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Abstract
To counteract the growing burden of chronic diseases, discovery of highly 
selective target specific drugs is of utmost importance in present scenario. 
Various advanced therapeutic procedures and modern drugs have been 
developed and approved in last three decades for treating these disorders. 
The very first limitation of these therapies is their side effects, which are 
severe and long term. Also, these treatments are a costly affair and of limited 
therapeutic advantages. To overcome it, exploration and mining of natural 
products is much necessary. Phytotherapy is already well-established in 
the field of drug discovery. Focus should also be provided on zoo-therapy, 
as it is loaded with paramount of possibilities regarding disease treatment. 
Insect venoms are cocktail of bioactive components with different 
physiological actions that have undergone evolutionary refinement through 
a long time-scale. This evolutionary selection over time makes them more 
suitable candidate for target specific drug discovery. In this review we are 
trying to throw some light on some significant insect venom components 
with their mechanism of patho-physiological actions, relevance in the field 
of advanced drug discovery targeting chronic diseases including cancer.
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Abbreviations: MPN – Mastoparan; PLA2 - Phospholipase A2; Cav - 
Voltage Gated Calcium Channel; Clv - Voltage Gated Chloride Channels; Nav 
- Voltage Gated Sodium Channels; Kv - Voltage Gated Potassium Channels; 
COX – Cyclooxygenase; CYP450 - Cytochrome P450; LOX – Lipooxygenase; 
GPCR - G-Protein Coupled Receptors; sPLA2 - Secretory Phospholipase 
A2; SK channels - Small Conductance Channels; IgE – Immunoglobulin E; 
IFN-γ - Interferon γ; MCD - Mast Cell Degranulating Peptide; AaH IT - Beta-
Insect Excitatory Toxin 1; CSTX-1 - Omega-Ctenitoxin-Cs1a; VEGFR-2 – 
Vascular Endothelial Growth Factor; PI3K – Phosphoinositide 3-Kinases; 
HT 29 – Human Colorectal Adenocarcinoma Cell Line; MAPK- Mitogen-
Activated Protein Kinase; CD44 – Cluster of Differentiation 44; BmK AGAP 
– Buthus martensii Karsch Antitumor Analgesic Peptide; BmK CT – Buthus 
martensii Karsch chlorotoxin‑like Toxin; Bcl-2 – B-Cell Lymphoma 2; NFκB 
– Nuclear Factor κ B; CD4 – Cluster of Differentiation 4; IL – Interleukin; 
KCa – Ca activated Potassium Channel; MPTP – 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine; AChE – Acetylcholinesterase; TNFα - Tumor Necrosis 
Factor α; PARP – Poly (ADP-ribose) Polymerase; PEG – Polyethylene Glycol; 
TXA2 -  Thromboxane A2; ERK/MAP - Extracellular Signal-Regulated 
Kinases / Mitogen-Activated Protein; EGF - Epidermal Growth Factor; 
MMP 9 - Matrix Metallopeptidase 9; PI3K/Akt/mTOR - Phosphatidylinositol 
3-Kinase / Protein Kinase B / Mammalian Target of the Rapamycin; FAK 
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- Focal Adhesion Kinase; STAT - Signal Transducer and 
Activator of Transcription; HYAL – Hyaluronidase; TGF-β 
- Transforming Growth Factor-β; WWOX - WW Domain-
Containing Oxidoreductase; GTP - Guanosine Triphosphate; 
Erα - Estrogen Receptor-α; LBD - Ligand Binding Domain; 
VSAP - Vasodilator Stimulated Phosphoprotein

Introduction
Phylum Arthropoda is the largest of all existing animal 

phyla occupying about 80% of the total all the living animal 
species. A number of species of this phylum have been a part 
of human life from time immemorial through many aspects 
viz. as food and nutritional component, as medicine as well as 
household usages such as in preparation of dyes, ink, fabrics, 
ornaments, wax etc. Insects have been a part of traditional 
medicine as well as cuisine from ancient era in countries 
like India, China, Africa, Laos, Japan, Papua New Guinea 
etc [1-5]. For example, entomophagy culture of China, where 
fried scorpions are enjoyed as delicacies. Dried whole body 
of the scorpion is also being used as a cure for epilepsy 
and pain reliever agent in China [6,7]. In Japan larvae of 
yellow jacket wasps (common name Hebo) are marketed as 
canned products and consumed for their nutritional values 
and taste [3,8]. The eggs of red ants are fried and consumed 
in India and it is also associated with cultural emotion of 
one of the states, Assam, India. The winged termites of 
the family Macrotermitinae, merging from termite hills at 
the end of dry season are captured and consumed in many 
parts of the world. Queen termites are so rich in fatty acids 
(linoleic acid), proteins and other micronutrients that the 
fried or sun dried termite queens are fed to malnourished 
children in some countries like Uganda and Zambia [9-13]. 
Development of new therapeutical procedures in the medical 
field has led to find cures to some extent, of many chronic 
disorders like rheumatoid arthritis, diabetes, cystic fibrosis 
etc. Many therapies viz. radiotherapy, chemotherapy etc. are 
also developed and approved in the field of cancer therapy 
in past decades. However, these therapies come along with 
long term side effects and a limited therapeutic advantage. 
In some cases, the patient acquires resistance towards the 
therapies (such as radio-resistance, chemoresistance) [14-16]. 
Moreover, the cost of these expensive therapies is a limiting 
factor of availability for the suffering patients. For these 
reasons, a novel and better therapeutic option is required to be 
developed which is cost effective, safe and readily available. 
In recent years, modern day therapeutics are turning towards 
alternative and oriental medicinal practices for treating 
chronic diseases including cancer as they are highly effective 
and have seemingly lesser or no side effects as compared 
to synthetic drugs. Naturopathy is gaining popularity in 
the field of drug discovery also because of the fact that it is 
cost effective and of easy availability. Herbal therapies and 
zootherapies are given wide attention amongst researchers for 
their isolated bioactive components. A substantial proportion 

of these nature derived pharmacologically active principles 
have anti-oxidant, anti-inflammatory, anti-hyperglycemic, 
anti-microbial, anti-cancer and anti-nociceptive properties 
that can play important roles in powerful drug discovery 
against different diseases as well as cancer [17-22]. One such 
nature’s treasure is insect venom. Venoms are secreted by 
a large number of insect groups as a strategy of defense as 
well as predation mechanism. It is secreted by a specialized 
organ or tissue called venom gland and introduced into the 
prey or predator’s body by means of parenteral applicators 
such as teeth, fangs, nematocytes, setae, spines etc. [23]. 
Insect venom contains a plethora of bioactive principles that 
can target different signaling pathways of the cell, which 
are involved in inducing discomfort, pain, inflammation, 
headache, vomiting and breathlessness in extreme cases. 
Most of the animal venoms studied from scorpion, spider, 
snakes, and wasps are a heterogenous mixture of enzymes 
of M.W. greater than 10 kDa (mainly Phospholipases 
and proteases), inorganic salts, polypeptides and small 
organic molecules [24-26]. Various published and ongoing 
research works have established that the complex molecular 
scaffolds present in venom components can modulate the 
intrinsic signaling pathways that are associated with pain, 
apoptosis, necrosis, inflammation etc. [27,20]. This property 
may possess a paramount of importance and possibility in 
modern day drug discovery, in other words discovery of 
pharmaceutical liquid gold from proteinaceous venom [19]. 
Another advantage associated with considering venom as a 
template for drug designing is that they have undergone a 
process of evolutionary refinement (natural selection) and 
evolved to perform optimally and selectively on their target 
[28]. Here it is tried to cover the later in this review in relation 
to their mechanism of target modulation.

