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Abstract
Antimicrobial resistance (AMR) is one of the most important global 

health challenges, driven by the ability of bacteria to produce β-lactamase 
enzymes that hydrolyze β-lactam antibiotics and, therefore, neutralize their 
effects. This poses a challenge in inhibitor development because the classes 
A, B, C, and D of β-lactamases show distinct catalytic mechanisms. In this 
study, in silico approaches involving protein modelling of 20 proteins, and 
molecular docking have been used to design pentapeptides inhibitors. The 
study involves specific β-lactamase variants, such as CAE-1 and PER-1 of 
Class A, VIM-24 and IMP-26 of Class B, CMY-37 and FOX-1 of Class 
C, and OXA-372 and OXA-50 of Class D β-lactamases. Modelled three-
dimensional enzyme structures facilitated the design of peptides against 
the active site, discovery of high-affinity interactions, and inhibition of 
enzymatic activity. These results outline the potential of peptide-based 
therapeutics in overcoming resistance caused by β-lactamase, thereby 
paving ways to innovative treatments against drug-resistant bacterial 
infections and ultimately towards improving global public health.

Keywords: β-lactamase, pentapeptides, docking, modelling, antimicrobial-
resistance

Introduction
β-lactamases are bacterial enzymes that make the bacterium resistant 

to the β-lactam drugs by degrading the β-lactam ring further; it, therefore, 
loses its effectiveness. β-lactamases are enzymes that split the β-lactam ring 
of penicillins, cephalosporins, monobactams, and carbapenems, and with 
that, antibiotics turn out to be inanimate against bacteria that have developed 
resistance towards them [1]. Some other clinically relevant microorganisms, 
among which are Escherichia coli and Klebsiella pneumoniae, have well 
been shown to produce an enormous amount of class A β-lactamases 
falling into one of the highest classes of this enzyme class. Maintaining the 
effectiveness of the β-lactam antibiotics remains to be the need of breaking 
down the resistance provided by β-lactamases [2]. This classification is based 
upon their amino acid sequences and structural homologies; hence, the four 
primary classes of them are (A, B, C, and D). The Class A β-lactamases, 
usually called serine β-lactamases, are also of much interest since it is the 
most widely dispersed and significantly important in medicinal use. These 
enzymes contain an active serine residue that helps in the formation of a 
covalent acyl-enzyme intermediate to achieve the breaking of the β-lactam 
ring [3]. The pentapeptides design can be highly potent for building new 
useful drugs, especially from the area of antibiotic-resistant drugs.
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study deals with computational approaches that attempt to 
produce a pentapeptides with specificity towards the active 
site of all classes of β-lactamase enzymes. The approach 
makes accurate modeling and simulation possible, aiding in 
the discovery of possible pentapeptides sequences that might 
attach and inhibit the enzymatic activity of β-lactamases. 
Using highly competent molecular modeling as well as 
docking techniques, this piece of research work gathers 
critical understanding over the bonding dynamics of the 
pentapeptides with the enzyme involved. The discoveries are 
optimistic and hopeful for the invention of novel inhibitors to 
vanquish antibiotic-resistant bacteria populations.

Methodology
Homology modeling and Sequence analysis

Clustal Omega is used for multiple sequence alignments 
to check similarity among the proteins. By choosing 
homologous sequences, protein templates were selected as 
described in the Table 1 from the following bacterial species. 
Using MODELLER 10.2 for homology modeling, best energy 
models were selected and model was energy minimized using 
swiss pdb viewer for further inspection [7, 8].

Pentapeptides are five-amino acid residues, offering 
a number of advantages over the inhibitor based on a 
larger protein. They are compact in size and straight in 
shape, which enhances cell permeability, making it easy to 
penetrate bacterial cells to target intracellular components 
like β-lactamases [4]. Though pentapeptides are small, 
computer-assisted methods can design them to be strong in 
the sense that they can target particular enzymes or proteins 
by augmenting the binding interactions and structural 
compatibility [5]. More importantly, linear pentapeptides 
have less chance to induce an immune response as compared 
to the larger protein inhibitors. That leads to reduced chances 
of having harmful effects and increases its use prospects 
as drugs [4]. The strategy involves synthesis of linear 
pentapeptides inhibitors combined with approaches for 
in silico designs and may hold some bright outlook to the 
vanishing antibiotic resistance and the regain activity of the 
existing ones over the resistant strains of the bacteria [6]. In 
silico methods allow predictions of possible inhibitors and 
enzymes interaction, their binding affinities determination, 
and structural complementarity as well. Researchers can 
effectively design inhibitors that bind and react with specific 
enzymes by studying the three-dimensional structures and 
inherent properties of target β-lactamases [3]. This research 

Query Protein Selected Template Percentage 
Similarity (%)

Template 
ID 

Resolution 
(Å) 

Class A β-lactamase
BCK-1 β-lactamase of Klebsiella pneumoniae Ancestral PNCA synthetic construct 61.07 4C6Y 1.8

PER-1 β-lactamase of Providencia rettgeri PER-1 of Psuedomonas aeruginosa 87.95 1E 25 1.9

CAE-1 β-lactamase of Comamonas aquatica Ancestral PNCA synthetic construct 58.1 4C6Y 1.8

