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Abstract

Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive
motor neuron disease that heavily impacts a person’s ability to perform
activities of daily living, affecting mobility, function, and communication
drastically. These complications present a daunting obstacle for familial
support systems and physicians to manage. Although survival prognosis in
ALS patients has moderately improved with the advent of ALS specialty
clinics, this illness persists as a grim diagnosis with no current cure or
hope for recovery, simply an inescapable decline. However, assistive
robotics provides a promising opportunity in empowering patients to
retain control of their lives. This comprehensive review explores the
current developments in assistive robotics for ALS patients across various
aspects of daily living. Our review accentuates how robotics can make
a significant impact on quality of life, preserving physical capabilities
and patient agency. Potential barriers have also been identified, such as
cost, accessibility and ethical considerations. However, there is limited
information with case-controlled studies and robust research addressing
ALS from this scope. Within the lens of rehabilitation, these technologies
present the opportunity to preserve autonomy, the ability to still care for
oneself, to perform the “everyday” tasks, the things that make life still
meaningful. This critical review highlights the humanistic potential that
the future of this emerging field holds; to innovate and bridge the technical
with the personal; and to approach decline with empathy, adaptability and
respect.
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Introduction

Amyotrophic Lateral Sclerosis (ALS) is a relentless neurodegenerative
disease that gradually robs individuals of movement, speech, and independence,
while leaving cognition largely intact. For patients and families, it is both
medical and deeply human, a daily negotiation between adaptation and loss.
Despite advances in multidisciplinary ALS clinics and improved symptom
management, the condition remains incurable and profoundly life-altering
[1]. Within this landscape, assistive robotics offers not a cure but a means
to sustain dignity and agency. New innovations in assistive technology such
as robotic arms, wearable exoskeletons, eye-tracking systems, and brain-
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computer interfaces extend the body’s ability to engage with
the world. Studies show that robotic assistance can improve
independence, ease caregiver burden, and strengthen the
sense of control of a patient [2-4]. Devices that support
mobility help compensate for weakness and fatigue [5-
9], while communication systems restore expression and
social connection even in advanced disease [10-16]. Recent
progress in neuroprosthetic voice synthesis and rapid speech
decoding suggests that human communication can persist
even as the body declines [17-24]. In this light, robotics
becomes more than mechanical design; it becomes an act
of empathy in motion. This review explores how assistive
robotics supports mobility, communication, and quality of
life in ALS, proposing that innovation guided by compassion
can redefine what it means to rehabilitate within decline.

Pathophysiology and Clinical Context

Amyotrophic Lateral Sclerosis (ALS) is a relentlessly
debilitating  disease that impacts movement and
independence. Clinically, this presents as rapid onset loss of
voluntary motor control, demonstrating both upper and lower
motor signs. Over time, patients lose muscle strength to the
point of paralysis as they gradually lose the ability to walk,
speak, swallow and ultimately breathe of their own volition.
Notably, consciousness and intellect remain intact, creating
a grim diagnosis as a patient is consciously aware of their
steep decline. ALS remains a disease of mixed etiology [1-2].
Most cases occur without clear genetic cause, though recent
studies have linked one in ten cases to mutations in genes
such as SOD1, TARDBP, C9orf72, and FUS. The underlying
physiology involves acomplex cascade of neuronal destruction
associated with oxidative stress, inflammation and glutamate
toxicity [3]. Though there is no cure, the current standard
of treatment utilizes riluzole and edaravone to slightly slow
disease progression [4]. Median survival from the time of
diagnosis is estimated to be three to five years. Additionally,
the advent of ALS specialty clinics has extended both the
quality of life and longevity for many patients [6]. However,
the survival statistics do not encompass the entirety of the
picture. The core of the disease and how it impacts a person’s
livelihood lies in its steady erosion of autonomy both for their
patients and their caregivers.