General Mechanism of Venom Action
It has become evident from the various studies performed 

in past three decades that insect venoms are endowed with 
intricate mixture of numerous bioactive principles that 
targets different cell membrane receptors, thereby modulating 
signaling pathways and ion channels activating nociceptive 
pathways, grossly put under cytotoxins. Again, some other 
type of venom principles, classified under neurotoxins, 
generate action potential by acting on the nervous system 
and incapacitate the prey or predator organism [29,20]. Both 
of these venom delivering mechanisms targets different 
signal receptors of cells and causes pain, inflammation and 
asphyxiation in some cases. Venoms of hymenopteran insect’s 
wasps, honey bees contain cytotoxic peptides mastoparan 
and melittin respectively. These peptides being amphipathic 
in nature, possess the capacity to disrupt the integrity of 
the plasmamembrane by interacting with the phospholipids 
which ultimately leads to pore formation and cell lysis. The 
cell leaks out the viable cell organelles and approaches to 
death. Bradykinin is another peptide component of wasp’s 
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venom that acts synergistically with mastoparan (MPN). 
An enzyme called phospholipase A2 (PLA2) is responsible 
for further damage of the phospholipid bilayer and exposes 
the lipids of the inner leaflet (such as phospatidylserine, 
phosphatidyl ethanolamine). This in turn activates apoptosis 
by sending “eat me” signals. [30-33]. Neurotoxic venoms 
of scorpions, centipedes and spiders have pharmacological 
properties of targeting ion channels directly related to pain 
inducing paralysis. Their venoms are a deadly cocktail of 
peptides, proteins and enzymes with diverse bioactives. 
Insect neurotoxins mainly reacts with voltage gated calcium 
channels (Cav), sodium channels (Nav), potassium channels 
(Kv), acid sensitive ion channels etc. Moreover they show 
other significant physiological activity, viz. anticoagulant 
activity, PLA2 activity, platelet aggregating, trypsin 
inhibitory activity etc. [34-38].  

Important Bioactive Components Isolated from 
Insect Venoms and their Sources
Phospholipase A2

PLA2 is a major component isolated from venom of 
wide range insects such as wasps, bees, scorpion, centipede 
that performs wide range of catalytic activities [39-41]. 
The glycerophospholipids of the plasmamembrane are 
hydrolysed by PLA2 at the ester bond in the sn-2 position 
releasing fatty acids such as oleic acid, arachidonic acid 
etc. and lysophospholipids (viz. lysophospatidyl choline, 
lysophospatidyl inositol, lysophospatidyl ethanolamine 
etc. [41,42]. All these act as a precursor of a class of lipid 
derived hormones known as eicosanoids. This is an enzyme 
assisted process, where enzymes namely cyclooxygenase 
(COX), cytochrome P450 (CYP450), lipooxygenase (LOX) 
are involved in this conversion mechanism. Elevated 
levels of eicosanoids in the circulation is directly related 
to inflammation, pain, swelling, redness etc. [43-46]. Thus 
eicosanoids are related to immunomodulatory functions. 
The pro-inflammatory signalling molecules, such as 
prostaglandins, leukotrienes, thromboxanes etc., derived 
from hydrolysis of phospholipids of the cell membrane by the 
PLA2, depolarises the nerve fibres associated with nociception. 
These signalling molecules bind to the neuron membrane 
receptors, e.g., ionotropic receptors, G-protein coupled 
receptors (GPCR), tyrosin kinase receptors etc., elevating the 
sensitivity of nerve endings or causing hyperalgesia [47,48]. 
PLA2 derived from honey bee is categorized under group III 
of secretory phospholipase A2 (sPLA2) containing a total of 
eight disulphide bonds [49]. PLA2 isolated from Egyptian 
honey bee, Apis mellifera lamarckii has reportedly shown 
anti- coagulation and anti- platelet aggregating activities 
by prolonging prothrombin time [50]. It showed analgesic 
activity against sensory neuropathic sign of pain induced by 
oxaliplatin, a cancer drug used to treat metastatic colorectal 
cancer [51]. Venom of Vespids and fire ants predominantly 

contain phospholipase A1 (PLA1) that also functions similar 
to PLA2 causing hypersensitivity reactions [52]. 

Mastoparan

The most predominant peptide of wasp venom is 
mastoparan (MPN). It is a cationic decapeptide with the 
amino acid sequence of Ile-Asn-Leu-Lys-Ala-Leu-Ala-
Ala-Leu-Ala-Lys-Lys-Ile-Leu-NH2. MPN directly interacts 
with membrane phospholipids causing destabilization and 
membrane lysis (pore formation) leading to leakage out of 
vital cell organelles causing cell death [53]. It is linked with 
stimulatory secretion of histamine from mast cells [54-56]. 
Reports showed that MPN can directly interact with the 
G-protein to activate it and this bound conformation mimics 
the G-protein coupled receptor (GPCR) of cell membrane 
[57,58]. Besides histamine, this peptide is also involved with 
other secretory activities  from variety of mammalian cells, 
such as serotonin, insulin, catecholamines, surfactants from 
platelets, pancreatic islet cells (β cells), type 2 pulmonary 
alveolar cells, chromaffin cells respectively [38,59,60,56,61]. 
It also stimulates Ca2+ influx and increases intracellular 
Ca2+ concentration [62]. It interacts with the membrane 
phospholipids of mitochondria resulting into formation of 
permeability transition pore which in turn leads to swelling 
and rupturing of outer and inner mitochondrial membranes 
[62,63]. Involvement of MPN in stimulating G protein 
that is pertussis toxin sensitive and regulating activities 
of phospholipase A2 and C in Swiss 3T3 cells, was also 
established [64]. 

