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Abstract
Brain-Computer Interface (BCI) systems can assist physically challenged 

people to interact with their surroundings and improve the quality of their 
lives. Decoding human thoughts is a powerful technique that can assist 
paralyzed people who have lost their speech production ability. Speaking is a 
combined process involving synchronizing the brain and the oral articulators. 
This paper proposed a high-accuracy brain wave pattern recognition based 
on inner speech using a novel feature extraction method. Only eight EEG 
electrodes were used in this study, and they were set on selected spots on the 
scalp. Support Vector Machine (SVM) was employed to decode the recorded 
EEG dataset into four internally spoken words, which are: Up, Down, Left, and 
Right. The proposed approach achieved overall classification accuracy that 
ranged between 96.20% to 97.5%. In addition, more performance evaluation 
metrics were estimated to test the reliability of classifying the EEG-based 
inner speech data, and we obtained 97.61%, 97.50%, and 97.73% for F1-
score, recall, and precision, respectively. Furthermore, the Area Under Curve 
of the Receiver Operating Characteristic (AUC-ROC) proved the strength of 
the proposed approach for classifying the specified inner speech commands 
by achieving a macro-average amount of 99.32%. The method of classifying 
inner speech through EEG, as proposed in this study, has the potential to 
significantly enhance communication for patients experiencing conditions 
such as speech disorders, mutism, cognitive development issues, executive 
function impairments, and psychopathological disorders. Furthermore, this 
technology can be utilized as a control mechanism to assist individuals with 
physical disabilities in performing daily activities, such as maneuvering an 
AI-powered wheelchair.
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Introduction
Brain signals were used in 1967 for secured text messages transmitting based 

on the transmission of letters of the alphabet using EEG and Morse code by 
Dewan and his research team [1]. Although studying inner speech is an enormous 
challenge, it is essential to understand the development of language capabilities 
and the advanced mental abilities to which language is linked [2]. Another skill 
that appears to be linked to inner speech is silent reading. Furthermore, inner 
speech assists with several brain disorders after a traumatic brain injury, brain 
stem infarcts, cerebral palsy, or amyotrophic lateral sclerosis, which affects verbal 
communication [3]. The concept of Brain-Computer Interface (BCI) offered 
great assistance for paralyzed people to interact directly with the environment 
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surrounding them and improve the quality of their lives. More 
particularly, people with aphasia or speech disorder would be 
supported with a communication system that can recognize 
inner speech from their brain signals [4]. The brain signal used 
in BCI systems can be captured and monitored with different 
approaches, such as functional Near-Infrared Spectroscopy 
(fNIRS), Magnetoencephalography (MEG), functional 
Magnetic Resonance Imaging (fMRI), Electrocorticography 
(ECOG), and the Electroencephalography (EEG). 

Among various brain signals monitoring technologies, 
EEG has been proven to be one of the most popular methods 
for monitoring brain activities due to its cost-effectiveness and 
noninvasiveness. Moreover, EEG offers the quantification 
and interpretation of cortical activity in several brain regions 
by measuring the summation of postsynaptic action potentials 
[5]. In [6, 7], and [8] studies were conducted to develop EEG-
based BCI systems that distinguish between different inner 
speech activities and promising results were reported. The 
number of EEG sensors required to design any EEG-based 
BCI system is the main factor for determining the cost, setup, 
and maintenance complexity of the BCI system, which as a 
result will affect the possibility of its manufacturing such as a 
system designed to be used in real-time. Several studies were 
able to achieve high overall classification accuracy of 97.66%, 
98.60% and 99% for EEG-based BCI for different applications 
in [52, 53, 54], respectively. Most of the researchers have 
used high-cost EEG headsets to design BCI systems for inner 
speech processing. Recent research published in Scientific 
Data-Nature journals [9] used a costly 128 channels EEG 
headset to record inner speech-based brain activities from 
10 subjects. The participants were trained to perform speech 
imagery for four commands: Up, Down, Right, and Left 
responding to a visual cue presented on a computer screen. 
In [10], the same 128-channel EEG dataset was used with 
a deep learning method to classify them according to their 
corresponding to the internally spoken word, and an average 
EEG-based inner speech classification accuracy of 29.67% 
was achieved. A subsequent study [11] achieved 51% EEG-
based inner speech classification accuracy using the same 
128-channel EEG datasets by considering only a specific
number of channels (28-channel only) in the classification
process depending on their location on the scalp that could be
linked to the inner speech activity.

In [12], a 20-channel EEG headset was used for aircraft 
pilots’ cognitive workload estimation, and an accuracy of 
91.67% was achieved using a combination of multi-feature 
extraction and Support Vector Machine (SVM). In our 
very recent research [13], we were able to achieve 93% 
classification accuracy to design EEG-based Internet of Brain-
Controlled Things (IoBCT) based on visual cues using only a 
16-channel EEG headset. Moreover, in [14, 15], we achieved

excellent accuracy in classifying EEG signals with only an 
8-channel EEG headset, where we classified EEG signals
to control a drone and designed EEG-based IoBCT based
on visual cues, respectively. Our brain can be excited and
stimulated by the external environment through the various
senses we have such as hearing, touch, sight, smell, and taste.
Visual and auditory cues play a great role in the excitement
of central motor cortex [16] and [17], but still the functional
effect of such as these are limited [18]. In [19], EEG was used
to classify inner speech, and the EEG electrodes have been
placed on different spots on the scalp. The results revealed
that the most important EEG channels for classifying inner
speech were the ones laid on Broca’s and Wernicke’s regions
of the brain. Both regions continuously analyze and control
the production of our speech, but Wernicke ensures that the
speech makes sense, while the Broca controls the fluency of
our speech.