TLA-1 of Klebsie β-lactamase lla michiganensis TLA-3 of Serratia marcescens 99.64 5GS8 1.59

GES-22 β-lactamase of Acinetobacter baumannii GES-11 of Acinetobacter baumannii 99.65 3V3R 1.9

Class B β-lactamase
IMP-26 β-lactamase of Enterobacter cloacae IMP-26  β-lactamase of Escherichia coli 95.53 7XHW 1.7

IND-2  β-lactamase of Chryeobacterium indologens IND-2 β-lactamase from Escherichia coli 99.59 3L6N 1.65

SPM-1 β-lactamase of Acinetobacter baumannii IND-2  β-lactamase from Psuedomonas 
aeruginosa 99.59 2FHX 1.9

TMB-1 β-lactamase of Enterobacter hormaechei IND-2 β-lactamase from Psuedomonas 
aeruginosa 67.26 4WD6 2.2

VIM-24  β-lactamase of Psuedomonas aeruginosa VIM-24 β-lactamase of Acientobacter 
baumannii 99.59 5YD7 1.7

Class C β-lactamase
CMY-4 β-lactamase of Escherichia coli CMY-136 β-lactamase of Escherichia coli 99.45 6G9T 1.6

CMY-37  β-lactamase of Citrobacter freundii CMY-136  β-lactamase of Escherichia coli 95.26 6G9T 1.6

FOX-1 β-lactamase of Kelbsiella pnuemoniae FOX-4 β-lactamase of Escherichia coli 96.4 5CGS 1.63

ACT-1 β-lactamase of  Enterobacter mori AmpC β-lactamase of Enterobacter 
cloacae 85.04 6LC7 1.4

AmpC β-lactamase of Erwinia rhapontici AmpC β-lactamase of Escherichia coli 66.99 5GGW 1.76

Class D β-lactamase
OXA-4 β-lactamase of Psuedomonas aeruginosa OXA-1  β-lactamase of Escherichia coli 99.8 4MLL 1.34

Table 1: Overview of templates used for β-lactamase
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OXA-2 β-lactamase of Psuedomonas aeruginosa OXA-2 β-lactamase of Salmonella enterica 99.61 1K38 1.5

OXA-204 β-lactamase  of Klebsiella pnuemoniae OXA-48 β-lactamase of Klebsiella 
pnuemoniae 98.87 6PXX 1.5

OXA-50 β-lactamase of Psuedomonas aeruginosa OXA-23 β-lactamase of Acinetobacter 
baumannii 44.35 4JF6 2.5

OXA-372 β-lactamase of Citrobacter freundii OXA-48  β-lactamase of Klebsiella 
pnuemoniae 42.68 5FAQ 1.96

Model evaluation and Analysis
The quality of the model was checked by the use of ProQ, 

ModFOLD, PROCHECK, and Verify 3D. CASTp measured 
the volume of the groove of the active site. Secondary 
structure prediction has been done by PREDICT PROTEIN 
and PSIPRED. Structural alignment was done by RMSD, and 
contact potentials are analyzed in PyMOL [9-19].

Peptide model preparation
We created a library of 1000 randomly selected PDB 

entries from the PDB database as of November, 25th 2023 
(Text S1). We extracted unique protein chains for every 
PDB entry for downstream processing. For every unique 
protein chain, we used DSSP [20] to annotate the secondary 
structures. DSSP also assigns backbone phi and psi dihedral 
angles for every protein residue. We compiled a database of 
phi and psi angles for every residue found in the loop region of 
every unique protein chain. This database possessed 282,002 
unique phi-psi pairs (Text S2), making it a representative 
subset of the loop backbone conformational space. A 
Ramchandaran plot (phi-psi map) for this data is provided in 
(Supplementary Figure S1). We found a greater prevalence 
of residues adopting dihedral angles in the positive phi space 
(0 to 180°) compared to the generalized Ramachandran plot 
for all proteins.

We then constructed a library of 1000 polyalanyl 
pentapeptides (AAAAA) using backbone dihedral angles 
randomly selected from our database of phi-psi pairs (Dataset 
S1). These pentapeptides created using a representative 
sample of phi-psi angles provided a large sampling of peptide 
conformational space, which otherwise would not have been 
possible as out downstream methods treat ligands as rigid 
bodies. These 1000 polyalanyl pentapeptides were then 
site specifically docked using Autodock Vina [21] against 
a 20-member protein dataset respresenting class A-D β 
lactamases.

Peptide sequence design
For every protein-polyalanyl peptide pair successfully 

docked usind Autodock Vina during step 4, we performed 
sequence design on the polyalanyl peptides using Rosetta 
[22, 23]. Rosetta fixed backbone design (fixbb.static.
linuxgccrelease, Rosetta 3.14) computationally mutates every 
alanine to the most appropriate residue required to minimize 

the global rosetta energy function. During this step the 
backbone dihedral angles are not altered. Subsequently we 
performed all-atom relaxation (relax.static.linuxgccrelease, 
Rosetta 3.14) for both the designed pentapeptide and target 
β lactamase. All-atom relaxation perturbs backbone and 
sidechain dihedral angles without introducing new mutations. 
This step is required in order to find the global energy minima 
for newly designed pentapaptides. For every β lactamase class 
(4 classes), we selected and reported the top 25 pentapeptides 
displaying the lowest global rosetta energy minima, indicating 
the strongest predicted binding. Structures for every designed 
protein-peptide interaction are provided in Dataset S2. The 
approach employed in current study is summarized in Figure 
1 that in itself depicts the sequential steps followed during 
this research.