Bradykinin / Wasp kinins

The heterogeneous mixture of wasp and ant venoms contain 
kinin polypeptides of about 8-19 amino acid sequences. A 
venom constituent similar to bradykinin was first reported in 
the venom of Vespa vulgaris and categorised under wasp kinin 
[65-68]. Wasp kinins are neurotoxic in nature and similar to 
the sequence of bradykinin [69]. The bradykinin like wasps 
kinins differ in the presence of amino acid residues in the 
positions 3 or 6. On this basis, wasps kinins are of three main 
types, bradykinin, Hyp3-bradykinin (hydroxyproline replaces 
proline) or Thr6-bradykinin (threonine replaces serine) 
[66,70]. The latter Thr6 is more potent in blocking the pre-
synaptic signal transmission in insect central nervous system 
(CNS) than bradykinin itself [71,72]. Kinins can permanently 
paralyze the prey by irreversible blockage of CNS. Cascade of 
reports have established that kinin peptide causes contractions 
and relaxations of smooth muscle preparations of visceral 
organs such as fundus, colon, rectum (mild contractions) and 
duodenum and ileum (strong contractions) in rat [73-75]. 
Slow and delayed contraction of guineapig ileum and rabbit 
intestine along with reducing blood pressure in cat and rabbit, 
were also recorded upon treatment with wasp kinin [76].  

Melittin

The predominant component of bee venom (apitoxin) 
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is a small basic peptide of 26 amino acid residues called 
melittin. The sequence reads as Gly-Ile-Gly-Ala-Val-Leu-
Lys-Val-Leu-Thr-Thr-Gly-Leu-Pro-Ala-Leu-Ile-Ser-Trp-Ile-
Lys-Arg-Lys-Arg-Gln-Gln-NH2 [77-79]. Being amphipathic 
in nature, this peptide portrays surfactant and detergent like 
activities and interacts with cell membrane by wedge and 
edge effects to create membrane pores [79]. It binds with 
anionic phospholipids (viz. phospatidyl-serine, phospatidyl-
ethanolamine, phosphatidyl-inositol etc.) and disrupts the 
bilayer structure leading exocytosis and cell death [80]. Melittin 
carries out lytic action along with secretion of histamine from 
mast cells and liberates haemoglobin from red blood cells 
(haemolytic agent) [81-83]. It is also associated with nerve 
fibre depolarisation, secretion, stimulation and activation of 
various hormones, enzymes including leuteinizing hormone, 
phospholipase C and D, adenylate cyclase, protein kinase 
C, G-protein etc. [84-88]. Another physiological activity of 
melittin is that it assists in enhancement of phospholipase A2 
(PLA2) activity on cell (Shier, 1979).

Apamin

Apamin of bee venom is a neuropeptide component of 
about 18 amino acid long sequence (-Cys-Asn-Cys-Lys-Ala-
Pro-Glu-Thr-Ala-Leu-Cys-Ala-Arg-Arg-Cys-Gln-Gln-His-
NH2).  This peptide shows a very specific mode of action, 
unlike melittin, which effects various physiological activities 
of the cell. Apamin interacts and blocks (allosteric inhibition) 
the Ca2+ dependent K+ channel pores and inhibits the actions of 
small conductance channels (SK channels), widely expressed 
in the CNS. Thus, it depresses the amplitude of various after 
hyperpolarisation signals. These signals are important for 
stimulation of Ca2+ dependent SK channels and this activation 
is mediated by calmodulin. Excitation of SK channels plays a 
crucial role in functioning of different cell types, viz. muscle 
cells, neurons, epithelial cells, T lymphocytes etc and in 
blockage of hyperpolarising inhibitions, such as cholinergic, 
adrenergic excitations [89-99,30].

Hyaluronidase

Hyaluronidase is a venom allergen found in venom of 
several stinging and biting insects including bees, wasps, ants, 
fleas, scorpion, spider, hornet etc [100-105]. Its presence in 
insect venom was first reported in Phoneutria nigriventer  and 
Lycosa raptoral in 1953, but purified and characterized from 
the venom of Dugesiella hentzi tarantula in the year of 1973 
[106,107]. Hyaluronidase is a glycoprotein that primarily 
acts on hyaluronan, chondroitin sulfate, dermatan sulfate to 
degrade these into disaccharides and tetrasaccharides [105]. 
Its hydrolysing activity is enhanced and inhibited by the 
presence of modulators such as, histamine, anti-histamine, 
adrenaline, acid phosphatase, heparin, flavonoids, vitamin C 
etc. [108,109]. This venom glycoprotein is not toxic itself but 
labelled as “spreading factor” due to its role in hydrolysing 
the extracellular matrix opening the gap junctions, which in 

turn leads to enhancement of diffusion of other venom toxins 
in the blood circulation of their prey, which in turn increases 
the physiological and pathological effects of envenomation 
[110-115]. Moreover, it is identified as an venom allergen as 
it is responsible for inducing IgE mediated fatal anaphylactic 
shock and hypersensitivity in case of human encounter 
[103,110].

Ectatomin

Ectatomin is a class of novel positively charged proteins 
isolated from the venom of tropical ant species Ectatomma 
tuberculatum and E. qudridens. The toxicity level of 
ectatomin surpasses that of bees and solitary wasps [116]. 
The structural moiety of this class of venom consists of two 
amphiphilic homologous polypeptide chains, each consisting 
of 34-37 amino acid sequences with clusters of basic lysine 
residue. These two chains are connected by disulphide bond at 
the centre (between Cys22 of A and Cys20 of B chain) [117]. 
Two subgroups of ectatomins are Et and Eq, subdivided on 
the basis of position and presence or absence of intrachain 
disulphide bond. Ectatomin shares homology with interferon 
γ-inducible protein (IFN-γ- inducible protein) and tyrosine-
related transforming proteins. It acts as a cell penetrating 
peptide or pore forming peptide by interacting with membrane 
receptors and activating a cascade of reactions (specifically 
protein kinase A, C, tyrosine kinase etc.). It ultimately leads 
to leakage of ions across membrane, lysis and cell death 
[118]. This cytolysin toxin is also involved in modulation 
of Ca2+ channel activities, which results in conformational 
change of Ca2+ channel and elevated calcium currents. This 
presumably modulates the cascade of β adrenergic signal 
transduction reactions [117,119,120].

Mast Cell Degranulating Peptide (MCD)

MCD is another cytolysin toxic peptide component of bee 
venom consisting of 22 amino acid residues, predominantly 
containing arginine or lysine (basic in nature). 1H-NMR 
analysis showed a similar built structure to apamin, of α 
helical chains with two disulphide bridges [121-123]. As 
the name indicates, MCD degranulates mast cells, releasing 
histamines (De Souza and Palma 2009; Nakajima, 1986). 
Thus, this peptide is associated with activation of histamine 
mediated cellular responses, viz. inflammation, reddening, 
pain at the site of encounter by bee stinging [124]. MCD 
also targets Kv channels leading prolonged action potential of 
neurons, hyper-excitation of central nervous system (CNS) 
and seizures [125,126]. 