The experimental procedure followed in EEG-based 
inner speech classification research is essential for obtaining 
classifiable data. The most followed procedure is to ask 
the subjects to imagine speaking the commands only once. 
However, in [20] and [21], the participants were asked to 
imagine saying a specific command multiple times in the 
same recording session. In [22], four commands, namely, 
up, down, right, and left, were used to be internally spoken 
and discriminated based on the recorded EEG using Extreme 
Learning Machine (ELM) classifier. Overall classification 
accuracy of 49.77% and 85.57% were obtained, respectively. 
Recent research revealed that EEG-based inner speech 
classification accuracy can be improved when auditory cues 
are used [23]. In [24], four participants imagined speaking 
without any subvocal or vocal activity while the audio cues 
were given to stimulate the brain. During the initial period of 
this experiment, the participants heard the audio cues through 
electrostatic earphones, either a spoken (“ku”) or a spoken 
(“ba”) followed by a train of clicks (arrows) indicating the 
rhythm to be reproduced. In [25], seven participants imagined 
speaking a cued syllable, and the cues were also submitted 
with auditory stimuli. Additionally, no motor activity 
analysis was conducted in those papers. Finally, in [26], the 
participants were trained to carefully listen to spoken words 
and try to comprehend them and then inner speaking them, 
or “Internal speaking,” as called in the paper, immediately 
after seeing it. Practical research examined inner speech 
classification using EEG-based BCI systems and showed 
that inner speech could be recognized using words with 
high discriminatory pronunciation [27]. Feature extraction 
methods such as Autoregressive (AR) coefficient estimation, 
Shannon entropy, and wavelet variance estimation were used 
in several studies to model EEG to obtain a representation 
of the signal at each channel and improve the classification 
accuracy [28, 29, 30, 31].
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This paper is a follow up for our previous work in [44] 
where we used a low-cost 8- channels EEG headset, g.tec 
Unicorn Hybrid Black+ [32]. Audio cues were employed 
for the purpose of stimulating motor imagery in this study. 
The question: Where do you want to go was used, and the 
participant replied with inertly spoken audio commands Up, 
Down, Left, and Right. Finally, we employed multi-feature 
extraction methods and SVM to discriminate between the 
four commands.

Materials and Methods 
Subjects

Four native English speakers, right-handed and healthy 
individuals participated in this study, all of them had no 
neurological or movement disorders, no hearing loss, and 
no speech loss. Each participant signed his written informed 
consent. None of the participants had any previous BCI 
contribution or experience. The participants were two males 
and two females aged 20 to 56 and were named (sub-01) for 
the first subject (sub-02) for the second subject and so on. 
The study was accompanied in Jackson State University at 
the Department of Electrical and Computer Engineering and 
Computer Science. All subjects were voluntarily participated 
in the experiment, and the experimental procedure and 
data collection have been done according to the approved 
Institutional Review Board (IRB) procedures at Jackson State 
University [33].

Apparatus
An EEG Unicorn Hybrid Black+ headset manufactured 

by g.tec [32] was used to record the EEG-based inner speech 
data. It is a low-cost EEG headset that records up to seventeen 
channels at up to 250 Hz sampling frequency, eight of them 
are EEG, a three-axis accelerometer, a three-axis gyroscope, 
a battery signal, a counter signal, and a validation signal. The 
recorded channels are on the positions: (FZ, C3, CZ, C4, PZ, 
PO7, OZ, and PO8). A cap with appropriate size was chosen 
to fit the participants head and all electrodes were placed in 
the required positions in the cap. A conductive gel was used 
to fill the gaps between the scalp and the electrodes.

Experimental setup and procedure
We considered the 10-20 electrode placement system 

recommended by the American clinical neurophysiology 
society [34]. The 10-20 system was first presented by 
Herbert Jasper at the 1957 Brussels IV International EEG 
Congress.  The numbers (10) and (20) denote the distances 
between the electrodes position, which are either 10% or 
20% of the total distance (front-back or right-left) of the 
skull. The head cap has been adjusted to ensure that there are 
electrodes placed, as much as possible, within the Wernicke 
and Broca regions, which are considered good spots for better 

quality inner speech-based EEG. Figure 1 presents the g.tec 
Unicorn Hybrid Black+ headset, Wernicke and Broca, and 
the electrode positions. Reference and ground electrodes are 
sticked on the mastoids using a one-use sticker.

Figure 1: (a) Wernicke’s and Broca’s areas, (b) The electrode 
positioning layout, (c) The g.tec Unicorn Hybrid Black+.