From a holistic perspective, the clinical goal for ALS
patients shifts to preservation; to maintaining a person’s
ability to control their body as much as possible. Due to the
current innovations in robotics and artificial intelligence (AI)
technology, assistive devices have grown more advanced.
This has paved the way for an emerging opportunity in
providing care for patients who have lost motor control.
Already, assistive robotics have made incredible bounds in
the field of stroke recovery and rehabilitation [19-20]. Much
less studied, is the impact these technologies can have on
ALS patients.
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Methods

Utilizing various research databases such as PubMed,
IEEE Xplore, Scopus, Google Scholar, SciSpace and
arXiv, this review analyzed 119 peer-reviewed articles. Our
inclusion criteria involved peer-reviewed studies published
between 2010-2025 in English language, with ALS-specific
applications, prioritizing primary research studies over
review articles. Meanwhile exclusion criteria consist of
ruling out purely engineering simulation papers without user
data and non-ALS populations unless technology is directly
transferable.

Though the distribution included a sparse amount of
review articles and meta-analyses, the focus of this review
encompassed pilot studies, case reports and controlled
trials. The keywords utilized in our search criteria include
“Amyotrophic lateral sclerosis,” “assistive robotics,”
“rehabilitation,” “exoskeleton,” ‘“communication aid,”
“adaptive device,” “quality of life.”

Of our initial 119 articles, 47 were excluded as they did
not meet the scope of this project. Our main body of research
[25-96] consisted of primary research such as pilot studies,
case reports and controlled trials. Of those 72 articles, 52
publications [25-76] fully met our criteria involving device
implementation in an ALS- specific setting, measuring
subjective outcomes and quality of life improvements. The
other 20 primary articles [77-96], either did not involve
device implementation or utilized assistive robotics in a
mixed population, not specifically addressing ALS.

Robotics for Mobility Support

Motor decline in ALS is often experienced as a slow
separation between intention and motion. Strength weakens,
reflexes sharpen, and spasticity reshapes movement into
something effortful and unpredictable. Posture begins to
fail in ways that are subtle at first and then sudden all at
once. Holding the head upright becomes tiring; standing
or walking turns into a series of careful negotiations. Even
shifting in a chair can require strategy. What was once
automatic must now be managed moment by moment. It is
within this erosion of stability and spontaneity that mobility-
oriented robotics has begun to offer a different way forward.
These technologies represent a substantial portion of
contemporary ALS research. As shown in Figure 1, nearly
half of all primary studies focus on restoring or supporting
physical function, with mobility systems forming a major
subdomain. Their growth over time is equally striking.
Figure 2 reflects an accelerating trend toward wearable and
soft-robotic designs; devices that do not aim to overpower
the body but to move with it. This shift in research emphasis
mirrors a philosophical one: a move away from rigid
mechanical compensation and toward dynamic, adaptive
support that respects how people live in their bodies.
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ALS + Device Implementation (74%, N=53)

[ ALS with no Direct Device Implementation (15%, N=11)
Non-ALS (Device / Cross-Disability Implementation) (11%, N=8)

Figure 1: Current distribution of our primary body of research. The published articles and
studies are categorized by their inclusion of assistive technology and focus on ALS. Sample size and
percentage of total studies (N=72) in the individual category are shown in parentheses.

Brain-Computer Interfaces (BCls) / Neuroprosthetics (26%, N=14)
[ Robotic Arm / Manipulator (17%, N=9)

Mobility / Exoskeleton / Wearable (19%, N=10)
[ Communication / AAC (23%, N=12)

Functional Support / Assessment (9%, N=5)

[ Virtual / Immersive (6%, N=3)

Figure 2: Distribution of our Primary ALS studies which utilized the implementation of assistive
devices. The studies are categorized by technology domain. Sample size and percentage of total studies
(N=53) in the individual category are shown in parentheses.