Other Arthropods as Venom Source

Scorpion Toxin: Genus Scorpio includes one of the 
most potent toxin producing group of arachnids, scorpions. 
Scorpion venom is a deadly amalgamation of neurotoxic 
peptides, proteins, amines and nucleotides, which they 
use against prey or predators to paralyze them in instant 
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[127,128]. This toxin primarily targets the ion channels 
associated with autonomic nervous system, such as, voltage 
gated KV, Cav, Nav, Clv channels. It forms a stable interaction 
with the channel proteins owing to the fact that it has highly 
stable three dimensional backbone with 3-4 disulphide bonds 
[129]. This neuropeptide blocks KV and Clv channels and 
also acts upon voltage sensitive Nav and Cav channels [130-
132]. By affecting opening and closing of these ion channels, 
it prolongs depolarisation of the membranes of nerve, 
skeletal muscle and cardiac muscle cells, increases action 
potential and neurotransmitters get released. It slows down 
inactivation of Nav channels, which in turn results in multiple 
repetitive stimulus firing in motor nerves of the prey leading 
to immediate paralysis [133]. First isolated scorpion toxin 
with highly specific excitatory anti-insect property is AaH 
IT, which portrays highest affinity towards Nav channels of 
arthropods [134]. Chlorotoxin is small peptide component of 
scorpion venom (36 amino acid residues long) that modulates 
functioning of Clv channels and paralyzes normal cells in 
insects but not toxic towards normal human cells [135,136].

Spider Toxin: After insects, spiders occupy the second 
position of largest taxonomic group of phylum Arthropoda. 
Spider venom is a neurotoxic combination of different 
components, viz., polyamines, amines, nucleotides, ions, 
organic acids (primarily citric acid), neuropeptides, enzymes 
etc. [137,138]. Venoms of some species of spiders including 
Cupiennius salei and Aphonopelma hentzi contain higher 
concentration of potassium and lower concentration of sodium 
ions. This causes increased excitation and depolarisation 
across cell membranes, in turn leading to rapid paralysis of 
the victim [139]. A cytolytic agent named cupiennin 1 isolated 
from the venom of C. salei was reported to act synergistically 
with neurotoxic component CSTX-1, enhancing its toxicity 
[140-142]. Cationic peptide components of spider venom 
are cytolytic and antimicrobial in nature. These peptides 
bear positively charged amino acid side chains that interact 
with negatively charged polar heads of the phospholipids of 
the cell membrane. This ultimately changes the lipid bilayer 
membrane configuration and leads to pore formation. Venom 
peptides that are rich in cystine residues act as neurotoxic 
peptides owing to formation of stable complexes with various 
receptors and ion-channels of cell membranes [143]. Some 
ion channel blocker constituents of spider venom are namely, 
ω-agatoxin-1a (targets on inhibition of Cav channels), 
µ-diguetoxin-Dc1a (Na

v channels blocker), κ-hexatoxin-
Hv1c (K

v channels blocker), π-theraphotoxin-Pc1a (blocks 
acid sensing ion channel) etc. [144,145].

Centepede Toxin: Centepedes belong to class Chilopoda 
of terrestrial arthropods and of predatory in nature. In this 
group of arthropods, the first pair of appendages are modified 
into poison claws or forcipules that act as piercing forceps. 

Venom of centipede is a neurotoxic pool of different 
peptides, enzymatic and non-enzymatic components, that 
once injected can initiate rapid paralysation of the prey 
[35,146]. These neurotoxic peptides principally acts on 
voltage gated ion- channels as well as showcases different 
physiological activities, viz, anticoagulantion, platelet 
aggregation, inhibition of trypsin activity, PLA2 activity etc. 
[34]. Summation of all these activities leads to cell lysis and 
tissue damage. Some isolated neurotoxic peptide constituents 
from the venom of S. subspinipes mutilans are namely, 
κ-SLPTX-Ssm1a (modulates Nav, Kv channels), κ-SLPTX-
Ssm2a (inhibitor of Kv channels), κ-SLPTX-Ssm3a (selective 
inhibitor of Kv channel) etc. (Yang et al., 2012). Another 
two toxic peptide components called ω-SLPTX-Ssm1a and 
ω-SLPTX-Ssm2a are reported by Yang et al., to act on Cav 
channels and modulate the rate of calcium influx. Peptide 
toxin SsmTx-I from S. subspinipes mutilans was reported to 
act as KV2.1 modulator by inhibiting KV2.1 current [147].

Regulating Pathways of Different Venom Toxins
Phospholipase A2

Phospholipase A2 triggers the activation of arachidonic 
acid signaling pathway which leads to thromboxane A2 
(TXA2) synthesis in a reaction catalyzed by thromboxane 
synthetase (to form TXA2) and cyclooxygenase-1 (COX-1) 
(to form prostaglandin G2/H2). When TXA2 is released to 
the bloodstream, it binds to TXA receptors present on the 
surface of circulating inflammatory cells, adjacent platelets, 
and atherosclerotic plaque components and this amplifies and 
perpetuates the atherothrombotic process [148].

Mastoparan

The disruption of p38 MAPK activity secondary to 
the disruption of G protein-coupled signaling caused by 
mastoparan results in decreases in both IL-6 and NF-кB 
reporter activities in human dermal microvessel endothelial 
cells and in a murine macrophage cell line [149].

Bradykinin

Kinins and their cognate receptors can take part in 
regulation of cell proliferation [150]. Therefore, bradykinin-
mediated activation of ERK/MAP kinase pathways is 
well studied and several different cellular mechanisms are 
suggested [151]. It is observed that increase in intracellular 
calcium concentrations in endothelial cells, produced either 
by GPCR stimulation or artificially, activates tyrosine kinases 
and ERK/MAP kinase module [152].

Melittin

Bee venom, melittin has significant inhibitory effects on 
the EGF-induced invasion and migration of breast cancer 
cells. Also, melittin reduces the EGF-stimulated F-actin 
reorganization at the leading edge. Particularly, melittin 
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Figure 1: Chemical structure of different venom toxins.