Figure 1: Overview of insilco workflow of β-lactamases for peptide 
design

Results and Discussion
Homology modelling 

Homology modelling of 20 various proteins from classes 
A, B, C and D β-lactamases were analyzed using molpdf 
(molecular probability density function), DOPE score, and 
GA341 scores. The molpdf values determine how well the 
models fit the input constraints, with lower scores reflecting 
better fitting. Lower DOPE scores, a statistical energy-based 
measure of protein model quality, suggest more favorable 
energetic landscape. The GA341 score on a scale from 0 to 
1, indicates the reliability of the model based on which very 
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close values to 1 indicate an outstanding level of dependability 
(John, 2003). All these models have obtained a GA341 score 
of 1.00000 (for the whole set), thus proving its reliability in 
this study. Out of the truncated and modeled proteins alone, 
some models were preferentially better based on QMEAN 
Z-scores. One model in each gene were selected according to
the lowest DOPE score. The predicted structures were further
refined by post-modelling energy minimization, resulting in
the selection of stable models that are appropriate to be used
for subsequent analyses.

Model Validation
Homology modelling of 20 β-lactamase proteins (5 in each 

class A, B, C and D) was performed as described above and 
the energy minimisation predicted structures were submitted 
to an array of stringent structural assessment tools to validate 
their accuracy and reliability for subsequent studies. The 
global and local quality of the generated models were assessed 
using various tools including PROQ (LGscore/MaxSub), 
ModFOLD, Procheck, VERIFY3D, ERRAT, ProSA and 
PSIPRED [9-19]. PROQ scores validated structural quality 
metrics, and a high LG score suggested confidence in model 
accuracy. The reliability scores from ModFOLD were 
consistent with expected structural landscape landmarks, 
confirming the robustness of our models. Procheck performed 
Ramachandran plots with the majority of the residues in the 
most favorable and additionally allowed regions, suggesting 
good stereochemistry.

All other models displayed comparable 3D-1D profiles, 

with >90% of residues having compatible profiles from 
VERIFY3D analysis supporting their structural compatibility. 
The average ERRAT scores (85–95%) exhibited very 
few gross structural errors overall. ProSA scores afforded 
extremely high Z-scores typical for high-resolution 
experimental structures in the Protein Data Bank, while 
PSIPRED secondary structure predictions showed excellent 
agreement with expected motifs, further confirming model 
stability and integrity. Altogether, that confirmed the quality 
of all generated models suitable for upstream applications: 
docking studies, molecular dynamics simulations or inhibitor 
designing. Table 2 summarizes the results of validation, 
and Ramachandran plots for each model. These results 
demonstrate the power of the modelling approach and 
serve as a subsequent basis for further computational and 
experimental studies.

Note: Pro (LG):>1.5 fairly good; >2.5 very good; >4 
extremely good. ProQ (MX): >0.1 fairly good; >0.5 very 
good; >0.8 extremely good. ModFOLD (Q): >0.5 medium 
confidence; >0.75 high confidence. ModFOLD (P): <0.05 
medium confidence; <0.01 high confidence. PROCHECK: A 
good quality smodel would be expected to have over 90% 
residues in the most favored region of Ramachandran plot. 
Verify_3D: It is the measurement of compatibility of the 3D 
structure of the model generated to its amino acid sequence 
on a % scale of 100. ERRAT: Good high-resolution structures 
generally produce values around 95% or higher. For lower 
resolutions the average overall quality factor is around 91%. 
ProSA: more negative better the quality.

TOOL Class A β-lactamase

BCK-1 PER-1 CAE-1 TLA-1 GES-22

PRO Q LG score/Max Sub 7.43/-0.574 8.741/-0.507 8.570/-0.670 10.499/-0.713 8.025/-0.574

ModFOLD 2.469/0.6278 4.59/0.7034 1.018/0.6676 3.995/0.7096 2.539/0.730

Procheck 87.40% 93.3 90.60% 91.5 94.4

VERIFY3D 47.92 63.49 65.12 82.52 79.44

ERRAT 77.174 92.25 83.0258 96.3768 89.5911

ProSA -5.69 -6.63 -6.33 -7.86 -6.5

Class B β-lactamase

IMP-26 IND-2 SPM-1 TMB-1 VIM-24

PRO Q LG score/Max Sub 8.017/-0.536 7.391/-0.537 7.619/-0.556 7.567/-0.593 9.607/-0.666

ModFOLD 3.361/0.7174 5.561/0.6948 4.329/0.7060 4.314/0.7062 7.497/0.6813

Procheck 91.40% 89 91.2 93.8 94.3

VERIFY3D 83.74 86.83 80.53 89.8 79.7

ERRAT 81.9742 84.44 88.477 82.969 83.1897

ProSA -7.58 -7.54 -8.17 -7.61 -7.66

Class C β-lactamase

Table 2: Summary of model validation of β-lactamases
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CMY-4 CMY-37 FOX-1 ACT-1 AmpC
PRO Q LG score/Max Sub 7.131/-0.536 8.169 / -0.427 10.055 / -0.498 7.728 /-0.378 6.507/-0.320