Wearable and soft exoskeletons have reshaped
expectations of what mobility assistance can feel like.
Recent projects demonstrated that a fabric-based upper-
limb exosuit could restore partial arm movement without
restricting comfort or natural joint motion [25]. Zhou and
colleagues expanded this concept with an inflatable shoulder
robot that improved endurance and supported elevation tasks
with minimal bulk [77]. Meanwhile, complementary work
by Yamakawa et al. showed that a robotic glove improved
finger dexterity and even modulated functional connectivity,
suggesting neurophysiological benefits intertwined with
mechanical support [34]. As these systems grow lighter
and more compliant, they become easier to integrate into
daily routines, an essential step for meaningful real-world
adoption. Neck and shoulder robotics have followed a similar
evolution. Demaree et al. [30] reported that redesigned neck
exoskeleton structures help reduce fatigue and preserve
alignment during functional tasks, while Zhang et al. [31]
demonstrated that a powered cervico-thoracic orthosis can
restore head control in individuals with ALS. This may seem
like a small gain on paper, but in practice, head stability
underlies communication, swallowing safety, and the ability
to remain socially engaged. When patients can hold their
gaze, they can participate.

Gait and trunk stabilization studies reinforce this
momentum. Recent articles found Hybrid Assistive Limb

(HAL) training improved balance and gait performance across
neuromuscular conditions, including ALS [32]. Additionally,
reductions were observed in compensatory movements and
safer ambulation after robot-assisted gait interventions [29].
These improvements may be modest in clinical scale scores,
but they carry immense significance in daily experience. A
person who can rise from a chair more safely, hold their torso
upright during conversation, or take several supported steps
remains present in their world.

Across this entire domain, the trend is unmistakable.
Mobility robotics are both expanding in volume and shifting
toward softer, more human-aligned architectures. In doing so,
these devices lay the groundwork for functional independence.

Impact on Functional Capabilities in Daily Life

Function in rehabilitation is ultimately measured by what
a person can do in the world. It extends beyond isolated
movement, beyond range of motion or strength scores, into
the everyday tasks that give shape to a life. In ALS, these
Activities of Daily Living (ADLs)—feeding, reaching,
turning a page, grasping a cup, adjusting clothing—are often
among the first abilities to slip away as fine motor control
weakens and coordinated task execution becomes difficult
[12, 14]. The loss is not only practical. It is intimate. It is
the quiet unthreading of routines that anchor independence.
Assistive robotics designed for upper-limb and task-level
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support attempt to hold that thread a little longer, converting
residual neuromuscular or cortical signals into meaningful
action [20].

Across our dataset, upper-limb and task-oriented devices
stand out as some of the most deeply explored technologies,
which is not surprising. Preserving the ability to carry out daily
tasks is often what matters most to patients and to the clinicians
who walk with them through the course of ALS. Klebbe
and colleagues [26] showed that robotic arm systems could
help people complete essential ADLs, feeding themselves,
moving objects, interacting with the space immediately
around them, actions that shape the flow of an ordinary day.
This was further echoed in a recent multicenter study, finding
that participants valued more than the mechanical success of
a task. What mattered was doing it on their own terms, in
their own rhythm [27]. And when you look at longer-term
observational work, this story only becomes clearer and more
textured. This year alone, studies on the JACO robotic arm
described a sense of restored agency—the opportunity to act
without waiting, negotiating, or depending on another person
for every small task [78-79]. Independence, even in fractional
forms, became a source of confidence.

Intention-assisted and semi-autonomous systems further
extend this capacity. Maier’s work with 3-D vision—guided
manipulators revealed that these robots could interpret user
intent with minimal cognitive or physical load [28]. Building
upon that, Manero and colleagues [52] demonstrated that
even faint surface electromyographic signals—sometimes
barely detectable—could reliably drive motorized wheelchair
control [52]. These hybrid systems preserve functionality in a
disease that steadily takes it away, blurring the line between
biological limitation and mechanical possibility.