Arthropod category Genus/Species Toxic 
component

Chemical 
nature

Nature of 
cellular activity Physiological target

Wasps Vespula lewisii Mastoparan Peptide Cytolytic Membrane 
phospholipids, cell lysis

Honey bee Apis mellifera

Melittin Peptide Cytolytic Cell membrane, pore 
formation

Apamin Peptide Cytotoxic Ca2+ dependent K+ 
channel, SK channels

MCD Peptide Cytotoxic Mast cells, releases 
histamine

Vespa, fire ants, 
bees

Several species of Vespa, Vespula, 
Polybia, Polistes, Solenopsis invicta

Phospholipase 
A1 Protein Cytotoxic Membrane 

glycerophospholipids
Wasps, bees, 
centipedes

Many species of Apis, Polybia, Agelaia, 
Bombus, Scolopendra genera

Phospholipase 
A2 Protein Cytotoxic Same as PLA1

Bees, wasps, ants, 
fleas, scorpions, 
spiders, hornets

First isolated from Dugesiella hentzi, 
many members of Apis, Vespa, Scorpio, 

Solenopsis
Hyaluronidase Glycoprotein “Spreading 

factor”
Hyaluronan, chondroitin 
sulfate, dermatan sulfate

Ants

Ectatomma tuberculatum Ectatomin Peptide Cytolytic Membrane receptors

Paraponera clavata Poneratoxin Peptide Neurotoxic Voltage gated sodium 
channels

Pachycondyla goeldii Ponericin Peptide Cytotoxic Cell membrane (pore 
formation)

Wasps, bees and 
ants

Several species of Vespa, Apis and 
Pogonomyrmex kinin Peptide Neurotoxic Central nervous system 

(CNS)

Hornets Vespa crabro Crabrolin Peptide Cytotoxic Mast cell, RBCs

Bumblebees Megabombus pennsyluanicus. Bombolitin Peptide Cytotoxic Cell membrane 
penetration

Scorpions Leiurus quinquestriatus hebraeus Chlorotoxin Peptide Neurotoxic Voltage gated chloride 
channels

Scorpions Pandinus imperator Scorpine Peptide Neurotoxic Voltage sensitive ion 
channels

Blister beetle Cantharis vesicatoria Cantharidin Fatty 
terpenoid Cytotoxic Outer layer of skin, 

desmosomal plaque

Centipede Scolopendra subspinipes mutilans SsmTx-I Peptide Neurotoxic Voltage gated potassium 
channel

Table 1: General physiological action of some important insect venom components.
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inhibits the EGF-induced MMP-9 expression through 
blocking the PI3K/Akt/mTOR and NF-κB pathway. In 
addition, melittin effectively suppresses the EGF-induced 
FAK phosphorylation through the inhibition of mTOR/
p70S6K/4E-BP1 pathway [153].

Apamin

Apamin inhibits IFN-γ- and TNF-α- induced inflammatory 
cytokines and chemokines through the suppression of STAT 
and NF-κB signaling pathway in human keratinocytes [154]. 

Hyaluronidase

In a non-canonical signal pathway, hyaluronidase 
(HYAL-2) serves as a receptor for TGF-β to signal with 
downstream tumor suppressors, namely SMAD4 and 
WWOX to control gene transcription. Cell death occurs 
when SMAD4 responsive element is overly driven by the 
HYAL-2–WWOX–SMAD4 signaling complex. In case of 
rats subjected to traumatic brain injury, over accumulation 
of a HYAL-2–WWOX complex occurs in the nucleus which 
causes neuronal death. Hyaluronan induces the signaling of 
HYAL-2–WWOX–SMAD4 and relocation of the signaling 
complex to the nucleus. When the signaling complex is 
overexpressed, WWOX-expressing cells face bubbling cell 
death [155].

Ectatomin

Ectatomin can get efficiently inserted into the plasma 
membrane, where it can form channels. Ectatomin was found 
to inhibit L-type calcium currents in isolated rat cardiac 
myocytes [117]. In these cells, ectatomin induces a gradual 
and irreversible increase in ion leakage across the membrane 
that can lead to cell death.

Mast Cell Degranulating Peptide

Mast cell degranulating peptide is the most potent peptide 
of naturally occurring mast cell secretagogues. It is found 
to stimulate the GTPase activity of G proteins (G0/Gi) in a 
concentration dependent manner [156].

Scorpion Toxin (Chlorotoxin)

Chlorotoxin can directly bind to ERα and change 
the protein secondary structure of its LBD domain, 
hence inhibiting the ERα signaling pathway. Vasodilator 
stimulated phosphoprotein (VASP) is a target gene of ERα 
signaling pathway. Chlorotoxin can inhibit breast cancer 
cell proliferation, migration, and invasion via ERα/VASP 
signaling pathway [157].

Spider Toxin (ꞷ-agatoxin-1a)

Phorbol-12 myristate-13 acetate - promoted calcium 
influx can be inhibited by spider toxin such as ꞷ-agatoxin-
1a which is a calcium channel blocker specific for Cav2.1 
channels [158].

Therapeutic Potential of Venom in Chronic 
Diseases
In cancer

Insect venom can play a promising role to tackle the 
growing burden of cancer, as they are packed with target 
specific bioactive components. Many of the insect venom 
principles show affinity towards membrane phospholipids 
expressed on cancer cell and membrane receptors. They 
exert cytotoxicity and cell lysis. This property can be useful 
in targeting cancer cells and development of novel target 
specific drugs. Mastoparan, one key component of wasp 
venom, mediates cancer cell cytotoxicity and death by binding 
with anionic phospholipids expressed on the membrane of 
cancer cells. This interaction leads to pore formation and 
leakage of vital cell organelles out of the cell. It also affects 
the mitochondrial membrane permeability transition causing 
swelling and ruptures outer and partially inner mitochondrial 
membranes [63].  Mastoparan induces release of LDH 
from leukemia cells, suggestive of the fact that it is an anti-
cancer peptide (ACP) with lytic property [159]. Report 
has shown that peritumoral mastoparan administration in 
murine melanoma model delayed tumor growth by activating 
apoptosis [160]. Similar potential is seen in case of bee 
venom peptides. Melittin acts as a surfactant, binds with 
membrane phospholipids and disrupts the bilayer leading to 
exocytosis. It inhibits calcium binding protein calmodulin 
and restricts the growth of leukemic cells [161]. It shows anti-
tumor potential by blocking COX-2 and VEGFR-2 mediated 
MAPK signaling pathway [162]. Solenopsin, isolated from 
fire ant S. invicta shows anti-angiogenic property and inhibits 
PI3K signaling [163]. Huh et al. reported that bee venom can 
downregulate vascular endothelial growth factor (VEGFR-2) 
signalling pathway, in turn inhibits tumour proliferation, 
angiogenesis and metastasis. A potent anti-cancer agent 
isolated from Chinese blister beetle (Mylabris phalerata), 
called cantharidin can arrest cell cycle in G2/M phase and 
induces apoptosis in T 24 and HT 29 cell lines (Huan et al., 
2006). It also suppresses pro-tumor autophagy and induces 
cell death in triple negative breast cancer cell lines [164]. 
BmHYA1, a hyaluronidase from Buthus martensi showed 
anti-proliferative activity by reducing expression of CD44 
variant in breast cancer cell line [165]. Various potent anti-
cancer agents are also reported in the venom of scorpion 
Buthus martensii Karsch, such as BmK AGAP, BmKCT, that 
targets cancer signaling pathways, viz., Bcl-2, NFκB, MAPK 
pathways and inhibits Na

V and chloride current in cancer cell 
lines (Zhao et al., 2011; Fu et al., 2007; Fan et al., 2010). 