ModFOLD 3.67/0.7134 7.314/2.463 0.7320/2.43 0.7105/3.919 0.7197/3.193

Procheck 94.20% 93.60% 93.50% 93.60% 93.20%

VERIFY3D 81.63% 80.58% 87.43% 83.99% 85.49%

ERRAT 85.6749 88.5475 80.5085 79.6089 87.8873

ProSA -8.55 -8.92 -8.61 -8.64 -9.24

Class D β-lactamase
OXA-4 OXA-2 OXA-204 OXA-50 OXA-372

PRO Q LG score/Max Sub 9.435/-0.755 7.504/-0.574 8.681/-0.692 7.002/-0.583 6.303/-0.556

ModFOLD 7.685/0.6802 5.109/0.6986 3.112/0.7208 6.68/0.6865 2.545/0.729

Procheck 89.3 90.03 90.9 88.7 90

VERIFY3D 69.2 77.82 86.64 91.98 70.04

ERRAT 93.9759 89.068 93.305 74.1935 80.41

ProSA -7.84 -6.86 -8.09 -7.41 -7.03

Auto-dock and peptide designing of β-lactamases
Class A β-lactamases

The AutoDock and Rosetta scores given in the table 
reveal the inhibition ability from examining top 25 of 
peptides that were designed against class A β-lactamases. 
Peptide plot — analysis of the results produced by Rosetta, 
providing information on docking scores and sequences of 
the peptides; this outputs focus mainly on five top scoring 
peptides identified by their Rosetta scores (Figure 2). All 
these peptides show important docking scores, and the 
top five have very low (more negative) values (Table 3), 
demonstrating a strong ability to bind. Further evidence for 
the likely stability and efficacy of these peptides to be able to 
bind their target proteins comes from Rosetta scores.

Peptide – 1333: AGGST; AutoDock score −7.393; Rosetta 
score −890.636 Ala and Gly are used to promote hydrophobic 
interactions, whereas Ser and Thr provide polar characteristics 
which can create potential hydrogen bonds. Such integration 
through binding means being comprehensive and equitable 
[20]. Peptide 0962 (sequence: GGLST) has an AutoDock 
score of -7.247 and a Rosetta score of -895.731, respectively. 
Flexible multiple glycine residues (Gly) and charged lysine 
(Lys) that provide a cation for electrostatic interaction 
with negatively charged targets [21]. The polar side chains 
of serine and threonine increase hydrogen bond capacity. 
Despite having the sequence AGGST, similar to peptide 
1333, Peptide 0354 had an AutoDock score of −7.094 and 
a Rosetta score of −886.526. Alanine and glycine increase 
stability and flexibility, while serine and threonine promote 
hydrogen bonding [22]. Peptide 1177 (AGMSV) involves 
hydrophobic interaction by methionine (Met) and valine 

Peptide 1172 -7.066 -645.99 AAETT 

Peptide 1898 -7.203 -644.026 AASST 

Peptide 1305 -7.349 -642.12 AADSS 

Peptide 0654 -7.378 -640.283 AAEST 

Peptide 1647 -7.122 -639.08 AADIS 

Peptide 1325 -7.238 -635.953 AAISS 

Peptide 0158 -7.274 -635.544 AADSS 

Peptide 1107 -7.109 -635.188 AASST 

Peptide 0055 -7.145 -627.485 ADQGT 

Peptide 0397 -7.325 -626.058 ADQGS 

Peptide 1277 -7.139 -624.273 ANEGG 

Peptide 1274 -7.019 -623.291 AGKTY 

Peptide 0075 -7.127 -619.279 AAEKT 

Class A 
β-lactamases

Autodock 
Scores

Rosetta 
Scores Sequence

Peptide 0962 -7.247 -895.731 GGKST 

Peptide 1333 -7.393 -890.636 AGGST 

Peptide 0354 -7.094 -886.526  AGGST 

Peptide 1177 -7.194 -886.336 AGMSV 

Peptide 1515 -7.201 -885.857 GGKTT 

Peptide 1585 -7.091 -660.41 AGLTY  

Peptide 1769 -7.423 -656.098 AEGSS 

Peptide 1144 -7.324 -654.056 AGKTY 

Peptide 0299 -7.154 -652.067 AAEGT 

Peptide 1513 -7.126 -649.613 AAETT  

Peptide 1791 -7.23 -648.181 AAEKT

Peptide 1959 -7.427 -648.031 AAETT 

Table 3: Detailed scoring and functional composition of top 25 
peptides in class A β-lactamases
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(Val), potential hydrogen bonding interactions by alanine 
and serine, giving it AutoDock score of -7.194 and a Rosetta 
Score of -886.336). Similar patterns are observed in the 
sequences of top five peptides such as a high frequency for 
glycine which provide flexibility and Alanine also proving 
its position for hydrophobic stability. The proportion of 
hydrophobic (e.g., A, M, V) and polar residues (e.g., S, T) 
increases the binding abilities in a variety of environments 
[23]. These features indicate a systematic design strategy that 
combines adaptability, robustness, and specificity for binding. 
The presence of both hydrophobic and polar residues enables 
flexibility under different conditions, further enhancing the 
therapeutic relevance of the peptides. Recent studies have 
reported similar insights on peptide design principles and 
noted that balance in amino acid composition supports the 
binding affinity and specificity [24].