The experiment has been designed to record EEG during 
performing inner speech. Inner speech, also called imagined 
speech, silent speech, covert speech, is thinking in the 
form of sound – "hearing" our own voice silently without 
the intentional movement of any extremities such as the 
lips, tongue, or hands. Two subjects participated in each 
recording session, where one subject was performing inner 
speech and the second was performing the audio cue. We 
think that getting the participants involved in announcing the 
audio cue will help prevent any bias in the results even if 
the spoken commands were in the same order each session, 
where the audio cue was announced by different subjects. 
Before the recording started, the two subjects were seated 
in a comfortable high-back chair in front of each other 
and to familiarize them with the recording procedures. All 
experiment steps were clarified during the setup of the EEG 
headset, and the external electrodes, which took about 15 
minutes. The first subject was trained to imagine responding 
to the question: Where do you want to go? The question was 
said by the second subject who was sitting in front of the 
first subject. The response was an internally or an imaginary 
spoken command, which is either Up or Down, Left or 
Right. Each participant accomplished 25 recordings for each 
command. The recording procedure was implemented as 
follows. When the first 10 seconds (± 2 seconds) of the EEG 
recording passed, the audio cue was announced and by the 
end of the second 10 seconds (± 2 seconds), the participant 
started imagining the desired response as inner speech for 60 
seconds. The participant was trained to keep repeating the 
internally spoken command until the end of the 60 seconds, 
and the recording was stopped after 10 seconds as illustrated 
in Figure 2. 
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A total of 400 recordings sessions were successfully 
completed, and the collected data has been merged without 
separating them according to their corresponding participants. 
We ended up having 100 recordings for the command Up, 100 
recordings for Down, and so on. This way, we can examine 
the performance of the proposed classification method in 
distinguishing between the four commands using a dataset 
from four subjects altogether in one run. Additionally, by 
combining the data together and using them in the training 
and testing process, we can design a reliable algorithm that 
can be tested later in real-time on different subjects. For 
each command, the first 25 recordings were for subject 1, 
the second 25 recordings were for subject 2, the third 25 
recordings were for subject 3, and the last 25 recordings were 
for subject 4. The recorded EEG dataset was spitted, labeled, 
and stored to be prepared for the preprocessing stage.

the noisy signals from EEG signals. This filtering bandwidth 
delivers only the typical frequency bands corresponding to 
EEG in the human brain [35]. A bandstop (notch) filter at 60 
Hz was used to reject the power frequency used in Mississippi, 
USA. The normalization (vectorization) technique was used 
to simplify the dataset and reduce the computing demand 
required to classify the four commands. The dataset was 
split into 360 recordings for training and 40 recordings for 
testing (90% for training and 10% for testing). The training 
and testing dataset were normalized by determining the mean 
and standard deviation for each of the eight EEG signals and 
apply the following formula to combine them in a single-
vector signal:

Norm
x aEEG
σ
−

=       (1)

where (x) is the filtered EEG signal, ( ) is the mean, 
and (σ) is the standard deviation. The EEG dataset was then 
prepared for the feature extraction step. The result of pre-
processing steps for one subject EEG is shown in Figure 3.

Figure 2: The recording procedure.

EEG Pre-processing
Before the EEG- Preprocessing stage, 8 seconds from 

the start and the end of each recording was trimmed to make 
sure that we have EEG data that reflects the participants 
brain activities while they were purely performing imagined 
speech. In the EEG pre-processing stage, the recorded data 
forwarded to a combination of several noise attenuation 
and calibration approaches to prepare the EEG signals for 
further analysis. Pre-processing is a significant stage for EEG 
analysis to remove any expected noises. This noise can be 
categorized as environmental or instrumentation noise such 
as the noise from the power line and biological nose such as 
ECG and EMG signals arising from muscle movement. To 
attenuate biological artifacts such as EMG and ECG noise, 
researchers have developed different methods. Traditional 
filtration technique worked well so far to eliminate electrical 
line noise and other biological artifacts with high frequency 
such as EMG. But removing ECG can result in damaging 
the EEG characteristics and losing its fundamental features 
because the ECG artifacts have a noteworthy spectral overlap 
with the original EEG signals [52, 53, 54].

The recorded EEG signals were analyzed using gHIsys 
MATLAB toolbox (https://www.gtec.at/product/ghisys). To 
ensure that we have only the performed speech imagery data, 
we considered removing the first and the last 8 seconds of 
the 60 seconds in each recording. A bandpass filter between 
10 and 100 Hz was used to attenuate the baseline drift and 

Figure 3: Eight-channel preprocessed EEG dataset at 250 HZ (250 
sample per second).

Feature Extraction
Multi-feature extraction methods were applied on eight 

blocks for each recording with a time window of about 
4 seconds (1024 samples). Autoregressive model (AR) 
coefficients, Shannon Entropy (SE), and multiscale wavelet 
variance estimates were used to extract features of the 
recorded data.

AR coefficients
In an AR method of order р, the signal Χ{n} at time n 

could be represented as a linear sequence of р prior estimates 
of the same signal. Specifically, the AR method is modeled 
as:
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1{ } { } ( ) { }p
jX n a i x n i e n== ∑ − + 		       (2)

where a{i} is i coefficients of the AR representation, e
 is added noise with zero mean value, and  is the order 

number of the AR model. Countless methods could be used 
to calculate the coefficients of an AR representation. The 
method we used to estimate the AR order in this work is the 
ARfit [36]. The 1st-order has been selected for the recorded 
EEG signals.

Shannon entropy
Shannon entropy is one of the most attractive cost 

functions, which is a measure of signal complexity to wavelet 
coefficients generated by wavelet packet transform where 
larger entropy values represent higher process uncertainty 
and, therefore, higher complexity [37]. The representation 
of the Shannon entropy for the undecimated wavelet packet 
transform is formulated as follows:

1 logn
j k jk jkSE P P== ∑       (3)

where    is the subsequent coefficients in a j number of 
nodes and    are the normalized squares of the wavelet 
packet coefficients in each node.

Multiscale wavelet variance estimates
Wavelet variance measures the variability in EEG signal 

by scale or equivalently in EEG signal over octave-band 
frequency intervals. We adjusted the vectorized data to make 
the number of samples in each recording in the form of (2A). 
The biggest number of (A) we could get with the number of 
samples we have in each recording is 12. For the signal length 
of 8192 samples (2 ^ 12) and using the ‘db2’ wavelet with 
level 5 [38], 10 multiscale wavelet variance features were 
extracted from each recording using the following formula:

2A dbNumberofWaveletVariance −=       (4)

A total of 170 features were extracted from the EEG data: 
4 per time window (1024 sample) AR coefficients, 16 per 
time window SE values, and 10 wavelet variance estimations. 
After the multi-feature extracting stage, the EEG data was 
reconstructed to be a 360-by-170 features matrix for training 
and a 40-by-170 features matrix for testing. By employing 
Autoregressive coefficients, Shannon Entropy, and multiscale 
wavelet variance estimates, the data was reduced from 8192 
to 170 element vectors. Representation of the difference in 
the wavelet variance for the 170 extracted features from the 
recorded and preprocessed EEG data will be presented in the 
final results.