Clinically, assistive robotics have shown a profound
impact on patients’ functional capacity to perform ADLs.
Portaro et al. [33] showed that a wearable upper-limb device
improved the ability to perform reaching tasks in individuals
with flail arm phenotype ALS. In addition to that, Morioka
et al. [29] demonstrated that robot-assisted training not
only supported gait but reduced the compensatory upper-
limb strain that often interferes with daily activities. These
experiences align with a broader trend across our figures:
as shown in Figure 2, the field is steadily moving toward
systems that support the practical, everyday dimensions of
living.

This shift is captured conceptually in Figure 3,
visualizing how assistive technology alters the balance of
care. On one side lies the growing weight borne by caregivers
as ALS progresses—Ilifting, feeding, positioning, adjusting,
anticipating. On the other side lies the patient’s diminishing
autonomy. Introducing functional robotics does not flatten
this seesaw entirely, but it changes its angle. By restoring
even partial capability in ADLs, these devices lighten the
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caregiver’s load and raise the patient’s side of the balance.
They create space for shared dignity: the caregiver is relieved
of constant physical strain, and the patient regains the ability
to participate in their own life.

From the perspective of rehabilitation medicine, this is
the heart of functional support. ADLs are more than tasks;
they are expressions of identity. They carry the rhythm of
daily living and the texture of self-sufficiency. When assistive
robotics protect a patient’s ability to act—to reach, to grasp,
to feed, to manage their environment—they are not merely
completing movements. They are preserving participation.
And participation remains the essence of function, even as
the disease progresses.
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Figure 3: Visual Representation of the Impact Assistive
technology has on improving QoL by alleviating burden on
support system, and empowering patients with restored autonomy
to some degree.

Robotics for Communication

Interfaces

and Cognitive

When surveying the most important factors relating to
quality of life in patients with ALS, psychological, spiritual
and social aspects were cited as most important. While quality
of life in patients with ALS was found to be independent of
physical function [15]. One exception to physical functioning
being independent of measures of physical function was
speech impairment. Speech is an important part of maintaining
relationships which are vital to the psychological, spiritual
and social identity of patients. Speech impairments were
found to have a significant impact on the perceived quality
of life of patients. Quality of life was specifically found to
be less in patients with mild speech impairment and total
speech impairment as compared to patients with no speech
impairment [13-14].

Citation: Rafaelle B Azarraga, Mark C Jackson, Marcel P Fraix, Devendra K Agrawal. Innovation, Adaptation, and Human Dignity in Assistive
Robotics in Amyotrophic Lateral Sclerosis: A Rehabilitation Medicine Perspective. Journal of Biotechnology and Biomedicine. 9 (2026):

28-39.



Azarraga RB, et al., J Biotechnol Biomed 2026
Journals DOI:10.26502/jbb.2642-91280207

New developments in the assistive devices used for speech
impairment and dysarthria introduce a new opportunity to care
for patients with ALS in areas that will have a large impact
on patient function and experience, and most importantly
are an opportunity to improve quality of life in patients with
ALS. Two promising and emerging technologies include eye
tracking computer systems and brain computer interfaces. In
comparison to traditional speech rehabilitation therapy and
more rudimentary forms of augmentative communication
such as alphabet boards, these devices allow for patients
with lower levels of physical functioning to communicate
independent of care takers. This is important as while quality
of life is independent of physical function in patients, there is
a decrease in quality of life in caretakers as patient physical
function declines [14]. In one case study of a patient in the
locked-in state due to ALS both eye tracking and an auditory
brain computer interface were evaluated by the patient. The
patient was able to use both forms of communication. The
patient showed preference for his previous partner scanning
approach to communication as compared to eye tracking
software. However, they indicated that they would consider
a brain computer interface if they were unable to use their
current low-tech form of alternative communication [40]. In
multiple studies of patients surveyed already using the eye
tracking computer devices, and those with quadriplegia a
high level of user satisfaction, increased psychological well-
being and most importantly preservation of communication
abilities were found [35, 37]. In a separate study eye tracking
assistive devices were also shown to have a high improvement
on the burden of caregivers [38]. These studies highlight the
utility of eye tracking assistive communication devices, and
the importance of creating strategies for device adoption.
Evaluation of eye tracking assistive communication devices
found that most regular users were younger and disease onset,
and low utilization was related to eye-gaze tiredness [39].