Class B β-lactamases 
The peptides generated through Rosetta are evaluated with 

Docking scores and sequences that can inform on their ability 
to bind a known protein of interest (Table 4). The top five 

peptides show a bound docking score with quite low (more 
negative) values, which illustrates higher binding affinities 
of the peptides (Figure 3). These findings are consistent 
with recent reports that property-based docking metrics can 
serve as better predictor of peptide-protein interactions [25]. 
These Rosetta scores provides further proof of concept for 
the stability and functionality of these peptides to bind their 
respective target proteins.

Figure 2: Binding conformations of top five peptide inhibitors of 
class A β-lactamases. Visualization of top five peptides inhibitors 
(A-E) in the active site of class A β-lactamases. (A) Peptide 0962 
(B) Peptide 1333 (C) Peptide 0354 (D) Peptide 1177 (E) Peptide
1515. The peptides are depicted in stick representation emphasizing 
their spatial arrangements and binding poses

Class B 
β-lactamases

Autodock 
Scores

Rosetta 
Scores Sequence

Peptide 1166 -7.081 -734.626 AGKMS  

Peptide 0058 -7.062 -725.719 AAAAT 

Peptide 0270 -6.904 -724.558 AAAAT 

Peptide 1640 -6.995 -724.476 NGLST 

Peptide 1789 -6.866 -723.684 AAGKM 

Peptide 1051 -7.109 -723.512 AAGGL 

Peptide 1379 -7.156 -723.267 AAAGI 

Peptide 1778 -6.897 -721.488  AAQGK 

Peptide 1300 -6.955 -717.958 AQGKS 

Peptide 1150 -7.097 -717.039 AAGGY 

Peptide 0690 -6.922 -715.934 AAAGI 

Peptide 0787 -7.007 -715.66 AAAGI 

Peptide 0720 -7.134 -715.186 AAAAT 

Peptide 0994 -7.112 -714.352 AAAGI 

Peptide 0984 -6.888 -713.614 ANNGK 

Peptide 0453 -7.065 -712.725 AAAAT

Peptide 0592 -7.076 -711.265 NNGKW 

Peptide 0801 -7.158 -710.791 AAAGI 

Peptide 0998 -6.973 -710.036 DGKMS 

Peptide 0755 -6.968 -709.997 AAAST

Peptide 0332 -7.141 -708.732 NGLST 

Peptide 1225 -7.151 -708.068 NNGMS 

Peptide 1465 -7.248 -707.534 AEGYV 

Peptide 1179 -7.016 -702.789 NNGKM 

Peptide 1817 -7.064 -701.623 NGKKM 

Table 4: Detailed scoring and functional composition of top 25 
peptides in class B β-lactamases
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Peptide 1465 (Autodock score: -7.248, Rosetta score: 
-707.534; AEGYV). In this peptide, glutamic acid (Glu)
provides a negative charge to enhance electrostatic contacts,
tyrosine (Tyr) provide an aromatic property for π-π stacking
interactions, and valine (Val) has hydrophobic property
for enhancing the binding stability due to hydrophobic
interactions [24]. The second peptide 1166 (AGKMS) with
Autodock score −7.081 and Rosetta score −734.626 It has
Lys (positive) as an amino acid, which could form salt
bridges with negative targets. Furthermore, methionine (Met)
adds hydrophobicity and serine (Ser) participates in hydrogen
bonding, thereby providing a delicate balance of interactions
[26].Peptide 0058 (AAAAT) has an Autodock score of−7.062
and Rosetta Score of −725.719 The high frequency of alanine
(Ala) allows for hydrophobic interactions, which stabilize the
structure. In contrast, threonine (Thr) offers a polar hydroxyl
group that can participate in potential hydrogen bonding [25].
Such feature might enhance the association with intended
proteins. Peptide 0270: AAAAT autodock score -6.904
Rosetta score − 724.558 the relevance of alanine for stability is
illustrated with this sequence comparison using peptide 0058

as a model. The introduction of threonine in the sequence is 
also said to be increase chances for hydrogen bonding and 
hence may enhance the binding affinities. Peptide1789: 
AAGKM, Autodock score: -6.866, Rosetta score:-723.684 It 
consists of Glycine (Gly) which gives flexibility, lysine (Lys) 
that provides positive charge together with methionine (Met), 
to confer hydrophobicity, thereby enhancing the ability of 
peptide to achieve hydrophobic interactions.