In Rheumatoid Arthritis (RA)

RA is a chronic auto-immune disorder characterised by 
inflammation, joint pain, redness and ankylosis, which can 
lead to deformities and permanent disability. Hydrolysis of 
glycerophospholipids by PLA2 releasing lysophospholipids, 
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precursor of eicosanoids. Eicosanoid level elevation in 
circulation is related to patho-physiologicial conditions as 
pain, inflammation etc. Blocking the voltage sensitive ion 
channels (such as Na

V
, Ca

V
, acid sensitive ion channels) 

and receptors (e.g., purinergic receptors) associated with 
nociception can reduce the pain and inflammatory condition 
of RA. Analgesic effects of bee venom components (melittin 
and apamin) are already reported in a number of research 
works [166-168]. These bio-actives can inhibit enzymatic 
activity of sPLA2 and reduce inflammation [169,170]. Nipate 
et al. in 2015, evaluated anti-arthritic, anti-inflammatory 
property of Indian honey bee (Apis dorsata) venom in FCA 
and CIA-induced rat arthritic model. Random clinical trials 
on using bee venom acupuncture in treating RA showed 
improvement of joint pain and swelling in RA patients [171]. 
Huwentoxin-I and Huwentoxin-IV toxins isolated from 
Ornithoctonus huwena, inhibits voltage sensitive sodium 
channels (Na

V
1.7) and tetrodotoxin- sensitive channels [172]. 

These channels are directly related to depolarisation of nerve 
fibres associated with nociception. μ-scoloptoxin-Ssm6a, a 
toxic principle isolated from S. subspinipes mutilans, inhibits 

Na
V
1.7 channels portraying anti-nociceptive potential against 

formalin-induced pain in rat model, which is many fold higher 
than morphine [173]. SsmTx-I is another active component 
from S. mutilans that showed anti-inflammatory property by 
blocking voltage gated potassium channels Kv2.1 in murine 
model system [147]. 

In diabetes

Type I diabetes, also called diabetes mellitus is an 
autoimmune disorder characterized by impairment of 
insulin action and secretion and hyperglycemia whereas, 
type II diabetes, known as diabetes insipidus is related to 
dietary habits and resistance towards insulin action as well 
as hyperglycemia. Active toxic component of wasp venom, 
mastoparan has been reported to increase insulin release on 
glucose augmentation from pancreatic islet cell of human 
[174]. SsmTx-I, from Scolopendra subspinipes mutilans, 
can specifically blocks voltage gated potassium channels 
(KV2.1) found in pancreatic β cells and stimulates insulin 
secretion [147]. Hassan et al. in 2019 reported that bee venom 
components also possess the property to suppress plasma 

 
Figure 2: Biological activity of bioactive components present in insect venoms.
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glucose level and increases insulin level in albino rat model 
system. Active toxic component GxTX-1 from the venom 
of tarantula Plesiophrictus guangxiensis, inhibits delayed 
rectifier potassium current in β cells and increased glucose 
stimulated secretion of insulin (Herrington et al., 2006).  

In asthma

Asthma is a chronic disorder characterized by 
inflammation, narrowing of lungs airways and excessive 
mucous production. It can be life threatening by making 
the patient experience difficulty in breathing and shortness 
of breath. This pathophysiological condition is related to 
infiltration of CD4 T cells that expresses IL-2 and IL-17 
cytokines responsible for inflammatory condition of asthma. 
This proliferation of type 2 helper T cells (Th2) occurs due to 
exposure to allergens. Bee venom reportedly decreased the 
levels of Th2 cytokines and serum IgE levels in ovalbumin 
induced asthma in mice (Choi et al., 2013). Maurotoxin 
isolated from Scorpio maurus palmatus has been found 
to inhibit intermediate conductance channel, KCa channel, 
in human T lymphocyte cells in concentration dependent 
manner [175]. T lymphocyte cell activation is modulated by 
KCa channels [176], hence blocking these channels can reduce 
expression of inflammatory cytokines. 

Other Chronic and Genetic Disorders

A potent toxin GsMtx-4, isolated from venom of tarantula 
Grammostola spatulate, has shown inhibitory actions on 
mechanosensitive ion channels as well as supressed arterial 
fibrillation, indicating anti-arrhythmic property [177]. 
Another toxic component PhKv isolated from the venom 
of Brazilian spider Phoneutria nigriventer, has shown 

remarkable ability to reduce nociception by blocking AchE 
activity and inactivating cholinergic transmission in mice 
model [178]. This property might play important role in 
treating Alzheimer disease. PhTx4-5-5 toxin from the venom 
of same spider species showed neuro-protective activity by 
inhibiting glutamate excitotoxicity responsible for cell death 
in neurons of mice [179]. Bee venom and its component 
apamin can significantly increase striatal dopamine level and 
decreasing MPTP-induced neuron cell loss. Thus it acts as 
neuro-protective agent against Parkinson disease [180]. It 
is also excellent in reducing the serum nitrate, TNFα levels 
and suppressing multiple sclerosis symptoms in experimental 
encephalomyelitic rat model [181]. Apamin also exhibits 
anti-atherosclerotic property in lipopolysaccharide- induced 
atherosclerotic mice model by inhibiting macrophage 
apoptosis and suppressing expressions of  members of Bcl2 
family, Cyctochrome C, caspase 3 and PARP [182]. Proulx et 
al. in 2019 reported that apamin can boost nicotinic excitation 
improving cognitive function and attention acquisition in 
transgenic mice model system, which is indicative of a novel 
anti-Alzheimer agent. FrPbAII and Parawixin 10 are two 
toxins isolated from venom of Brazilian spider Parawixia 
bistriata have shown remarkable neuroprotective abilities in 
treating retinal glaucoma in rat [183,184].  

Venom- a Future Prospective of Drug Discovery
Despite being a source of paramount of bioactive 

principles with diverse physiological properties and actions, 
only a few drugs have been developed from insect venoms 
that are under clinical and pre-clinical trials. Most of the toxin 
based approved drugs are derived from the venoms of snake, 
frog, cone snail and puffer fish (viz. Haemocaogulase® from 

Sl. No. Venom Insect (s) Regulation of cell signaling Reference 

1 Phospholipase A2 Wasp, bee, scorpion, 
centipede Arachidonic acid pathway ↑ [148] 

2 Mastoparan Wasp G protein-coupled signaling ↓ [149] 

3 Bradykinin Wasp, ant
ERK/MAP kinase

[151] 
pathway ↑

4 Melittin Bee PI3K/Akt/mTOR pathway ↓; NF-κB pathway ↓; mTOR/
p70S6K/4E-BP1 pathway ↓ [153] 

5 Apamin Bee NF- κB signaling pathway ↓; STAT signaling pathway ↓ [154] 

6 Hyaluronidase Bee, wasp, ant, flea, 
scorpion, spider, hornet HYAL-2–WWOX–SMAD4 signaling ↑ [155] 

7 Ectatomin Ants Ion leakage across membrane ↑; L-type calcium currents 
in myocytes ↓ [117] 

8 Mast cell degranulating 
peptide Bee G protein-coupled signaling ↑ [156] 

9 Scorpion toxin (Chlorotoxin) Scorpion ERα signaling pathway ↓ [157] 

10 Spider toxin (ꞷ-agatoxin-1a) Spider Calcium influx activity ↓ [158] 

11 Centepede toxin (κ-SLPTX-
Ssm2a) Centepede Kv channel activity ↓ [35] 

Table 2: Cellular Regulatory pathways of different venom toxins.

