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Inner Speech Recognition for Mutism and Speech Disorder Using Brain-

Computer Interface
Mokhles M. Abdulghani and Khalid H. Abed"

Abstract

Brain-Computer Interface (BCI) systems can assist physically challenged
people to interact with their surroundings and improve the quality of their
lives. Decoding human thoughts is a powerful technique that can assist
paralyzed people who have lost their speech production ability. Speaking is a
combined process involving synchronizing the brain and the oral articulators.
This paper proposed a high-accuracy brain wave pattern recognition based
on inner speech using a novel feature extraction method. Only eight EEG
electrodes were used in this study, and they were set on selected spots on the
scalp. Support Vector Machine (SVM) was employed to decode the recorded
EEG dataset into four internally spoken words, which are: Up, Down, Left, and
Right. The proposed approach achieved overall classification accuracy that
ranged between 96.20% to 97.5%. In addition, more performance evaluation
metrics were estimated to test the reliability of classifying the EEG-based
inner speech data, and we obtained 97.61%, 97.50%, and 97.73% for F1-
score, recall, and precision, respectively. Furthermore, the Area Under Curve
of the Receiver Operating Characteristic (AUC-ROC) proved the strength of
the proposed approach for classifying the specified inner speech commands
by achieving a macro-average amount of 99.32%. The method of classifying
inner speech through EEG, as proposed in this study, has the potential to
significantly enhance communication for patients experiencing conditions
such as speech disorders, mutism, cognitive development issues, executive
function impairments, and psychopathological disorders. Furthermore, this
technology can be utilized as a control mechanism to assist individuals with
physical disabilities in performing daily activities, such as maneuvering an
Al-powered wheelchair.

Keywords: Inner Speech; Brain-Computer Interface; Imagined Speech;
Support Vector Machine; SVM; Autoregressive Model; AR; Wavelet Variance;
Shannon Entropy, Al-Powered Wheelchairs.

Introduction

Brain signals were used in 1967 for secured text messages transmitting based
on the transmission of letters of the alphabet using EEG and Morse code by
Dewan and his research team [1]. Although studying inner speech is an enormous
challenge, it is essential to understand the development of language capabilities
and the advanced mental abilities to which language is linked [2]. Another skill
that appears to be linked to inner speech is silent reading. Furthermore, inner
speech assists with several brain disorders after a traumatic brain injury, brain
stem infarcts, cerebral palsy, or amyotrophic lateral sclerosis, which affects verbal
communication [3]. The concept of Brain-Computer Interface (BCI) offered
great assistance for paralyzed people to interact directly with the environment
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surrounding them and improve the quality of their lives. More
particularly, people with aphasia or speech disorder would be
supported with a communication system that can recognize
inner speech from their brain signals [4]. The brain signal used
in BCI systems can be captured and monitored with different
approaches, such as functional Near-Infrared Spectroscopy
(fNIRS), Magnetoencephalography (MEG), functional
Magnetic Resonance Imaging (fMRI), Electrocorticography
(ECOG), and the Electroencephalography (EEG).

Among various brain signals monitoring technologies,
EEG has been proven to be one of the most popular methods
for monitoring brain activities due to its cost-effectiveness and
noninvasiveness. Moreover, EEG offers the quantification
and interpretation of cortical activity in several brain regions
by measuring the summation of postsynaptic action potentials
[5]- In [6, 7], and [8] studies were conducted to develop EEG-
based BCI systems that distinguish between different inner
speech activities and promising results were reported. The
number of EEG sensors required to design any EEG-based
BCI system is the main factor for determining the cost, setup,
and maintenance complexity of the BCI system, which as a
result will affect the possibility of its manufacturing such as a
system designed to be used in real-time. Several studies were
able to achieve high overall classification accuracy of 97.66%,
98.60% and 99% for EEG-based BCI for different applications
in [52, 53, 54], respectively. Most of the researchers have
used high-cost EEG headsets to design BCI systems for inner
speech processing. Recent research published in Scientific
Data-Nature journals [9] used a costly 128 channels EEG
headset to record inner speech-based brain activities from
10 subjects. The participants were trained to perform speech
imagery for four commands: Up, Down, Right, and Left
responding to a visual cue presented on a computer screen.
In [10], the same 128-channel EEG dataset was used with
a deep learning method to classify them according to their
corresponding to the internally spoken word, and an average
EEG-based inner speech classification accuracy of 29.67%
was achieved. A subsequent study [11] achieved 51% EEG-
based inner speech classification accuracy using the same
128-channel EEG datasets by considering only a specific
number of channels (28-channel only) in the classification
process depending on their location on the scalp that could be
linked to the inner speech activity.

