantly decreased
AST and TNF-a levels when compared with lifestyle
modification alone in subjects with NASH confirmed
by liver biopsy [18]. The importance of gut
microbiota is implied by the fact that intestinal
permeability in NAFLD was elevated and that
intestinal permeability and the prevalence of small
intestinal bacterial overgrowth were correlated with

the severity of steatosis [19].

In this pilot clinical study, we evaluated the effect of
Lb. plantarum SN13T on liver function in subjects
with mild hepatic dysfunction. We have previously
observed that the continuous consumption of yogurt
made with SN13T reduced y-GTP, AST, and ALT in
a subgroup with mild hepatic dysfunction out of
those with gastrointestinal complaints [8]. The
previous study had not been assigned to analyze
hepatic function, and most of subjects showed
normal hepatic function. Therefore, to confirm the
effect on hepatic function, previously observed in the
subgroup analysis in a clinical study with different
aim, in subjects with hepatic dysfunction, the present

pilot study was planned on a small scale.
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One criterion for inclusion in this study was that any
of AST, ALT, or y-GTP value was above a certain
level; accordingly, subjects with a normal range of

these parameters were included.

AST and ALT were significantly reduced by the
consumption of SN13T in subjects whose baseline
were not less than 28 UJ/L, regardless of whether the
SN13T cells were alive or dead. This threshold, 28
U/L, was established as a clear bifurcation; that is,
the upper category included 9 decreases per 10 in
AST and 8 decreases per 9 in ALT, whereas the
lower category included 1 decrease per 11 in AST
and O decreases per 12 in ALT.

Different from AST, ALT or the AST/ALT ratio, an
obvious borderline or significant decrease, which was
observed in the previous clinical trial, was not
observed in y-GTP. In the case of alkaline
phosphatase, most subjects except for one had the
values within the standard range at baseline.
Therefore, it was no wonder that alkaline
phosphatase  didn’t alter by the SNI3T

administration.

In the current study, the SN13T cells were taken as
carrot juice instead of yogurt as in the previous study.
The heat-killed SN13T juice was made by heating
after fermentation; accordingly, both beverages
contained somewhat functional substances produced
by SN13T during fermentation. Therefore, the reason
why AST and ALT reduction were observed with
both live and dead SN13T cells might be that
thermally stable substances contained in the beverage
improved liver function. The inconsistency between
the current and previous clinical studies might derive
from the different fermentation processes in diverse
fermented media, resulting in the production of
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altered secretion materials. Moreover, in our animal
study, the oral administration of the live SN13T cells,
but not the heat-killed cells, rescued alcohol
poisoning mice [20], implying the species difference.
Interestingly, the reduction in AST and ALT not only
lasted after the cessation of beverage consumption
but also continued to be at a much greater degree
until the final clinical visit, at 24 weeks, which is 8
weeks after the final consumption. This suggests that
the SN13T cells brought long-lasting hepatic

improvement.

TNF-a is a proinflammatory cytokine, and the serum
TNF-a level was elevated in patients with NASH
[21]. TNF-o. mRNA expression levels were also
enhanced in the adipose tissue and/or liver, and those
levels were associated with the severity of NAFLD
or NASH [22-24]. Moreover, it has been shown that
obesity-related insulin resistance was related to TNF-
a expression levels in adipose tissue [24]. In this
study, no difference was observed in the level of
serum TNF-a between the live and heat-killed
SN13T groups. However, the serum TNF-a
concentration showed a significant reduction after 16
weeks of SN13T consumption when analyzed in all
subjects, implying the possibility of a decline in

systemic inflammation.

In the current study, we analyzed the change in stool
frequency, since SN13T is a probiotic expected to
regulate bowel conditions according to the previous
study  [8].

improvements were observed in the current study,

However, no  gastrointestinal

since the criteria did not include gastrointestinal
problems but rather mild hepatic dysfunction, then
the subjects originally showed normal bowel

movements.
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Interestingly, the changes in intestinal flora were
shown by the metagenome analyses of the fecal
microbiota. As mentioned above, the overgrowth of
intestinal bacteria and the enhanced intestinal
permeability may relate to NAFLD and NASH [19,
21]. Another research group has shown that the
intake of Bifidobacterium longum is effective to
improve hepatic function [12]. Therefore, the
increase of Bifidobacterium cells in the colon could
partly explain why AST and ALT were reduced.
However, in the present study, the reductions in AST
and ALT were observed in both experimental groups,
whereas only the live SN13T group showed the
increase of Bifidobacterium in the gut microbiota.
There is also a possibility that the improvement of
intestinal permeability reduces LPS leaking into the

blood flow, resulting in TNF-a reduction.

In obese people, the proportion of Firmicutes in the
intestinal microbiome tended to be predominant,
whereas that of Bacteroidetes is conversely
predominant in lean people, resulting in a high
Firmicutes to Bacteroidetes (F/B) ratio in obese
people and a low one in lean people [25]. In this
study, the subjects were not obese. The body fat
rather increased through the clinical trial without
contradicting to that F/B ratio was increased. In this
context, it is obvious that hepatic function was not

improved due to the remediation of obesity.

Interestingly, the decrease in Fusobacteria and the
increase in fecal microbiota diversity were also
observed in both experimental groups. Although only
6 (3 for each intervention group) out of 21 subjects
were detected over 0.05% of Fusobacteria

(Fusobacterium) abundance at baseline, the
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administration of SN13T cells reduced all cases by
more than 50% (71% as the average). It has been
recently reported that Fusobacterium is associated
with colorectal cancer [26, 27] and inflammatory
bowel disease [28, 29]. Moreover, there are reports
that gut dysbiosis is related to various common
diseases [5-7]. In these respects, the plant-derived Lb.
plantarum SN13T may have possible therapeutic
implications for not only hepatic dysfunction but also
gut microbiota—related diseases. It is currently
uncertain whether there is the direct relationship
between the gut microbiota alteration and the
improvement of hepatic dysfunction by the intake of
SN13T. The study to elucidate the question is in
progress.

In conclusion, the administration of plant-derived Lb.
plantarum SN13T is a useful and harmless strategy
to improve mild liver dysfunction, for which no
targeted therapy currently exists, possibly via

modulation of the gut microbiota.
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Supplementary Information

Figure S1: Relative abundance of predominant fecal bacterial genera at pre- and post-intervention in all subjects,

heat-killed SN13T group, or live SN13T group.
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