(↑upregulation and ↓ downregulation)
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Venom 
component Experimental model Physiological role Therapeutic 

potential References

Melittin Hodgkin Lymphoma (HL) cell lines 
KM-H2 and L-428 Plays synergistic role with cisplatin Anti-neoplastic [185] 

Melittin Human hepatocellular carcinoma cell 
lines: SMMC-7721 and BEL-7402

Activates CaMKII-TAK1-JNK/p38 and inhibits 
IkBa kinase- NFkB Anti- timour [186] 

Melittin Caki-1, Caski, SK-BR-3 cell lines
Inhibits matrix metalloproteinase-9 (MMP-9) gene 
expression by blocking activator protein-1 (AP-1) 

and nuclear factor-kappa B (NF-κB)
Anti- metastatic [187] 

Melittin human breast carcinoma MCF-7 cell 
line

Downregulation of cluster of differentiation 
(CD)147 and (MMP-9) expressions

Anti-invasive and 
anti-metastatic

Wang et al., 
2016

Melittin Human peripheral blood leukocytes Inhibits neutrophil O2- production. Anti-inflammatory [188] 

Melittin-like 
peptide 101

In vitro: LNCaP-LN3, DU-145, C3 
cell lines 

Peptide 101-immunoconjugates showed more 
affinity towards cell binding and cell killing, 

delaying tumor growth

Cytotoxic,  
anti- tumor [189] 

***

Melittin Human HCC cells (BEL-7402) Apoptosis and growth arrest, up-regulates Fas 
expression Anti-proliferative [190] 

Melittin human acute T lymphocyte leukemia 
cell line 6T-CEM Apoptosis, cell death Cytotoxic, anti-

proliferative [191] 

Ad-rAFP-Mel 
(Recombinant 

adenovirus 
carrying melittin 

gene)

In vitro: BEL-7402 cell line In vivo: 
BALB/c-nu/nu athymic mice (male)

Reduced rate of tumorigenicity and detection of 
significant anti-neoplastic effect Anti-neoplastic [192] 

Melittin

Murine leukemic lymphocyte cell 
lines (L1210 and L5178Y) and 
human promyelocytic leukemic 

granulocyte cell line (HL-60)

Calmodulin inhibition, inhibition of cell growth and 
clonogenicity Anti-proliferative [193] 

Melittin Ras transformed cells Hyper-activation of PLA2 and enhanced Ca2+ 
influx Anti-neoplastic [194] 

Bee venom 
(whole)

Patients with sepsis from Intensive 
Care Unit

Decreases generation of inducible Nitic Oxide 
(NO) synthase and TNFa Anti-arthritic [195] 

Bee venom 
(Water soluble 

sub fractionated 
part)

J774A.1 (mouse macrophage 
cell line), A549 ( human airway 

epithelial cell line), U937 (human 
myelomonocytic cell line)

Inhibits COX2 activity, pro-inflammatory 
cytokines: TNF-a and IL-1b Anti-arthritic [196] 

Bee venom 
(whole)

Male Lewis rats, Charles River CD 
strain male rats

Suppression of adjuvant arthritis and carrageenan 
induced paw edema in time and dose dependent 

manner
Anti-arthritic [197] 

Bee venom (Apis 
mellifera) Albino rats (male) Decreases plasma glucose level and increases 

plasma insulin level Ant-diabeteic [198] 

Adolapin Rats

Anti-inflammatory activity in carrageenan, 
prostaglandin (PG) and adjuvant-induced paw 

edema by cyclo-oxygenase, PG synthesis 
inhibitory activities

Anti-arthritic [199] 

Bee venom Lewis rats (male and female) Depression of cytochrome p450 level and 
Ethylmorphine N-demethylase activity Anti-arthritic [200] 

Bee venom 
(whole) (Apis 

mellifera)
Sprague-Dawley rats (male)

Decrease in erosions of articular cartilage and 
infiltration of inflammatory cells in adjuvant-

induced hind paw arthritis
Anti-arthritic [201] 

Table 3: Therapeutic potential of whole venom or venom bioactive components in chronic diseases.
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Apamin AML12 cell line
Suppresses epithelial mesenchymal transition 

induced by TGF-b1 and inhibits smad dependent/ 
independent signalling pathways

Anti- hepato 
fibrotic [202] 

Apamin HaCaT (human keratinocyte cell line)
Inhibits NF-kB and JAK/STAT signaling pathways; 

suppresses inflammatory chemokines and 
cytokines

Anti- 
inflammatory [203] 

Apamin Transgenic TgCRND8 mice Improves cognitive function and attention 
acquisition

Anti-Alzheimer 
agent

[204] 

Apamin
In vitro: THP-1 (human monocyte 

cell line)
In vivo: C57BL/6 mice (male)

Inhibits apoptosis of macrophages by suppressing 
levels of Bcl-2 family, cytochrome-c, caspase-3 

and PARP

Anti-
atherosclerotic [182] 

Apamin
In vivo: HSC-T6 ( rat hepatic 

stellate cell line)
In vitro: C57BL/6 mice (male) 

Attenuates IL-6, IFN-γ, TNF-α, IL-1β expressions 
and inhibits HSC activation by Smad signaling 

pathway
Anti-cholestatic [203] 

Apamin C57/Bl6 mice (male) Decreases MPTP-induced dopamine neuron cell 
loss and increases striatal dopamine levels

Anti-parkinsonian 
agent [180] 

Solenopsin 
(Solenopsis 

invicta)

Transgenic zebrafish Fli-EGFP 
(embryos) Inhibits PI3K activation and delayed angiogenesis Anti-angiogenic [163] 

Cantharidin 
(Lytta 

vesicatoria)

CCRF-CEM (leukemia cell line) and 
its sub-lines: CEM/ADR5000, CEM/

VLB100, CEM/E1000

Induces apoptosis of multidrug resistant cells by 
p53 dependent mechanism Anti-cancer [205] 

Cantharidin 
(Mylabris 
phalerata)