In [12], a 20-channel EEG headset was used for aircraft
pilots’ cognitive workload estimation, and an accuracy of
91.67% was achieved using a combination of multi-feature
extraction and Support Vector Machine (SVM). In our
very recent research [13], we were able to achieve 93%
classification accuracy to design EEG-based Internet of Brain-
Controlled Things (IoBCT) based on visual cues using only a
16-channel EEG headset. Moreover, in [ 14, 15], we achieved

excellent accuracy in classifying EEG signals with only an
8-channel EEG headset, where we classified EEG signals
to control a drone and designed EEG-based IoBCT based
on visual cues, respectively. Our brain can be excited and
stimulated by the external environment through the various
senses we have such as hearing, touch, sight, smell, and taste.
Visual and auditory cues play a great role in the excitement
of central motor cortex [16] and [17], but still the functional
effect of such as these are limited [18]. In [19], EEG was used
to classify inner speech, and the EEG electrodes have been
placed on different spots on the scalp. The results revealed
that the most important EEG channels for classifying inner
speech were the ones laid on Broca’s and Wernicke’s regions
of the brain. Both regions continuously analyze and control
the production of our speech, but Wernicke ensures that the
speech makes sense, while the Broca controls the fluency of
our speech.

The experimental procedure followed in EEG-based
inner speech classification research is essential for obtaining
classifiable data. The most followed procedure is to ask
the subjects to imagine speaking the commands only once.
However, in [20] and [21], the participants were asked to
imagine saying a specific command multiple times in the
same recording session. In [22], four commands, namely,
up, down, right, and left, were used to be internally spoken
and discriminated based on the recorded EEG using Extreme
Learning Machine (ELM) classifier. Overall classification
accuracy of 49.77% and 85.57% were obtained, respectively.
Recent research revealed that EEG-based inner speech
classification accuracy can be improved when auditory cues
are used [23]. In [24], four participants imagined speaking
without any subvocal or vocal activity while the audio cues
were given to stimulate the brain. During the initial period of
this experiment, the participants heard the audio cues through
electrostatic earphones, either a spoken (“ku”) or a spoken
(“ba”) followed by a train of clicks (arrows) indicating the
rhythm to be reproduced. In [25], seven participants imagined
speaking a cued syllable, and the cues were also submitted
with auditory stimuli. Additionally, no motor activity
analysis was conducted in those papers. Finally, in [26], the
participants were trained to carefully listen to spoken words
and try to comprehend them and then inner speaking them,
or “Internal speaking,” as called in the paper, immediately
after seeing it. Practical research examined inner speech
classification using EEG-based BCI systems and showed
that inner speech could be recognized using words with
high discriminatory pronunciation [27]. Feature extraction
methods such as Autoregressive (AR) coefficient estimation,
Shannon entropy, and wavelet variance estimation were used
in several studies to model EEG to obtain a representation
of the signal at each channel and improve the classification
accuracy [28, 29, 30, 31].
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This paper is a follow up for our previous work in [44]
where we used a low-cost 8- channels EEG headset, g.tec
Unicorn Hybrid Black+ [32]. Audio cues were employed
for the purpose of stimulating motor imagery in this study.
The question: Where do you want to go was used, and the
participant replied with inertly spoken audio commands Up,
Down, Left, and Right. Finally, we employed multi-feature
extraction methods and SVM to discriminate between the
four commands.

Materials and Methods
Subjects

Four native English speakers, right-handed and healthy
individuals participated in this study, all of them had no
neurological or movement disorders, no hearing loss, and
no speech loss. Each participant signed his written informed
consent. None of the participants had any previous BCI
contribution or experience. The participants were two males
and two females aged 20 to 56 and were named (sub-01) for
the first subject (sub-02) for the second subject and so on.
The study was accompanied in Jackson State University at
the Department of Electrical and Computer Engineering and
Computer Science. All subjects were voluntarily participated
in the experiment, and the experimental procedure and
data collection have been done according to the approved
Institutional Review Board (IRB) procedures at Jackson State
University [33].