Currently eye tracking devices are more widely used than
the more recent brain computer interfaces, in addition early
brain computer interfaces were found to be more fatiguing
[40]. Promisingly brain computer interface technology was
found to have greater accuracy in spelling tasks as compared
to commercially available eye tracking [41]. In conjunction
with the potential of brain computer interfaces in patients with
more severe motor dysfunction, the potential to rehabilitate
previously unattainable function in ALS patients such as with
brain painting have sparked greater interest in development
[64]. Specific to communication brain neuroprosthesis
have been shown to be able to replicate intonation, and
paralinguistic features to patient speech [65]. The accuracies
of these technologies have been shown to be incredibly
accurate. In a 45-year-old man with ALS who hada BCl in 1
day there was a 99.6% accuracy with 50-word vocab, 90.2%
accuracy in 125,000 vocab and was able to sustain a 97.5%
accuracy over 8.4 months with 32 words per minute over 248
combined hours. Brain computer interfaces were found to be
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heavily used compared to other forms of communication when
available [47]. Brain computer interfaces were also found to
be progressively more important as disease progresses. In one
patient who used the device for seven years. As the patient’s
motor function declined and was progressively unable to use
eye tracking technology, patients' use of the device increased
as a substitute [46]. In another case a patient reported high
satisfaction with the brain computer interface in independent
home use. It also showed longitudinal potential in brain
painting and was found to be less straining than an eye tracker
in this application, which allowed one woman to even display
and sell paintings made with the software [49]. Further
development should be done into developing brain computer
interfaces for ALS patients. When surveyed, patients with
ALS cited accuracy, and the ability to use technology without
surgery with anesthesia were major things they would want in
future brain computer interface technology [66]. Furthermore,
future research in larger populations as well as in feasibility
of cost and training should be done.

Quality of Life and Human-Machine Integration

Integrating assistive robotics into the care of people living
with ALS is more than a technical achievement; it’s an act of
compassion and imagination. The true challenge isn’t found
in circuits or algorithms, but in the deeper question of care
itself: how do we help someone continue to move, to speak,
to remain part of the world, even as their body grows quiet?

Our current care system has begun to focus beyond
replacing lost function; they extend the dialogue between
human and machine into the fabric of daily life. Maier etal. [28]
and Manero et al. [52] demonstrated that electromyographic
and semi-autonomous control systems could sustain motor
agency when voluntary strength waned. Meanwhile additional
projects revealed that cortical interfaces could bypass the
body entirely [42, 45-47]. Each of these advances speaks to
a deeper form of integration, not merely using devices but
incorporating them into the lived identity of care.

At the heart of this evolution is quality of life. Across our
dataset, nearly three-quarters of primary studies measured
psychosocial or independence outcomes alongside technical
metrics. Participants in Spittel et al. [27] and Gitlow et al. [28]
valued reliability, comfort, and familiarity more than speed or
precision. For many, their robotic arm or exoskeleton became
an extension of self; a means of reclaiming routines that define
humanity more than motion itself. Similar findings revealed
that users often described these technologies not as tools, but
as companions [35, 37, 59, 73]. They reintroduced presence
into everyday rituals; holding utensils, maintaining eye
contact, or sitting upright during conversation; transforming
assistance into participation.

At the clinical level, bionic integration succeeds when
it is designed as a continuum of care rather than a one-time
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intervention. Tirschmann et al. [54] and Lucassen et al.
[55] emphasize multidisciplinary collaboration. Engineers
refining devices alongside neurologists, therapists, and
caregivers who understand the nuances of fatigue, posture,
and adaptation would be the hallmark of this intersection. At
ALS specialty clinics, robotics now intersects with respiratory
therapy, occupational training, and palliative planning. The
technology’s success thus depends as much on empathy as on
circuitry and its ability to fit seamlessly into a patient’s daily
rhythm without overshadowing their humanity [89, 96].