Classification
In the classification stage, the data was processed with 

supervised learning, where the specified algorithm was 
employed to learn from the prepared data. In this study, 

the classification stage was defined as the determination of 
four different internally spoken commands (Up, Down, Left, 
and Right), which are considered a multiclass classification 
process. SVM is one of the most well-known supervised 
learning algorithms specialized in classification problems. 
Classification using SVM is powered through generating a 
best line or decision boundary that segregates an n-dimension 
space to multiclass to easily enable data sorting to the category 
to which they belong [39], [40]. SVM works on picking the 
margin points that construct vectors which are called support 
vectors to assist with generating the best decision boundary. 

The SVM architecture utilizes a set of mathematical 
functions that are known as the kernel functions. The kernel 
function performs a kind of similarity measure between 
input objects and transforms it into the required output [41]. 
We employed SVM, which is a machine learning algorithm 
for differentiation between the four chosen commands. 
Furthermore, k-fold cross-validation (k = 10) was used to 
achieve a perfect estimate of the proposed model performance 
on the recorded inner speech data and to avoid overfitting in the 
classification process. The K-fold validation is an alternative 
to a fixed validation set. It does not affect the need for a 
separate held-out test set. So indeed, the data will be split into 
training, testing and cross-validation data and is performed 
on folds of training sets. With k-fold cross-validation of value 
10, the model performance will be evaluated after dividing 
the data into 10 subsets (10 folds) while using the k-1 subsets 
for training the data. In this way, it can ensure that testing 
data will be entirely unknown to the classifier that is testing 
and training data are not coming from the same given group. 
Figure 4 illustrates the concept of using the K-fold for cross-
validation during the data training process.

Performance Evaluation
Evaluation metrics adopted within a variety of machine 

learning techniques are critical in examining the reliability 

Figure 4: Cross-Validation Using 10-Fold.
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of the designed classifiers. To evaluate the trained model 
performance, metrics following [42] have been considered. 
The classified EEG data using the proposed machine learning 
method was grouped into true positive TP, false positive FP, 
true negative TN, and false negative FN. The value of FP and 
FN are the samples that were misclassified, and the value of 
TP and TN are the samples that were correctly classified [42]. 
The most state-of-art metrics for classification are accuracy, 
precision, recall, and F1-score. Accuracy estimates the 
percentage of correct predicted outputs to the overall number 
of samples in the processed dataset. Recall (sometimes called 
Sensitivity) estimates the percentage of TP to the summation 
of TP and FN. Precision estimates the percentage of TP to the 
summation of TP and FP. Hence the F1-Score estimates the 
average between recall and precision. Moreover, the Area 
Under Curve (AUC) of the Receiver Operating Characteristic 
(ROC) (AUC-ROC) was plotted. AUC-ROC is a common 
ranking type of metric that is utilized to show comparisons 
between learning algorithms and create an optimal learning 
model by exposing the entire classifier ranking performance 
[43]. Furthermore, while we have a multiclass classification 
task, areas under the curve were calculated and presented by 
macro-averaging, in which each corresponding metric for 
each individual class was estimated. The following formula 
is used to estimate the AUC-ROC value for multiclass 
problems:

( 1) /p p n p nACU S n n Nn n= = −       (5)

where Sp, np, nn, and N represent the sum of all positive 
samples, positive and negative samples, and the number of 
classes, respectively.

Results 
In this section, we report the results of the proposed 

method for EEG signals classification, including the results 
of extracting multi-features from the preprocessed EEG 
signal and the results of the SVM machine learning model for 
the classification of the extracted features. 

Feature Extraction results

In the feature selection stage, the extracted features 
using Autoregressive coefficients, Shannon Entropy, and 
multiscale wavelet variance were compared using boxplot 
to examine the variance level between each individual 
command. The obtained results using the suggested features 
extraction methods showed a noticeable variation between 
the four commands which will assist with discriminating 
between them and improve the classification accuracy. 
Every feature vector of the same class should be closer in its 
representation point and in different classes they should be 
far from each other. For precisely monitoring the variance in 

data distribution of all features in the four classes we have, 
a boxplot was used. Representation of the difference in the 
wavelet variance for the 170 extracted features from the 
sample of the recorded and preprocessed EEG data using a 
boxplot is shown in Figure 5.

Figure 5: A boxplot of the wavelet variance for the extracted 
features from sample of the recorded EEG data.

Classification results

After the multi-features extraction stage, classification 
between the four internally spoken commands was carried out 
using machine learning to evaluate the model performance. 
The SVM with a polynomial kernel function, C = 2 and 
gamma = 0.1 was selected as the best estimator with the 
best margin size (M) after several trials based on trial-and-
error as shown in Table 1 and Figure 6. Gamma and C are 
regularization parameters where gamma determines the width 
of the kernel function, and C controls the trade-off between 
achieving a simple decision boundary and an excellent fit 
to the data during the training process. The cross-validation 
splitting strategy was chosen as five-fold cross-validation. 
Moreover, class names were Up, Down, Left, and Right. We 
trained and tested our model using the extracted features by 
SVM five-fold cross-validation. The highest performance of 
the model was achieved by feeding the features selected by 
Autoregressive coefficients, Shannon Entropy, and multiscale 
wavelet variance with an accuracy of 97.5%, precision 
of 97.73%, recall of 97.50%, and F1-score of 97.61%. In 
addition, the macro-average AUC-ROC of the model was 
99.32%. The model showed excellent performance using 
the extracted features by the proposed feature extraction 
methods. The confusion matrix and AUC-ROC plot illustrate 
the performance of the proposed classifier in Figure 7 and 
Figure 8, respectively.