Apparatus

An EEG Unicorn Hybrid Black+ headset manufactured
by g.tec [32] was used to record the EEG-based inner speech
data. It is a low-cost EEG headset that records up to seventeen
channels at up to 250 Hz sampling frequency, eight of them
are EEG, a three-axis accelerometer, a three-axis gyroscope,
a battery signal, a counter signal, and a validation signal. The
recorded channels are on the positions: (FZ, C3, CZ, C4, PZ,
PO7, OZ, and POR8). A cap with appropriate size was chosen
to fit the participants head and all electrodes were placed in
the required positions in the cap. A conductive gel was used
to fill the gaps between the scalp and the electrodes.

Experimental setup and procedure

We considered the 10-20 electrode placement system
recommended by the American clinical neurophysiology
society [34]. The 10-20 system was first presented by
Herbert Jasper at the 1957 Brussels IV International EEG
Congress. The numbers (10) and (20) denote the distances
between the electrodes position, which are either 10% or
20% of the total distance (front-back or right-left) of the
skull. The head cap has been adjusted to ensure that there are
electrodes placed, as much as possible, within the Wernicke
and Broca regions, which are considered good spots for better

quality inner speech-based EEG. Figure 1 presents the g.tec
Unicorn Hybrid Black+ headset, Wernicke and Broca, and
the electrode positions. Reference and ground electrodes are
sticked on the mastoids using a one-use sticker.

Broca's Area Wernicke's Area

e

Figure 1: (a) Wernicke’s and Broca’s areas, (b) The electrode
positioning layout, (c) The g.tec Unicorn Hybrid Black+.

The experiment has been designed to record EEG during
performing inner speech. Inner speech, also called imagined
speech, silent speech, covert speech, is thinking in the
form of sound — "hearing" our own voice silently without
the intentional movement of any extremities such as the
lips, tongue, or hands. Two subjects participated in each
recording session, where one subject was performing inner
speech and the second was performing the audio cue. We
think that getting the participants involved in announcing the
audio cue will help prevent any bias in the results even if
the spoken commands were in the same order each session,
where the audio cue was announced by different subjects.
Before the recording started, the two subjects were seated
in a comfortable high-back chair in front of each other
and to familiarize them with the recording procedures. All
experiment steps were clarified during the setup of the EEG
headset, and the external electrodes, which took about 15
minutes. The first subject was trained to imagine responding
to the question: Where do you want to go? The question was
said by the second subject who was sitting in front of the
first subject. The response was an internally or an imaginary
spoken command, which is either Up or Down, Left or
Right. Each participant accomplished 25 recordings for each
command. The recording procedure was implemented as
follows. When the first 10 seconds (+ 2 seconds) of the EEG
recording passed, the audio cue was announced and by the
end of the second 10 seconds (£ 2 seconds), the participant
started imagining the desired response as inner speech for 60
seconds. The participant was trained to keep repeating the
internally spoken command until the end of the 60 seconds,
and the recording was stopped after 10 seconds as illustrated
in Figure 2.
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A total of 400 recordings sessions were successfully
completed, and the collected data has been merged without
separating them according to their corresponding participants.
We ended up having 100 recordings for the command Up, 100
recordings for Down, and so on. This way, we can examine
the performance of the proposed classification method in
distinguishing between the four commands using a dataset
from four subjects altogether in one run. Additionally, by
combining the data together and using them in the training
and testing process, we can design a reliable algorithm that
can be tested later in real-time on different subjects. For
each command, the first 25 recordings were for subject 1,
the second 25 recordings were for subject 2, the third 25
recordings were for subject 3, and the last 25 recordings were
for subject 4. The recorded EEG dataset was spitted, labeled,
and stored to be prepared for the preprocessing stage.