The trajectory of the literature mirrors this philosophical
shift. From 2008 to 2018, only a handful of studies referenced
emotional or social outcomes. By contrast, since 2020, the
proportion of papers addressing quality of life, user experience,
or caregiver well-being has more than doubled, reflecting
a field that now measures meaning alongside mechanics.
Figure 4 illustrates this temporal trend: a steady rise in QoL-
centered publications, culminating in 20242025, when such
metrics became standard endpoints in nearly one-third of
ALS robotics research. This trend parallels the technological
maturation seen in Figures 1 and 2, highlighting the shift
from feasibility into integration.

Human—machine integration therefore represents a
new kind of partnership; one that is not purely mechanical
but existential. In the hands of clinicians, engineers, and
patients, robotics has become a language of continuity. Each
mechanical gesture becomes an assertion of personhood.
Through this lens, technology in ALS is not a monument to
loss but a testament to adaptation. When the nervous system
grows silent, the human spirit still speaks, carried forward by
the quiet precision of machines built to understand it.

Barriers and Ethical Considerations

Despite the incredible potential, the field of assistive
robotics has for the management of ALS, barriers persist.

12 -
» 10 <
]
B
2
n 8
2
(]
E 6
o
b
[=]
] 4
£
[
3
z 2
0 T T T 1

2000 2005 2010 2015 2020 2025

Year

Figure 4: Timeline of the current scope of primary research
involving ALS and the implementation of assistive technology
(n=53). The number of primary studies demonstrates the emergent
nature of this field, and the need for more robust studies conducted
in this subset of the field of Assistive technology.
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There remains an intricate web of economic, ethical and
scientific barriers. Most notably, economic and accessibility
constraints determine the beneficiaries from this progress.

For most patients, the financial cost of these innovations
is daunting. Insurance coverage offers little relief, shaped
by policies that favor what preserves function over what
preserves joy. Devices that help a patient breathe may be
funded; those that help them eat or write or gesture may not.

As Connolly et al. [56] and Lucassen et al. [55] observed,
patients rarely abandon assistive technologies because they
lose hope. More often, the cause is marked by cost, logistics,
or the lack of consistent technical support. Each discontinued
device represents not failure, but fatigue: a system unable
to sustain the very independence it promises. Globally, the
divide widens still further. The wealthy nations who can
develop prototypes prosper while other parts of the world
lack basic adaptive communications tools.

This imbalance is not only economic; it is moral. The
capacity to move, to communicate, to act with agency
should not depend on geography or income. True innovation
must therefore reach beyond design to justice; establishing
frameworks that recognize mobility and communication not
as privileges, but as essential expressions of human dignity.
Vansteensel et al. [46] and Card et al. [47] highlight that
long-term cortical interface use raises unresolved questions
about data ownership, cognitive privacy, and control. As
ALS progresses, these tensions deepen. End-of-life care
complicates the ethics of continuation versus comfort: at
what point does prolonging technological engagement begin
to overshadow dignity? These are not abstract questions
but practical considerations that shape how care teams and
families navigate the moral boundaries of innovation.

Quality of Life
and Access Equity

Ethical Considerations
Systemic / Access Issues

Economic Barriers
Technological Barriers

Figure 5: Interacting Barriers and Ethical Dimensions in ALS
Robotics Integration. This conceptual diagram illustrates how
economic, technological, ethical, and systemic factors overlap to
shape patient outcomes in assistive robotics for ALS.
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Lastly, there remains a distinct gap in the current literature
for this field. Despite recent rapid growth in publication,
many of these studies are small, non-randomized and limited
in longitudinal scope. Our analysis of recent primary studies
showed thatalmost40% consisted of single-case investigations
or pilot studies. Standardized data and variability in the
metrics made cross-study comparisons difficult. Burke et
al. [8] and Proietti et al. [25] emphasize that the absence of
unified evaluation frameworks constrains evidence synthesis
and hinders translation into clinical guidelines. Amidst the
field of assistive robotics, ALS remains underrepresented, a
bulk of the current robotics literature focused on stroke and
spinal cord injury patients.