Abdulghani MM and Abed KH., Fortune J Health Sci 2025 
DOI:10.26502/fjhs.361

Citation:	Mokhles M. Abdulghani, Khalid H. Abed. Inner Speech Recognition for Mutism and Speech Disorder Using Brain-Computer Interface, 
Fortune Journal of Health Sciences. 8 (2025): 985-995.

Volume 8 • Issue 4 991 

stimuli the brain in the recording procedure. In [20], the 
participants were trained to keep repeating the internally 
spoken words for up to 14 seconds and they only responded 
when they heard a beep. In [21], visual cues were used in each 
recording, and the participants were told to keep repeating the 
internally spoken words for 30 seconds. Audio cues have been 
used to stimulate the brain by asking a question to one of the 
four subjects and let them imagine speaking one of the four 
specified commands. Unlike [20] and [21], we did not include 
cues during all the 60 seconds of response and the subjects 
were trained to keep repeating the specified command until 
the time ended.

Classifying inner speech using EEG requires robust 
and efficient classification approaches. Some researchers 
recommended autoregressive modeling, Shannon entropy, 
and wavelet variance estimation as powerful feature-
extracting methods to classify EEG [28], [29], [30], [31], 
[43]. In [27], massive efforts were made to record EEG data 
for inner speech applications using an expensive 128-channel 
EEG headset. Nevertheless, this high number of channels 
did not allow subsequent researchers [10], [11] to get 
good classification performance when they used the same 
128-channel EEG data. In our research, with data recorded
using a low-cost 8-channel EEG headset, carefully selected
electrodes position on the skull, and the proposed multi-
feature extraction method, the results showed that robust
and accurate EEG classification could be implemented.
Autoregressive modeling, Shannon entropy, and wavelet

Iteration Cost (C) gamma Accuracy %
1 2.75 0.18 96.2
2 2.7 0.17 96.2
3 2.2 0.15 96.6
4 2 0.1 97.5

Table 1: Information of the participated subjects.

Figure 6: Margine size in SVM classifier.

Figure 8: The AUC-ROC plot of the SVM model using the extracted 
features.

Figure 7: Confusion matrix for the classification performance of 
the SVM model.

Discussion
Complex Applications of EEG in a realistic environment, 

such as decoding inner speech, generate dynamic and 
complicated responses in the EEG signals. As reported in 
[20], the classification accuracy of inner speech applications 
based on EEG can be affected by the type of cues used to 
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variance estimation were applied for detecting and classifying 
inner speech in EEG time series data. The data was reduced 
from 8192 to 170 element vectors by employing the suggested 
multi-feature extracting method. A total of 170 features 
were extracted from each recording and the EEG data was 
reconstructed as a 360-by-170 features matrix for training 
and a 40-by-170 features matrix for testing. It is noteworthy 
that we combined the recorded data from all the subjects and 
applied the suggested multi-feature extraction method on 
them. Aanalyzing the results by splitting the data according to 
which participant it belongs and then averaging the results as 
in [45], [46], [47], [48] by summing and dividing the results 
by the number of the participated subject may not be the most 
practical method for calculating the accuracy and efficiency 
of the designed classifier. For example, a 100% classification 
accuracy for the data from subject A, and 80% for data from 
subject B can be averaged to 90% by doing math calculation 
(100%+80%)/2. Since we know that the minimum accuracy 
is 80%, stating that the overall classification accuracy for this 
classifier is 90% is not really accurate, and this method will 
not provide any close number to what was averaged when 
testing this classifier online on different subjects. In our work, 
we were able to design a BCI system that can distinguish 
between four inner speech commands for four subjects at the 
same time rather than designing four systems, where each 
system is tailored for each participant if a designer considered 
the methods used by averaging the results. This makes our 
system more general and more practical because it allows 
multiple physically-challenged people to use it.

Besides the reduction in the size and complexity of data, 
the reported results showed a significant variance between the 
specified classes. Even though this is a significant reduction 
in data size and complexity, the main objective of using 
the proposed multi-features extraction method is not just a 
reduction in data. We aimed to re-represent the data with 
much smaller features that allow capturing the differences 
between the required classes so that a classifier can ideally 
separate the EEG signals. As explained in the result section, 
the extracted features resulted in high accuracy, precision, 
recall, F-score, and macro-average AUC. The method 
of classifying inner speech through EEG, as detailed in 
this study, holds significant promise for revolutionizing 
communication methods for individuals suffering from a 
variety of conditions. These include speech disorders that 
impair verbal communication, mutism, where individuals 
are unable to speak, developmental issues affecting cognitive 
growth, impairments in executive functions such as planning 
and decision-making, and various psychopathological 
disorders like schizophrenia or depression that impact 
mental processes. Additionally, this innovative technology 
can serve as a powerful control system, enabling people 
with physical disabilities to perform everyday activities 

more independently. For instance, it can assist in controlling 
wheelchairs or other assistive devices through brain signals, 
thereby improving mobility and quality of life [55]. The 
classifier developed through this approach can be converted 
into executable code in languages such as C++ or Python 
using MATLAB code generation tools. Once transformed, 
this code can be uploaded to a microcontroller for real-time 
testing and application, allowing seamless integration into 
assistive devices and practical use in daily life.