[ 3 ANVVWIMAAM,
(e _LT‘,\ /' ) Inner Speech-Based EEG
== (- |
~= i
Where do you want to go? é
Time | | | | Nl
Seconds [ 70 | 70 | 50 | 10 I

Figure 2: The recording procedure.
EEG Pre-processing

Before the EEG- Preprocessing stage, 8 seconds from
the start and the end of each recording was trimmed to make
sure that we have EEG data that reflects the participants
brain activities while they were purely performing imagined
speech. In the EEG pre-processing stage, the recorded data
forwarded to a combination of several noise attenuation
and calibration approaches to prepare the EEG signals for
further analysis. Pre-processing is a significant stage for EEG
analysis to remove any expected noises. This noise can be
categorized as environmental or instrumentation noise such
as the noise from the power line and biological nose such as
ECG and EMG signals arising from muscle movement. To
attenuate biological artifacts such as EMG and ECG noise,
researchers have developed different methods. Traditional
filtration technique worked well so far to eliminate electrical
line noise and other biological artifacts with high frequency
such as EMG. But removing ECG can result in damaging
the EEG characteristics and losing its fundamental features
because the ECG artifacts have a noteworthy spectral overlap
with the original EEG signals [52, 53, 54].

The recorded EEG signals were analyzed using gHIsys
MATLAB toolbox (https://www.gtec.at/product/ghisys). To
ensure that we have only the performed speech imagery data,
we considered removing the first and the last 8 seconds of
the 60 seconds in each recording. A bandpass filter between
10 and 100 Hz was used to attenuate the baseline drift and

the noisy signals from EEG signals. This filtering bandwidth
delivers only the typical frequency bands corresponding to
EEG in the human brain [35]. A bandstop (notch) filter at 60
Hz was used to reject the power frequency used in Mississippi,
USA. The normalization (vectorization) technique was used
to simplify the dataset and reduce the computing demand
required to classify the four commands. The dataset was
split into 360 recordings for training and 40 recordings for
testing (90% for training and 10% for testing). The training
and testing dataset were normalized by determining the mean
and standard deviation for each of the eight EEG signals and
apply the following formula to combine them in a single-
vector signal:

X—a
EEG,,, =——
- (1)

Norm
where (x) is the filtered EEG signal, (%) is the mean,
and (o) is the standard deviation. The EEG dataset was then
prepared for the feature extraction step. The result of pre-
processing steps for one subject EEG is shown in Figure 3.

—— Raw EEG
Filtered EEG, HP Butter. 10-100 Hz Order 4
Filtered EEG, Notch. 60 Hz

0 10 20 30 40 50 60
Time (Second)

EEG Normalized|

T T T T T
0 10 20 30 40

Time (Seconds)

Figure 3: Eight-channel preprocessed EEG dataset at 250 HZ (250
sample per second).

Feature Extraction

Multi-feature extraction methods were applied on eight
blocks for each recording with a time window of about
4 seconds (1024 samples). Autoregressive model (AR)
coefficients, Shannon Entropy (SE), and multiscale wavelet
variance estimates were used to extract features of the
recorded data.

AR coefficients

In an AR method of order p, the signal X{n} at time n
could be represented as a linear sequence of p prior estimates
of the same signal. Specifically, the AR method is modeled
as:
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X{ny=2"_ alilx(n—i)+e{n} )

j=1

where a{i} is i coefficients of the AR representation, e
{n} is added noise with zero mean value, and P is the order
number of the AR model. Countless methods could be used
to calculate the coefficients of an AR representation. The
method we used to estimate the AR order in this work is the
ARfit [36]. The 1st-order has been selected for the recorded
EEG signals.

Shannon entropy

Shannon entropy is one of the most attractive cost
functions, which is a measure of signal complexity to wavelet
coefficients generated by wavelet packet transform where
larger entropy values represent higher process uncertainty
and, therefore, higher complexity [37]. The representation
of the Shannon entropy for the undecimated wavelet packet
transform is formulated as follows:

SE, =Y., P, log P, 3)

where ™ i< the subsequent coefficients in a j number of
nodes and £i% are the normalized squares of the wavelet
packet coefficients in each node.

Multiscale wavelet variance estimates

Wavelet variance measures the variability in EEG signal
by scale or equivalently in EEG signal over octave-band
frequency intervals. We adjusted the vectorized data to make
the number of samples in each recording in the form of (2A).
The biggest number of (A) we could get with the number of
samples we have in each recording is 12. For the signal length
of 8192 samples (2 ~ 12) and using the ‘db2’ wavelet with
level 5 [38], 10 multiscale wavelet variance features were
extracted from each recording using the following formula:

NumberofWaveletVariance = A 4)

A total of 170 features were extracted from the EEG data:
4 per time window (1024 sample) AR coefficients, 16 per
time window SE values, and 10 wavelet variance estimations.
After the multi-feature extracting stage, the EEG data was
reconstructed to be a 360-by-170 features matrix for training
and a 40-by-170 features matrix for testing. By employing
Autoregressive coefficients, Shannon Entropy, and multiscale
wavelet variance estimates, the data was reduced from 8192
to 170 element vectors. Representation of the difference in
the wavelet variance for the 170 extracted features from the
recorded and preprocessed EEG data will be presented in the
final results.