Across the top five peptides, there are a number of 
commonalities. Peptides 0058, 0270 and 0720 contained 
lists of four contiguous Ala which indicate a marked focus 
on hydrophobic contacts. Peptide 1465 contains glutamic 
acid (Glu), which carries a negative charge, allowing for 
electrostatic interactions. In contrast, Peptide 1166 features 
lysine (Lys), a positively charged residue capable of 
electrostatic interaction with negatively charged targets. 
The amino acid tyrosine (Tyr), which possesses the ability 
to π-stack, is present in peptide 1465. The sequences often 
contain a combination of hydrophobic amino acids (e.g., 
Ala, Val, Met) accompanied by polar ones (e.g., Ser, Thr), 
consistent with an evolutionary strategy that balances 
binding affinity and flexible interactions in various contexts. 
Peptides 1166 and 1789 also contain glycine (Gly), which 
enhances flexibility, while the high mole fraction of alanine 
provides hydrophobic stability. Crossover of these traits 
enables binding under diverse contexts [27]. The frequent 
occurrences of alanine and glycine residues in these peptides 
probably reflect a particular focus on structural stability 
and flexibility in extracellular locations. It could also also 
increase hydrophobic interactions if alanine is repeated or 
permit structural flexibility with glycine. Charged and polar 
residues based on various amino acids, for example, lysine, 
serine, and threonine — suggesting the potential to create 
hydrogen bonds and electrostatic interactions with target 
proteins [25].The rich composition of amino acids including 
residue types that are hydrophobic, polar and charged 
ensures that the peptides can possibly interact with a range 
of biological targets. It is reinforced with repeating alanine 
residues giving it strength and glycine residues allowing for 
flexibility. The mixture allows the peptides to adopt favorable 
binding conformations [24]. These patterns reflect the state 
of knowledge in peptide design, whereby an optimal profile 
of amino acid features is often sought to improve binding 
affinity and specificity. Repeated occurrence of some specific 
residues and insertion of charged and polar amino acids on 
these peptides suggest that they were intentionally made to 
enhance their ability to interact with target proteins.

Class C β-lactamases	
Analysis of the peptides found for Rosetta provides 

important insights related to docking scores and sequences 
with a detailed discussion focused on the top five peptides 
(Table 5). The docking scores for these peptides are high and 

Figure 3: Binding conformations of top five peptide inhibitors of 
class B β-lactamases. Visualization of top five peptides inhibitors 
(A-E) in the active site of class B β-lactamases. (A) Peptide 1465 
(B) Peptide 0058  (C) Peptide 0270 (D) Peptide 1640  (E) Peptide
1789. The peptides are depicted in stick representation emphasizing
their spatial arrangements and binding poses
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top 5 have lowest (more negative) values suggestive of higher 
binding affinities (Figure 4). In addition, the Rosetta scores 
are consistent with potential stability and viability of these 
peptides in their ability to bind the target proteins.

Peptide 0038: Sequence: AAGGG (Autodock score 
−8.664, Rosetta score −1126.19). This peptide contains
resolutions A, which increase hydrophobic interactions,
and G, which enhance flexibility. The repeated occurrence
of glycine enhances its flexibility to accommodate various
conformations, and promotes high-binding affinity.
Researchers have observed comparable results regarding
the role of glycine in regards to structural flexibility on
a similar timescale. Studies show peptide-binding [28].
Peptide 0285 with the sequence AGGGM, Autodock Score
(-8.7), Rosetta score (-1114.02). This repeats contains
glycine which increases the flexibility of the molecule and
methionine (Met) which increases its hydrophobic nature.
These residues allow the peptide to engage in hydrogen

interactions but should retain flexible structure. Data from 
recent study support the hypothesis that methionine plays any 
essential role by stabilizing hydrophobic cores [26]. Peptide 
1974 is a peptide with sequence AAGST and Autodock score 
-8.626/Rosetta: -1099.67. This is a polar sequence, which
contains alanine (Ala) for stabilization and serine (Ser) and 
threonine (Thr). Serine and threonine have hydroxyl groups 
that can form hydrogen bonds. Such property would likely 
ameliorate the interaction of these amino acids with target 
proteins. A study point out similar contributions to binding 
affinity from hydroxyl-bearing residues [29]. Peptide 1183, 
an Autodock score of -8.483 and Rosetta score -1133.67 
peptide with AGGGS sequence. This series has a high 
preference for glycine for its facilitatory role in flexibility, 
and includes serine, which is capable of hydrogen bonding. 
Several glycine residues suggest an emphasis on flexibility, 
while serine could aid in the specificity of binding. In some of 
the most recent computational studies to directly address this 

Class C 
β-lactamases

Autodock 
Scores

Rosetta 
Scores Sequence

Peptide 1183 -8.483 -1133.67 AGGGS 

Peptide 0609 -8.349 -1129.12 AAAGS 

Peptide 1562 -8.351 -1128.58 AAAAS 

Peptide 0038 -8.664 -1126.19 AAGGG 

Peptide 0421 -8.347 -1121.99 ADGST 

Peptide 0374 -8.594 -1121.12 AGGMS 

Peptide 0027 -8.362 -1120.24 AGSST 

Peptide 0277 -8.464 -1120.24 AAAAG 

Peptide 0543 -8.397 -1119.54 ADGGG 

Peptide 0685 -8.596 -1118.74 AGGSS 

Peptide 1122 -8.375 -1118.07 AAGSS 

Peptide 0926 -8.615 -1115.82 AAGGV 

Peptide 1129 -8.625 -1114.69 AAGSV 

Peptide 1854 -8.329 -1114.07 AAAGS 

Peptide 0285 -8.7 -1114.02 AGGGM 

Peptide 0720 -8.39 -1112.93 AAMST 

Peptide 0767 -8.524 -1111.99 ARGST 

Peptide 1091 -8.463 -1109.92 AAANG 

Peptide 1174 -8.372 -1109.46 AAGST 

Peptide 0653 -8.445 -1109.18 AAGST 

Peptide 0994 -8.478 -1105.49 AAGSY 

Peptide 1952 -8.479 -1100.92 AGSST 

Peptide 0965 -8.577 -1100.58 AAAAG 

Peptide 1974 -8.626 -1099.67 AAGST 

Peptide 1139 -8.459 -1092.9 ARGGS 

Table 5: Detailed scoring and functional composition of top 25 
peptides in class B β-lactamases