Limitation
Data for this study included EEG data from four 

participants, each around 1.6 hours in total. More participants 
would allow greater generalizability to indicate the reliability 
of the proposed classification method. Furthermore, for 
accurately performing the experiment procedure, the data 
collection requires the research team to train each participant 
to familiarize them with the procedure by conducting at least 
one recording session prior to the recording sessions we 
considered in this research project.

Conclusion
This research aims to pave the way for a better 

understanding of processing and classifying inner speech 
using EEG and machine learning. Numerous numbers of 
people around the world need such an idea to improve the 
quality of their life. Signal processing was implemented to 
extract wavelet multi-feature from EEG signals and employ 
those features to classify four inner speech classes. Not only 
did the multi-feature extraction result in a substantial amount 
of data reduction, but it enabled capturing the differences 
between the Up, Down, Left, and Right classes as confirmed 
by the results of cross-validation and the performance of 
the support vector machine classifier on the test dataset as 
well. The experiment further demonstrated that applying 
autoregressive modeling, Shannon entropy, and wavelet 
variance estimation to the raw EEG data resulted in an 
excellent performance. Five-fold cross-validation was used 
to improve the classification performance and generalization. 
The achieved results range between 96.20% to 97.5% for 
overall classification accuracy. Other performance evaluation 
metrics were estimated, and we obtained 97.73% for precision, 
97.50% for recall, and 97.61% for F1-score. Moreover, the 
macro-average AUC-ROC of 99.32% proved the efficacy and 
validity of the proposed approach, for classifying different 
inner speech commands using EEG.

Author Contributions: Conceptualization, M.M.A. and 
K.H.A.; methodology, M.M.A. and K.H.A.; software, 
M.M.A. and K.H.A.; validation, M.M.A. and K.H.A.; formal
analysis, M.M.A. and K.H.A.; investigation, K.H.A. and
M.M.A.; Resources, K.H.A and M.M.A.; data curation,
K.H.A. and M.M.A.; writing–original draft preparation,



Abdulghani MM and Abed KH., Fortune J Health Sci 2025 
DOI:10.26502/fjhs.361

Citation:	Mokhles M. Abdulghani, Khalid H. Abed. Inner Speech Recognition for Mutism and Speech Disorder Using Brain-Computer Interface, 
Fortune Journal of Health Sciences. 8 (2025): 985-995.

Volume 8 • Issue 4 993 

K.H.A. and M.M.A.; writing–review and editing, K.H.A. 
and M.M.A.; visualization, K.H.A. and M.M.A.; supervision, 
K.H.A.; project administration, K.H.A.; funding acquisition, 
K.H.A. All authors have read and agreed to the published 
version of the manuscript.

Funding: This research received funding from the State on 
Mississippi.
Institutional Review Board Statement: The study was 
conducted in accordance with the Declaration of Helsinki 
and approved by the Institutional Review Board of Ethics 
Committee of Jackson State University (Approval no.: 0067-
23).

Informed Consent Statement: Informed consent was 
obtained from all subjects involved in the study.

Data Availability Statement: The code and datasets used 
and/or analyzed during the current study are available online 
at (https://zenodo.org/doi/10.5281/zenodo.10908017).

Acknowledgments: This work was supported in part by 
The Strengthening Mississippi Academic Research Through 
(SMART) Business Accelerate Initiative Program sponsored 
by The Mississippi Institutions of Higher Learning – Grant 
G635773 entitled: “Investigating AI-Powered Add-on 
Modular Controllers for Wheelchairs,” and in part by Jackson 
State University.

Conflicts of Interest: The authors declare no conflict of 
interest.

References
1. EM Dewan. “Occipital alpha rhythm eye position and

lens accommodation,” Nature 214 (1967): 975–977.

2. N Eisenberg, A Sadovsky and T Spinrad. “Associations of 
emotion-related regulation with language skills, emotion
knowledge, and academic outcomes,” New directions for
child and adolescent development 109 (2005): 109–118.

3. MP Jani, GB Gore. “Occurrence of communication and
swallowing problems in neurological disorders: analysis
of forty patients,” Neuro Rehabilitation 35 (2014): 719–
727.

4. S Martin, et al. “Decoding inner speech using
electrocorticography: Progress and challenges toward a
speech prosthesis” Frontiers in neuroscience 12 (2018):
422.

5. Biasiucci A, Franceschiello B & Murray MM.
Electroencephalography. Curr. Biol 29 (2019): R80–R85.

6. P Gaur, RB Pachori, H Wang, G Prasad. An automatic
subject specific intrinsic mode function selection for
enhancing two-class EEG based motor imagery-brain
computer interface, IEEE Sens. J 19 (2019): 6938–6947.

7. MD Zmura, S Deng, T Lappas, et al. Toward EEG
sensing of imagined speech, in: J.A. Jacko (Ed.), Human–
Computer Interaction. New Trends: 13th International
Conference, HCI International 2009, San Diego, CA,
USA, July 19–24, 2009, Proceedings, Part I, Springer
Berlin Heidelberg, Berlin, Heidelberg (2009): 40–48.

8. M Matsumoto, J Hori. Classification of silent speech using
support vector machine and relevance vector machine,
Appl. Soft Comput 20 (2014): 95–102.

9. Nieto N, Peterson V, Rufiner HL, et al. Thinking out loud,
an open-access EEG-based BCI dataset for inner speech
recognition.Sci Data 9, 52 (2022).

10.	Bvd Berg, Sv Donkelaar and M Alimardani. "Inner Speech 
Classification using EEG Signals: A Deep Learning
Approach,"  2021 IEEE 2nd International Conference
on Human-Machine Systems (ICHMS), Magdeburg,
Germany (2021): 1-4.