Classification

In the classification stage, the data was processed with
supervised learning, where the specified algorithm was
employed to learn from the prepared data. In this study,

the classification stage was defined as the determination of
four different internally spoken commands (Up, Down, Left,
and Right), which are considered a multiclass classification
process. SVM is one of the most well-known supervised
learning algorithms specialized in classification problems.
Classification using SVM is powered through generating a
best line or decision boundary that segregates an n-dimension
space to multiclass to easily enable data sorting to the category
to which they belong [39], [40]. SVM works on picking the
margin points that construct vectors which are called support
vectors to assist with generating the best decision boundary.

The SVM architecture utilizes a set of mathematical
functions that are known as the kernel functions. The kernel
function performs a kind of similarity measure between
input objects and transforms it into the required output [41].
We employed SVM, which is a machine learning algorithm
for differentiation between the four chosen commands.
Furthermore, k-fold cross-validation (k = 10) was used to
achieve a perfect estimate of the proposed model performance
on the recorded inner speech data and to avoid overfitting in the
classification process. The K-fold validation is an alternative
to a fixed validation set. It does not affect the need for a
separate held-out test set. So indeed, the data will be split into
training, testing and cross-validation data and is performed
on folds of training sets. With k-fold cross-validation of value
10, the model performance will be evaluated after dividing
the data into 10 subsets (10 folds) while using the k-1 subsets
for training the data. In this way, it can ensure that testing
data will be entirely unknown to the classifier that is testing
and training data are not coming from the same given group.
Figure 4 illustrates the concept of using the K-fold for cross-
validation during the data training process.

Performance Evaluation

Evaluation metrics adopted within a variety of machine
learning techniques are critical in examining the reliability

Cross-Validation Training
Folds l Folds l
Lst ; L L]

K Iterations (10-folds)

o T T T

Figure 4: Cross-Validation Using 10-Fold.
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of the designed classifiers. To evaluate the trained model
performance, metrics following [42] have been considered.
The classified EEG data using the proposed machine learning
method was grouped into true positive 7, false positive F,
true negative T, and false negative F,. The value of F, and
F, are the samples that were misclassified, and the value of
T,and T, are the samples that were correctly classified [42].
The most state-of-art metrics for classification are accuracy,
precision, recall, and Fl-score. Accuracy estimates the
percentage of correct predicted outputs to the overall number
of samples in the processed dataset. Recall (sometimes called
Sensitivity) estimates the percentage of 7, to the summation
of T, and F,. Precision estimates the percentage of T, to the
summation of T, and F,. Hence the F1-Score estimates the
average between recall and precision. Moreover, the Area
Under Curve (AUC) of the Receiver Operating Characteristic
(ROC) (AUC-ROC) was plotted. AUC-ROC is a common
ranking type of metric that is utilized to show comparisons
between learning algorithms and create an optimal learning
model by exposing the entire classifier ranking performance
[43]. Furthermore, while we have a multiclass classification
task, areas under the curve were calculated and presented by
macro-averaging, in which each corresponding metric for
each individual class was estimated. The following formula
is used to estimate the AUC-ROC value for multiclass
problems:

ACU =§,=n,(n,—1)/ Nnn, )

where Sp, n,n, and N represent the sum of all positive
samples, positive and negative samples, and the number of
classes, respectively.

Results

In this section, we report the results of the proposed
method for EEG signals classification, including the results
of extracting multi-features from the preprocessed EEG
signal and the results of the SVM machine learning model for
the classification of the extracted features.