When examined together, these barriers reveal the
multidimensional nature of the challenge. Figure S shows how
economic, ethical, and technological factors converge around
the patient’s quality of life. Effectively, this demonstrating
that limitations in one domain amplify inequities in the
others. Furthermore, Figure 6 expands upon this perspective
across the disease timeline, illustrating how ethical priorities
shift as ALS progresses. The barriers to implementation are
not isolated. They interact, evolve, and ultimately determine
the degree to which robotics can achieve meaningful human
integration.

Future Directions and Policy Implications

The next stage of assistive robotics in Amyotrophic
Lateral Sclerosis will depend not only on innovation, but
on integration, on how well technology can be woven into
care, policy, and the daily rhythm of human life. Engineering
has already transformed what once felt impossible. Robotic
arms now restore the ability to grasp. Exosuits stabilize the
weight of a collapsing shoulder. Brain—computer interfaces
give voice to those who can no longer speak. [25, 46-47] Yet
progress cannot end with invention. The real measure of this

10
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Ethical Priority (Relative Emphasis)

Autonomy
Consent & Privacy

—e— Justice & Access
Sustainability & Continuity

Advanced Stage
ALS Disease Stage

%arly Stage Mid Stage End Stage

Figure 6: Conceptual framework illustrating the shifting
emphasis of ethical priorities across ALS disease progression.
Relative values are derived from thematic synthesis of published
literature (2008-2025) and reflect interpretive trends rather than
empirical measurement.
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field lies in how these devices are lived with — how naturally
they join the continuum of multidisciplinary care, how deeply
they preserve dignity, and how consistently they reach those
who need them most.

Integration begins with collaboration. Engineers and
clinicians already share the same goal, though they often
speak different languages. Studies by Spittel et al. [27] and
Tirschmann et al. [54] remind us that outcomes improve when
design is guided by rehabilitation insight and lived experience
rather than technological ambition alone. Robotics should
never stand apart from therapy, but move with it — evolving
alongside the person, not in parallel to them. In osteopathic
and rehabilitation medicine, this principle feels intuitive:
structure and function are one. Even when movement is
sustained by machinery, it remains an expression of the
human whole — body, mind, and intention intertwined.

There is also a tremendous horizon for research. Despite
recent growth, much of the literature still focuses on short-
term feasibility trials [8, 28]. The next decade demands
longitudinal studies. Real-world implementation trials are
needed too; research that measures how devices perform not
in laboratories, but in living rooms. Comparative analyses
across conditions like stroke or muscular dystrophy could also
reveal shared mechanisms of neuroplasticity and recovery.
As Tzeplaeff et al. [2] and Pugliese et al. [10] argue, the field
now needs more than imagination; it needs evidence, robust,
reproducible, and ready to inform policy and reimbursement.

Yet even as the field matures, progress must stay rooted
in ethics. The convergence of robotics, artificial intelligence,
and neural data has outpaced the systems built to regulate it.
Patient-centered design should be the rule, not the exception.
Co-creation with patients and caregivers, as Lucassen et al.
[55] and Tirschmann et al. [54] emphasize, keeps technology
grounded in human experience, enhancing agency rather
than deepening dependency. Equity in access must move
from aspiration to obligation. Sustainable innovation will
depend on open-source designs, modular manufacturing, and
international partnerships that reduce cost while increasing
adaptability. These models make robotics not only more
affordable, but more human; designed for inclusion rather
than exclusivity.

Ethical clarity must guide this evolution. Vansteensel et al.
[46] and Card et al. [47] remind us that as technology listens
to the mind, it must also learn restraint. Questions of privacy,
ownership, and end-of-life care belong not to manufacturers,
but to communities of care, to clinicians, patients, and
families who must decide together when technology serves
life and when it should yield to comfort.