11. Wei X, Surjana AI, Söffker D, “Inner speech classification
based on electroencephalography (EEG) signals and
support vector machine (SVM)”, Preprint, November
(2023).

12.	Taheri Gorji H, Wilson N, VanBree J, et al. Using machine 
learning methods and EEG to discriminate aircraft pilot
cognitive workload during flight. Sci Rep 13, 2507 (2023).

13.	MM Abdulghani, O Franza, F Fargo and et al, "Brain
Waves Pattern Recognition Using LSTM-RNN
for Internet of Brain-Controlled Things (IoBCT)
Applications," 2022 IEEE International IOT, Electronics
and Mechatronics Conference (IEMTRONICS), Toronto,
ON, Canada (2022).

14.	Mokhles M, Abdulghani Arthur A, Harden, and et al. “A
Drone Flight Control Using Brain-Computer Interface
and Artificial Intelligence,” The 2022 International
Conference on Computational Science and Computational 
Intelligence – Artificial Intelligence (CSCI'22–AI), IEEE
Conference Publishing Services (CPS), Las Vegas,
Nevada, December 14-16 (2022).

15.	Mokhles M. Abdulghani, Wilbur L. Walters, and Khalid
H. Abed, "Low-Cost Brain Computer Interface Design
Using Deep Learning for Internet of Brain Controlled
Things Applications," The 2022 International Conference
on Computational Science and Computational Intelligence 
– Artificial Intelligence (CSCI'22–AI), IEEE Conference
Publishing Services (CPS), Las Vegas, Nevada, December 
14-16 (2022).

16.	Riccio A, Mattia D, Simione L, et al. Eye gaze independent 
brain computer interfaces for communication. Journal
Neural Eng 9 (2012): 045001.



Abdulghani MM and Abed KH., Fortune J Health Sci 2025 
DOI:10.26502/fjhs.361

Citation:	Mokhles M. Abdulghani, Khalid H. Abed. Inner Speech Recognition for Mutism and Speech Disorder Using Brain-Computer Interface, 
Fortune Journal of Health Sciences. 8 (2025): 985-995.

Volume 8 • Issue 4 994 

17.	Hohne J, Schreuder M, Blankertz B, et al. A novel 9-class
auditory ERP paradigm driving a predictive text entry
system. Front Neuroscience 5 (2011): 99.

18.	Panachakel T, Vinayak N, Nunna M, et al. “An improved
EEG acquisition protocol facilitates localized neural
activation,” in Advances in Communication Systems and
Networks (Springer) (2020): 267–281.

19.	Wang HE, Bénar CG, Quilichini PP, et al. A systematic
framework for functional connectivity measures. Front.
Neurosci 8 (2014): 405.

20.	Nguyen, C. H., Karavas, G. K., and Artemiadis, P. (2017).
Inferring Inner speech using EEG signals: a new approach
using Riemannian manifold features. J. Neural Eng.
15:016002. doi: 10.1088/1741-2552/aa8235.

21.	Koizumi K, Ueda K, and Nakao M. “Development of
a cognitive brain-machine interface based on a visual
imagery method,” in 2018 40th Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC) (Honolulu: IEEE) (2018):
1062–1065.

22.	Pawar D, and Dhage S. Multiclass covert speech
classification using extreme learning machine. Biomed.
Eng. Lett 10 (2020): 217–226.

23.	H Li and F Chen. “Classify imaginary mandarin tones
with cortical EEG signals,” INTERSPEECH (2020):
4896-4900.

24.	D’Zmura M, Deng S, Lappas T, et al (2009). Toward EEG 
sensing of imagined speech. In International Conference
on Human-Computer Interaction (2009): 40–48.

25.	Deng S, Srinivasan R, Lappas T & et al. EEG classification
of imagined syllable rhythm using Hilbert spectrum
methods. Journal of Neural Engineering 7 (2010): 046006.

26.	Suppes P, Lu Z-L & Han B. Brain wave recognition of
words. Proceedings of the National Academy of Sciences
94 (1997): 14965–14969.

27.	K Brigham, BVKV Kumar. Subject identification from
electroencephalogram (EEG) signals during imagined
speech, 2010 Fourth IEEE International Conference on
Biometrics: Theory, Applications and Systems (BTAS)
(2010): 1–8.

28.	Möller E, Schack B, Arnold M, Witte H. Instantaneous
multivariate EEG coherence analysis by means of
adaptive high-dimensional autoregressive models. J Neu-
rosci Methods 105 (2001): 143–58.

29.	Franasczcuk P, Bergey G, Kami´nski M. Analysis of
mesial temporal seizure onset and propagation using the
directed transfer function method. Electroencephalogr
Clin Neurophysiol 91 (1994): 413–27.

30.	Malihe Sabeti; Serajeddin Katebi; Reza Boostani. Entropy 
and complexity measures for EEG signal classification of
schizophrenic and control participants 47 (2009): 263–
274.

31.	Follis JL, Lai D. Variability analysis of epileptic EEG
using the maximal overlap discrete wavelet transform.
Health Inf Sci Syst 15 (2020): 26.

32.	G tec Medical Engineering GmbH. Unicorn Hybrid Black
(2020).

33.	Jackson State University, Institutional Review Board
(IRB) (2023).

34.	Acharya JN, Hani A, Cheek J, et al. American Clinical
Neurophysiology Society Guideline 2: Guidelines for
Standard Electrode Position Nomenclature. J. Clin.
Neurophysiol 33 (2016): 308–311.

35.	Liu, Qing, Liangtao Yang, et al. "The Feature,
Performance, and Prospect of Advanced Electrodes for
Electroencephalogram." Biosensors 13 (2023): 101.