Feature Extraction results

In the feature selection stage, the extracted features
using Autoregressive coefficients, Shannon Entropy, and
multiscale wavelet variance were compared using boxplot
to examine the variance level between each individual
command. The obtained results using the suggested features
extraction methods showed a noticeable variation between
the four commands which will assist with discriminating
between them and improve the classification accuracy.
Every feature vector of the same class should be closer in its
representation point and in different classes they should be
far from each other. For precisely monitoring the variance in

data distribution of all features in the four classes we have,
a boxplot was used. Representation of the difference in the
wavelet variance for the 170 extracted features from the
sample of the recorded and preprocessed EEG data using a
boxplot is shown in Figure 5.

[ 10%~90%
T 1%~99%

— Median Line,
r  Mean

@ Outliers

3.0

Sub-01_[5ub-02J5ub-03 Sub-04 | Sub-01 [Sub-0z[5ub-03 Sub-04 | Sub-01 [sub-07f6ub-02] Sub-04 | Sub-01 [Sub-02[5ub-03 Sub-04

Up | Down | Left | Right

Figure 5: A boxplot of the wavelet variance for the extracted
features from sample of the recorded EEG data.

Classification results

After the multi-features extraction stage, classification
between the four internally spoken commands was carried out
using machine learning to evaluate the model performance.
The SVM with a polynomial kernel function, C = 2 and
gamma = 0.1 was selected as the best estimator with the
best margin size (M) after several trials based on trial-and-
error as shown in Table 1 and Figure 6. Gamma and C are
regularization parameters where gamma determines the width
of the kernel function, and C controls the trade-off between
achieving a simple decision boundary and an excellent fit
to the data during the training process. The cross-validation
splitting strategy was chosen as five-fold cross-validation.
Moreover, class names were Up, Down, Left, and Right. We
trained and tested our model using the extracted features by
SVM five-fold cross-validation. The highest performance of
the model was achieved by feeding the features selected by
Autoregressive coefficients, Shannon Entropy, and multiscale
wavelet variance with an accuracy of 97.5%, precision
of 97.73%, recall of 97.50%, and Fl-score of 97.61%. In
addition, the macro-average AUC-ROC of the model was
99.32%. The model showed excellent performance using
the extracted features by the proposed feature extraction
methods. The confusion matrix and AUC-ROC plot illustrate
the performance of the proposed classifier in Figure 7 and
Figure 8, respectively.
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Table 1: Information of the participated subjects.

Iteration Cost (C) gamma Accuracy %
1 2.75 0.18 96.2
2 2.7 0.17 96.2
3 2.2 0.15 96.6
4 2 0.1 97.5
Polynomial Kernal ° Up
® Down
e Left
& Right]

¢ e ﬂ”‘:o.‘.
i,

Sepal Width

-25 =20 =15 -10
Sepal Length

Figure 6: Margine size in SVM classifier.

Down

Left

True Class

Right

Up

Down Left Right Up
Predicted Class

Figure 7: Confusion matrix for the classification performance of
the SVM model.

Discussion

Complex Applications of EEG in a realistic environment,
such as decoding inner speech, generate dynamic and
complicated responses in the EEG signals. As reported in
[20], the classification accuracy of inner speech applications
based on EEG can be affected by the type of cues used to
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Figure 8: The AUC-ROC plot of the SVM model using the extracted
features.

stimuli the brain in the recording procedure. In [20], the
participants were trained to keep repeating the internally
spoken words for up to 14 seconds and they only responded
when they heard a beep. In [21], visual cues were used in each
recording, and the participants were told to keep repeating the
internally spoken words for 30 seconds. Audio cues have been
used to stimulate the brain by asking a question to one of the
four subjects and let them imagine speaking one of the four
specified commands. Unlike [20] and [21], we did not include
cues during all the 60 seconds of response and the subjects
were trained to keep repeating the specified command until
the time ended.