Figure 4: Binding conformations of top five peptide inhibitors of 
class C β-lactamases. Visualization of top five peptides inhibitors 
(A-E) in the active site of class C β-lactamases. (A) Peptide 0038 
(B) Peptide 0285 (C) Peptide 1974 (D) Peptide 1183 (E) Peptide
0609. The peptides are depicted in stick representation emphasizing 
their spatial arrangements and binding poses
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question, researchers have shown that glycine's propensity for 
adaptability in peptide backbone conformation is predictive of 
local index conformational propensities41—42 and thereby 
able to guide and even improve peptide design [30]. Peptide 
0609 the sequence is AAAGS, and it has an Autodock score 
of -8.349 and a Rosetta score of -1129.12. Here we adapted 
the peptide with alanine to increase the stability, and glycine 
for increased flexibility, and serine where hydrogen bonds 
may form. The balance of these residues reflects a broader 
binding interaction strategy. Previous studies have supported 
the hydrophobic contribution to peptide stability of alanine 
[24].

There are trends among the top five peptides. This shows 
a particular focus on hydrophobic interactions, as peptides 
0058, 0270, and 0720 each contain four consecutive alanine 
(Ala) residues in their sequence. This point is important 
since there are both polar and charged residues. Peptide 
1465, for example, has glutamic acid (Glu) in it which adds 
a negative charge and can facilitate electrostatic interactions. 
In contrast, in peptide 1166 there is lysine (Lys), a positively 
charged residue that can bind to negatively charged targets. 
The splenocyte-derived amino acid tyrosine (Tyr) of peptide 
1465 has the potential to π-stack. The sequences often include 
hydrophobic amino acids (Ala, Val, Met) in addition to polar 
amino acids (Ser, Thr), which suggests a balanced approach 
between maximizing binding potential and facilitating 
flexible interactions in various environments. Peptides 
1166 and 1789 also contain glycine (Gly), which increases 
flexibility, as well as an abundance of alanine that is indicative 
of hydrophobic stability. This combination of properties 
yields successful binding in diverse context. The patterns 
suggest that the top 5 peptides are actually engineered to do 
this considering the best interactions with target proteins. 
More specifically, the high prevalence of alanine enhances 
hydrophobic interactions, while the presence of charged and 
polar residues fosters hydrogen bonding and electrostatic 
interactions. The combination of those features provides 
adaptability to bind in various conditions [31]. Incorporating 
glycine into the peptides increases their flexibility so that they 
can change shape to fit different targets better. Collectively, 
these data illustrate a selective design protocol for peptides 
and underscore the importance of sequence composition in 
controlling stability, affinity, and specificity of binding.

Class D β-lactamases
Docking scores and sequences for the investigated Class 

D β-lactamases peptides derived from Rosetta are provided in 
Table 6, with the five highest scoring (most favorable binding 
profiles) of each peptide listed in Figure 6. These peptides have 
high binding potential because their amino acid compositions 
help to maintain stability, flexibility and the possibility of 
interaction [32]. Peptide 1139 (AGGGS): Autodock score= 

−7.495, Rosetta score = -770.94; contains glycine and serine
residues that contribute to flexibility and promote hydrogen
bond formation for protein-specific interactions [33]. Peptide
1856 (ADGLT): Autodock score = −7.549, Rosetta score =
−765.918 with alanine for stability, glycine for flexibility and
threonine and aspartic acid contributing polar interactions via
hydrogen bonding promoting binding efficiency [34]. Peptide
1642 (ARDGT): Autodock score = -7.487, Rosetta score
=-763.023 Features: Arginine for salt bridge interaction,
Glycine allows flexibility of the peptide backbone and
Threonine also helps in additional polar interactions. Peptide
1520 (GGGLS): Autodock score = −7.47, Rosetta score =
−762.557; bias towards glycine residues to promote mobility,
serine residues to ensure high numbers of hydrogen bonding
interactions for strong stable binding [35]. Peptide1065
(EGGGS): Autodock score = -7.606, Rosetta-friendly score =
-760.441; glutamate serves to ionic interactions and glycine
ensures flexibility purposes, serine provides specificity
with two hydrogen bonds [36]. These results highlight the
importance of integrating hydrophobicity, polar nature, and
structural flexibility for optimal peptide recognition by Class
D β-lactamases.