36.	Neumaier and T Schneider. "Estimation of parameters
and eigenmodes of multivariate autoregressive models".
ACM Trans. Math. Softw 27 (2001): 27C57.

37.	Deng Wang, Duoqian Miao, Chen Xie. “Best basis-based
wavelet packet entropy feature extraction and hierarchical
EEG classification for epileptic detection”, Expert
Systems with Applications 38 (2011): 14314-14320.

38.	Daubechies, Ten Lectures on Wavelets, SIAM (1992):
194.

39.	Tan Y, Wang J, A support vector machine with a hybrid
kernel and minimal vapnik-chervonenkis dimension.
IEEE Transactions on knowledge and data engineering
16 (2004): 385–395.

40.	Ghosh S, Dasgupta A, Swetapadma A. A study on support
vector machine based linear and non-linear pattern
classification. In: 2019 International Conference on
Intelligent Sustainable Systems (ICISS) (2019): 24–28.

41.	Grauman K, Darrell T. The pyramid match kernel:
Discriminative classification with sets of image features.
In: Tenth IEEE International Conference on Computer
Vision (ICCV’05) 1 (2005): 1458–1465.

42.	Alzubaidi L, Zhang J, Humaidi AJ, et al. Review of
deep learning: Concepts, cnn architectures, challenges,
applications, future directions. Journal of Big Data 8
(2021): 1–74.

43.	Vernon Lawhern W. David Hairston; Kaleb McDowell;
Marissa Westerfield; Kay Robbins.  Detection and
classification of subject-generated artifacts in EEG signals
using autoregressive models 208 (2012).



Abdulghani MM and Abed KH., Fortune J Health Sci 2025 
DOI:10.26502/fjhs.361

Citation:	Mokhles M. Abdulghani, Khalid H. Abed. Inner Speech Recognition for Mutism and Speech Disorder Using Brain-Computer Interface, 
Fortune Journal of Health Sciences. 8 (2025): 985-995.

Volume 8 • Issue 4 995 

This article is an open access article distributed under the terms and conditions of the 
Creative Commons Attribution (CC-BY) license 4.0

44.	Abdulghani, Mokhles M, Wilbur L. Walters, and Khalid
H. Abed. "Imagined Speech Classification Using EEG
and Deep Learning" Bioengineering 10 (2023): 649.

45.	S Zhao and F Rudzicz. "Classifying phonological
categories in imagined and articulated speech," IEEE
International Conference on Acoustics, Speech and Signal 
Processing (ICASSP), South Brisbane, QLD, Australia
(2015): 992-996.

46.	Lee D-Y, Lee M, Lee S-W. Classification of Imagined
Speech Using Siamese Neural Network (2020): 12487.

47.	Vorontsova D, Menshikov I, Zubov A, et al. Silent EEG-
Speech Recognition Using Convolutional and Recurrent
Neural Network with 85% Accuracy of 9 Words
Classification. Sensors 21 (2021): 6744.

48.	Pramit S, Muhammad A-M, Sidney F. SPEAK YOUR
MIND! Towards Imagined Speech Recognition with
Hierarchical Deep Learning (2019): 1904.04358.

49.	Suhaimi NS, Mountstephens J, Teo J. A Dataset for
Emotion Recognition Using Virtual Reality and EEG
(DER-VREEG): Emotional State Classification Using
Low-Cost Wearable VR-EEG Headsets. Big Data Cogn.
Comput 6 (2022): 16.

50.	Hashem HA, Abdulazeem Y, Labib LM, et al. An
Integrated Machine Learning-Based Brain Computer

Interface to Classify Diverse Limb Motor Tasks: 
Explainable Model. Sensors 23 (2023): 3171.

51.	F Ahmed, H Iqbal, A Nouman, et al. "A non-Invasive
Brain-Computer-Interface for Service Robotics,"  2023
3rd International Conference on Artificial Intelligence
(ICAI), Islamabad, Pakistan (2023): 142-147

52.	Sijbers J Van Audekerke, M Verhoye, A Van der Linden,
et al. ‘Reduction of ECG and gradient related artifacts in
simultaneously recorded human EEG/MRI data,’’ Magn.
Reson. Imag 18 (2000): 881–886.

53.	S Tong, A Bezerianos, J Paul, et al.‘‘Removal of ECG
interference from the EEG recordings in small animals
using independent component analysis,’’ J. Neurosci.
Methods 108 (2001): 11–17.

54.	C Dai, J Wang, J Xie, W Li, Y Gong and Y Li. "Removal
of ECG Artifacts from EEG Using an Effective Recursive
Least Square Notch Filter," in  IEEE Access 7 (2019):
158872-158880.

55.	MM Abdulghani, WL Walters and KH Abed. "EEG
Classifier Using Wavelet Scattering Transform-Based
Features and Deep Learning for Wheelchair Steering," 2022
International Conference on Computational Science and
Computational Intelligence (CSCI), Las Vegas, NV, USA
(2022): 401-405.


	Title 
	Abstract 
	Keywords
	Introduction
	Materials and Methods   
	Subjects
	Apparatus
	Experimental setup and procedure 
	EEG Pre-processing 
	Feature Extraction 
	AR coefficients 
	Shannon entropy 
	Multiscale wavelet variance estimates 
	Classification
	Performance Evaluation 

	Results  
	Feature Extraction results 
	Classification results 

	Discussion
	Limitation
	Conclusion 
	Author Contributions
	Funding
	Institutional Review Board Statement
	Informed Consent Statement
	Data Availability Statement
	Acknowledgments
	Conflicts of Interest

	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Table 1
	References