T 24 (human bladder carcinoma) 
and HT 29 (human colon carcinoma) 

cell lines

Arrests cell cycle at G2/M phase and induces 
apoptosis

Cytotoxic, anti-
cancer [206] 

Cantharidin
In vitro: MDA-MB-231, MDA-MB-468 

(human breast cancer cell lines) 
In vivo: BALB/c nude mice

Reduces cell viability in dose dependent manner, 
induces apoptosis, suppresses pro-tumor 

autophagy
Apoptotic [207] 

Scorpion venom 
(Heterometrus 
bengalensis 

Koch)

U937 and K562 (human leukemia 
cell lines)

Arrests cell cycle, induces apoptosis by 
membrane blebbing and DNA damage Anti-proliferative [208] 

Chlorotoxin Various human and animal cell lines Tumour-specific binding with glioma cells, inhibits 
cell invasion Anti-metastatic [209] 

Maurotoxin 
(Scorpio maurus 

palmatus) 

B82 (mouse fibroblast cells) and 
Ovary cells of Chinese hamster

Inhibition of intermediate conductance subclass of 
KCa channels Anti-asthmatic [175] 

Hyaluronidase 
BmHYA1 
(Buthus 

martensi)

MDA-MB-231 (Breast cancer cell 
line) Reduces CD44 variant expression Anti-tumor [165] 

Hyaluronidase 
(Tityus 

serrulatus)
C57BL6/6 mice

Reduces bleomycin induced pulmonary fibrosis 
by decreasing collagen deposition and TGFb 

expression
Anti-fibrotic [210] 

Mastoparan
In vito: Jurkat, THP-1 (human 

leukaemia cell line), and HOPC 
(murine myeloma cells line) 

Induces cell death in concentration dependent 
manner, reduces tumour growth and acts 
synergistically with chemotherapeutic drug 

(gemcitabine)

Anti-cancer [159] 

In vivo: T41 mammary carcinoma 
induced immune competent mice

All-D Mastoparan 
M

Colo 225, KB, Hep-2, H226Br and 
HeLa cell lines Inhibits tumor growth by direct lysis of cancer cells Cytolytic, anti-

tumor [211] 

Mitoparan and 
analogues U373MG and ECV304 cell lines

Causes DNA fragmentation, modulates 
mitochondrial membrane permeability, initiates 

apoptosis
Apoptotic [212] 
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Mastoparan

In vitro: B16F10, B16F10-Nex2, 
A2058, SiHa, Jurkat, MCF-7, MDA-

MB-231, U87, SK-BR-3, Melan-a cell 
lines In vivo: C57BL/6 mice (male)

Increases ROS level and decreases pro-
caspases-3, 9 and 12, leading intrinsic pathway 

of cell death

Anti-tumor, 
apoptotic [160] 

Mastoparan Sprague-Dawley rats (male) Human 
pancreatic islet cells

Many fold increase in mastopran-induced insulin 
release over glucose augmentation

Anti-hyper 
glycemic, anti-

diabetic
[174] 

SsmTx-I 
(Scolopendra 
subspinipes 

mutilans L. Koch)

Sprague–Dawley rats Blocks voltage sensitive potassium channel  
(Kv 2.1)

Anti-asthmatic, 
anti-diabetic, 

anti- 
inflammatory

[147] 
Herrington  
et al., 2006

Ssm6a (S. 
subspinipes 
mutilans )

In vitro: HEK293T cell line 

In vivo: mice model

Blocks voltage gated sodim channel (NaV1.7) 
and pain reliving effectiveness is  manyfold higher 

than morphine

Antinociceptive, 
analgesic [173] 

Scolopendrasin 
VII (S. 

subspinipes 
mutilans )

U937 and Jurkat cell lines Reduces viability of cancer cells, induces necrosis 
by interacting with membrane phosphatidylserine Anti- cancer [213] 

Centipede 
venom 

(Scolopendra 
viridicornis)

In vitro: Hep 3B, HBL-100, IMR-32, 
HEL 92.1.7, ACHN

In vivo: Swiss albino mice
Substantially decreases tumor growth Anti-tumor [214] 

S. subspinipes 
mutilans extract A375 cell line

Arrests cell cycle and promotes cell death, 
decreases Bcl-2, increases Bak, Bax and 

Bad expressions
Apoptotic [215] 

Psalmotoxin 1 
(Psalmopoeus 

cambridgei)
Rats Blocks ASIC1a (acid sensing ion channel), opioid 

activity similar to morphine Antinociceptive [216] 

β-TRTX-Gr1b 
(Grammostola 

spatulata)
Rats Interacts with Cav channels, relieves pain Analgesic [217] 

GsMtx-4 
(Grammostola 

spatulata)
Rabbit Inhibits mechanosensitive channels, suppresses 

atrial fibrillation Antiarrhythmic [177]

***In vivo: LN3 or DU-145 human CaP cell xenografts established in Athymic BALB/c nu/nu (nude) male mice

Bothrops atox moojeni, ABT-594 from Epipedobates tricolor) 
[23]. There are ample of active insect-venom components yet 
to be explored and documented, that may play crucial role 
in discovery of potential modern drugs for the treatment of 
chronic diseases, including cancer. Furthermore, emphasis is 
given only on more stable venom peptides while selecting for 
drug designing, such as, presence of Disulphide Bridge in the 
core peptide. This provides the venom peptides or proteins, 
the ability to withstand proteolytic digestion and penetration 
through physiological shuttles or barriers, e.g., blood-brain 
barrier [218]. Attention is also required on the mode of 
delivery and bio-availability of the designed drugs. Oral 
administration of toxin derived drugs designed from large 
molecular weight proteins is more likely to be a poor option 
due to the chance of getting digested by proteolytic enzymes. 
An alternative to improve stability of venom derived drugs is 
replacement of disulphide bond configuration with diselenide 
bonds by incorporating Selenocysteine residues [219,220]. 
Being isosteric in nature with disulphide bonds and less 
reactive towards biological reductions, diselenide bonds 
architecture is of highly stable nature [221,222]. Another 
issue associated with venom derived drug discovery is that 

their half-life is poor in human gastric juice and serum. This 
creates a limitation regarding high drug clearance by liver 
and kidney [223,224]. It can be overcome by using carrier 
proteins or conjugation with non-immunogenic polyethylene 
glycol (PEG) [225,226]. Some of insect venom derived drugs 
under clinical or pre-clinical trials are listed in table 3.

Conclusion
Exploring venomics is like exploring the treasure house of 

novel therapeutics. Despite large number of research works 
completed on insect venom and their therapeutical potentials, 
few works have been published on practical application as 
bio-available drugs. Thorough optimization on some issues, 
such as, their mode of action, route of delivery, side effects 
and safety, can lead to find out plausible compositions of 
highly selective target- specific drugs. This area needs more 
focus and attention to meet success in combating chronic 
diseases as well as cancer.  
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