Class D 
β-lactamases

Autodock 
Scores

Rosetta 
Scores Sequence

Peptide 1139 -7.495 -770.94 AGGGS 
Peptide 1856 -7.549 -765.918 ADGLT  
Peptide 1642 -7.487 -763.023 ARDGT
Peptide 1520 -7.47 -762.557 GGGLS 
Peptide 1065 -7.606 -760.441 EGGGS 
Peptide 1241 -7.591 -758.836 GGGLS 
Peptide 1637 -7.633 -758.449 EGGGS 
Peptide 0320 -7.477 -758.232 NGGGV 
Peptide 1305 -7.527 -757.487 DGGKM 
Peptide 0663 -7.641 -757.442 ADGLT 
Peptide 0252 -7.624 -757.215 EGGGS 
Peptide 1781 -7.577 -757.109 RDGGT 
Peptide 0135 -7.641 -756.293 AGGGG 
Peptide 0239 -7.478 -756.249 NGGSV 
Peptide 1527 -7.493 -755.343 DGGGT 
Peptide 0633 -7.5 -755.335 GGGLT 
Peptide 1635 -7.478 -755.334 GGGGS 
Peptide 0516 -7.518 -755.304 AGGGS 
Peptide 1069 -7.484 -755.126 EEGGS 
Peptide 0715 -7.471 -752.712 GGGLS 
Peptide 1942 -7.813 -750.946 NGGSY 
Peptide 0953 -7.472 -750.009 GGGLS 
Peptide 1707 -7.561 -749.845 GGGLK 
Peptide 1392 -7.549 -735.347 ARDQG 
Peptide 0778 -7.616 -705.833 NGGGT 

Table 6: Detailed scoring and functional composition of top 25 
peptides in class B β-lactamases
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proteins. With the presence of flexible glycine, hydrophobic 
alanine and polar or charged residues, there is greater potential 
for forming strong-specific bonds. The high level of glycine 
results in conformational changes which allows the peptides 
to conform to various binding sites. Alanine scanning also 
enriches non-covalent bonding interactions, as repeated 
usage of alanine strengthens hydrophobic interactions, 
whereas polar and charged residues promote opportunities 
for hydrogen bonding and electrostatic interactions to 
significantly increase binding affinity [24, 27, 37]. Overall, 
these patterns suggest that the peptides are relatively fit for 
use in drug design and protein-protein interaction studies 
since they exhibit distinct binding features necessary for 
effectiveness.

Moreover, the β-lactamases from different groups are 
characterized by extensive repeats of individual amino acids 
suggesting the existence of common patterns and/or motifs. 
The penta-peptide of interest, is enriched in peptides predicted 
to belong to Class C and D, such as peptide 1183, peptide 
1139 and peptide 1065. This suggests that the peptides may 
be actually relevant for its structure or function. In addition, 
glycine (G) and alanine (A) have made frequent appearances 
in various sequences. The repeated motif AGG is consistent 
with a conserved function, and AAA in addition to (AGG) are 
found within Class B, indicating similar structural functions. 
The ratio between non-polar and polar residues varies across 
the classes. Class A and C peptides have a higher representation 
of hydrophobic residue (Gly(G) or Ala(A)). In contrast, in its 
sequence Classes B and D have a higher number of charged 
residues (lysine (K) and aspartate (D)). We expect that the 
shift in distribution of residues may alter peptide interactions 
and thereby stability. Prominent peptides also tend to have 
high content of hydrophobic residues like glycine (G) and 
alanine (A), which possibly provide structural stability 
to these peptides. In contrast, Class B could have residues 
like permanent positively or negatively charged amino acid 
residues lysine (K) and aspartic acid (D), associated with 
functions such as enzyme activity or substrate binding. As 
conserved motifs proposed to contribute significantly to the 
biological activity of these types of enzymes, they underscore 
the extent to which proper arrangements of amino acids 
dictate a functional role [28, 35]. Such studies might help in 
understanding the relevance of these patterns to β-lactamase 
activity and resistance mechanisms.

Conclusion 
This study designed and screened for peptides targeting 

β-lactamases and identified candidates showing promising 
affinities with good inhibitory potency. Utility of these 
peptides in strategies to counteract antibiotic resistance thus is 
presented and lays the foundation for experimental validation 
and further development for therapy.

Focusing on the top five peptides from our dataset, these 
sequence patterns give information about the structural and 
functional features of peptides. All five peptides have alanine 
(Ala) which is known for its hydrophobic property. This 
feature improves the stability of peptide structure through 
allowing hydrophobic interaction. Also, the dipeptide glycine 
(Gly) appeared at many places, which allows several binding 
sites with more flexibility due to its small size. The polar 
amino acid residues (e.g. serine [Ser] and threonine [Thr]) 
suggest the formation of hydrogen bonds, possibly enhancing 
specific interactions with target proteins. These peptides are 
also a mixture of hydrophobic (e.g., Ala, Leu, Met) and polar 
residues (e.g., Ser, Thr), indicative of an intent to enhance 
binding in diverse environments. Moreover, cationic residues 
such as aspartic acid (Asp) and arginine (Arg), which or are 
present in many peptides, allow electrostatic interactions with 
negatively charged or polar targets. The existence of these 
common motifs indicate an intentional design of peptide 
sequences to enhance their binding interactions with specific 

Figure 5: Binding conformations of top five peptide inhibitors of class 
D β-lactamases. Visualization of top five peptides inhibitors (A-E) in the 
active site of class D β-lactamases. (A) Peptide 0038 (B) Peptide 0285 (C) 
Peptide 1974 (D) Peptide 1183 (E) Peptide 0609. The peptides are depicted 
in stick representation emphasizing their spatial arrangements and binding 
poses
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