In the end, the path forward is as much moral as it is
mechanical. Robotics may extend the body’s reach, but it
must also extend the reach of compassion. The next decade
will test whether innovation can coexist with empathy,
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whether precision can be joined to purpose. True progress
in ALS will not be measured by movement alone. It will
be measured by meaning, by how gently technology helps
patients remain themselves, and how deeply it reaffirms that
the work of medicine, at its best, is to restore connection
where decline once seemed inevitable.

Conclusion

Assistive robotics shows immense potential in impacting
the field of ALS management. Across decades of research
and human effort, these technologies have offered something
the disease was never meant to allow the chance to retain
movement, voice, and agency even as the body changes.
From robotic arms that restore independence in feeding
to brain—computer interfaces that translate thought into
communication, each innovation represents more than
mechanical progress. These new innovative technologies
reveal a pathway to preserving autonomy, dignity, and
meaningful participation in life.

Yet the promise of robotics is not measured by engineering
alone. It is measured by how well these tools align with the
deeper work of care, to preserve the self within the illness. The
studies reviewed here remind us that progress in ALS is never
simply technical; it is moral. Devices can sustain movement,
but they must also sustain belonging. Systems can improve
survival, but they must also protect quality of life. Between
the lines of every trial and case report lies the same question:
can technology serve humanity without overshadowing it?

Hope in this field is not naive; it is necessary. The science
will continue to advance, more precise control, lighter
materials, adaptive interfaces that learn from the user, but its
success will depend on whether it grows with empathy. To
move forward, robotics should be visualized as an extension
of care by clinicians. Engineers must design with patients,
not just for them. Policymakers must craft frameworks that
recognize movement and communication as rights, not
privileges. And patients themselves, through their courage
and insight, must remain central to this dialogue, shaping the
innovations that shape their lives.

The challenge ahead is profound, but within it lives a quiet
hope. ALS will always test the limits of the body, yet how
we respond — as clinicians, engineers, and human beings
— remains a choice. Through collaboration and adaptability,
technology can become more than a tool; it can become a
bridge. It can carry a person through the spaces where muscle
fails but spirit endures. With every act of design grounded
in respect, the experience of decline begins to change. It
becomes less about what is lost and more about what can still
be held — continuity, connection, and care. In the end, the
future of assistive robotics is not about outpacing mortality.
It is about preserving what gives life its shape and texture:
meaning, presence, and our shared humanity.
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Key points:

e ALS gradually disrupts the connection between intention
and movement, and understanding this clinical trajectory
clarifies why assistive robotics are becoming increasingly
essential across stages of disease.

e Mobility-focused robotics help preserve posture, stability,
and head control, allowing patients to remain safely
engaged in their environments even as motor decline
progresses.

e Functional support technologies restore everyday
Activities of Daily Living, enabling patients to feed
themselves, reach for objects, and participate in

meaningful routines that anchor independence.

e Communication tools, including advanced eye-tracking
systems and brain—computer interfaces, protect the
patient’s ability to express thought and preference long
after speech is lost.

e Successful human—machine integration depends on
intuitive, adaptive systems that respect the patient’s lived
experience and align with multidisciplinary clinical care.

e Assistive robotics can improve quality of life by reducing
caregiver strain and restoring a degree of autonomy,
shifting the balance of support toward shared relief and
empowerment.

e Barriers such as cost, inequitable access, insurance
limitations, and ethical concerns about privacy and
autonomy continue to restrict widespread use despite
strong evidence of benefit.

e Emerging research trends show a clear movement toward
soft, wearable, and user-centered designs, signaling a
shift from laboratory feasibility to real-world usability
and comfort.

e Future progress requires longitudinal studies, home-based
implementation trials, and comparative research across
neuromuscular diseases to strengthen evidence and guide
clinical adoption.

e Policy reform is essential to ensure that assistive
robotics are treated as fundamental disability supports;
with equitable access, sustainable funding, and ethical
oversight built into systems of care.
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