Classifying inner speech using EEG requires robust
and efficient classification approaches. Some researchers
recommended autoregressive modeling, Shannon entropy,
and wavelet variance estimation as powerful feature-
extracting methods to classify EEG [28], [29], [30], [31],
[43]. In [27], massive efforts were made to record EEG data
for inner speech applications using an expensive 128-channel
EEG headset. Nevertheless, this high number of channels
did not allow subsequent researchers [10], [11] to get
good classification performance when they used the same
128-channel EEG data. In our research, with data recorded
using a low-cost 8-channel EEG headset, carefully selected
electrodes position on the skull, and the proposed multi-
feature extraction method, the results showed that robust
and accurate EEG classification could be implemented.
Autoregressive modeling, Shannon entropy, and wavelet
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variance estimation were applied for detecting and classifying
inner speech in EEG time series data. The data was reduced
from 8192 to 170 element vectors by employing the suggested
multi-feature extracting method. A total of 170 features
were extracted from each recording and the EEG data was
reconstructed as a 360-by-170 features matrix for training
and a 40-by-170 features matrix for testing. It is noteworthy
that we combined the recorded data from all the subjects and
applied the suggested multi-feature extraction method on
them. Aanalyzing the results by splitting the data according to
which participant it belongs and then averaging the results as
in [45], [46], [47], [48] by summing and dividing the results
by the number of the participated subject may not be the most
practical method for calculating the accuracy and efficiency
of the designed classifier. For example, a 100% classification
accuracy for the data from subject A, and 80% for data from
subject B can be averaged to 90% by doing math calculation
(100%+80%)/2. Since we know that the minimum accuracy
is 80%, stating that the overall classification accuracy for this
classifier is 90% is not really accurate, and this method will
not provide any close number to what was averaged when
testing this classifier online on different subjects. In our work,
we were able to design a BCI system that can distinguish
between four inner speech commands for four subjects at the
same time rather than designing four systems, where each
system is tailored for each participant if a designer considered
the methods used by averaging the results. This makes our
system more general and more practical because it allows
multiple physically-challenged people to use it.

Besides the reduction in the size and complexity of data,
the reported results showed a significant variance between the
specified classes. Even though this is a significant reduction
in data size and complexity, the main objective of using
the proposed multi-features extraction method is not just a
reduction in data. We aimed to re-represent the data with
much smaller features that allow capturing the differences
between the required classes so that a classifier can ideally
separate the EEG signals. As explained in the result section,
the extracted features resulted in high accuracy, precision,
recall, F-score, and macro-average AUC. The method
of classifying inner speech through EEG, as detailed in
this study, holds significant promise for revolutionizing
communication methods for individuals suffering from a
variety of conditions. These include speech disorders that
impair verbal communication, mutism, where individuals
are unable to speak, developmental issues affecting cognitive
growth, impairments in executive functions such as planning
and decision-making, and various psychopathological
disorders like schizophrenia or depression that impact
mental processes. Additionally, this innovative technology
can serve as a powerful control system, enabling people
with physical disabilities to perform everyday activities

more independently. For instance, it can assist in controlling
wheelchairs or other assistive devices through brain signals,
thereby improving mobility and quality of life [55]. The
classifier developed through this approach can be converted
into executable code in languages such as C++ or Python
using MATLAB code generation tools. Once transformed,
this code can be uploaded to a microcontroller for real-time
testing and application, allowing seamless integration into
assistive devices and practical use in daily life.

Limitation

Data for this study included EEG data from four
participants, each around 1.6 hours in total. More participants
would allow greater generalizability to indicate the reliability
of the proposed classification method. Furthermore, for
accurately performing the experiment procedure, the data
collection requires the research team to train each participant
to familiarize them with the procedure by conducting at least
one recording session prior to the recording sessions we
considered in this research project.

Conclusion

This research aims to pave the way for a better
understanding of processing and classifying inner speech
using EEG and machine learning. Numerous numbers of
people around the world need such an idea to improve the
quality of their life. Signal processing was implemented to
extract wavelet multi-feature from EEG signals and employ
those features to classify four inner speech classes. Not only
did the multi-feature extraction result in a substantial amount
of data reduction, but it enabled capturing the differences
between the Up, Down, Left, and Right classes as confirmed
by the results of cross-validation and the performance of
the support vector machine classifier on the test dataset as
well. The experiment further demonstrated that applying
autoregressive modeling, Shannon entropy, and wavelet
variance estimation to the raw EEG data resulted in an
excellent performance. Five-fold cross-validation was used
to improve the classification performance and generalization.
The achieved results range between 96.20% to 97.5% for
overall classification accuracy. Other performance evaluation
metrics were estimated, and we obtained 97.73% for precision,
97.50% for recall, and 97.61% for F1-score. Moreover, the
macro-average AUC-ROC 0f 99.32% proved the efficacy and
validity of the proposed approach, for classifying different
inner speech commands using EEG.
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