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Information Fusion for Colorectal Polyps Medical Image Segmentation
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Abstract
Training a deep neural network often requires a large amount of 

annotated data, which is scarce in the medical image analysis domain. 
In this work, we present a simple yet effective technique for enhancing 
medical image segmentation neural network through information fusion. 
The proposed approach utilizes information from different spatial scales 
and combines them in a learnable way. Experimental results on two 
benchmark datasets demonstrate that the proposed fusion module improves 
the segmentation performance of state-of-the-art neural networks.
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Background
Semantic segmentation is a common computer vision task in which each 

pixel in an image is assigned to a pre-defined category [1]. It has been widely 
used in applications such as landscape mapping, autonomous driving, and 
medical image analysis [2,3]. In the last decade, training a deep convolutional 
neural network (CNN) to segment the image has replaced the handcrafted 
features to become a common practice due to its superior performance. It is 
well understood that deep neural networks are notoriously data hungry insofar 
as effectively training the model is concerned. As op- posed to the application 
of semantic segmentation in the industry, deploying a segmentation system for 
medical image analysis has been found challenging. Lack of annotated data 
has always been a major obstacle in the medical image analysis community 
[4]. This is attribute to the manner on how medical images are labeled. Unlike 
natural images that can be easily obtained, medical images are hard to acquire 
due to the data privacy concern. To make matters worse the annotator is 
required to have domain expertise for labeling medical images. Colorectal 
cancer is the third most commonly diagnosed cancer and the fourth cause of 
cancer death around the world [5]. As a precursor to the colorectal cancer, 
polyps are abnormal tissue growths on the inner lining of the colon or rectum. 
In clinical practice, colonoscopy is the preferred technique for detection 
and assessment of polyps. Therefore, developing a method to accurately 
segment polyps in colonoscopy images is of great interest as it helps the 
doctor to identify polyps at an early stage. However, segmenting polyps is a 
challenging task as the same type of polyps appears in a high variety of color, 
size and texture. Despite the advancement in colonoscopy, the boundary 
between polyps and surrounding mucous membrane is usually not very 
sharp as shown in the Figure 1. To address these challenges, in this paper, 
we propose a novel information fusion module to improve the performance 
of existing segmentation networks. The key idea is to combine features from 
different layers in a data adaptive way. We evaluate the proposed method on 
two publicly available datasets, Kvasir-SEG [6] and CVC-612 [7], for polyp 
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segmentation in colonoscopy images. The results demonstrate 
that the proposed fusion module improves on multiple 
network architectures for medical image segmentation. The 
remainder of this paper is organized as follows. We introduce 
the related work in Section 2 and describe the proposed 
approach in Section 3. Section 4 describes the two datasets 
along with the segmentation results. Concluding remarks are 
provided in Section 5.

Related work
To address the label scarcity problem, plenty of machine 

learning techniques have proposed in the last few years. 
Existing techniques can be roughly grouped into two broad 
categories: efficient training and data feature enhancement. 
Active learning seeks to train the network with as little labeled 
data as possible by picking the most informative samples to 
increase network training efficiency [8]. By pre-training the 
network on a large-scale dataset like ImageNet [9], where 
labels are relatively easy to collect, transfer learning allows 
a model to be fine-tuned with a considerably less quantity 
of data. Semi-supervised learning differs from supervised 
learning in that it extracts informative characteristics from 
unlabeled data [10]. Data feature enhancement, on the other 
hand, focuses on creating more discriminative features and 
exploiting the relationship between data samples. Synthetic 
data generated with generative adversarial network (GAN) 
[11] has proven to be very effective for improving the model
performance [12,13]. Statistical shape and appearance models
have also been used to generate training samples with higher
data variance that helps improve the robust- ness of the model
[14]. The hierarchical features in CNN provide a natural way
to address the object scale variance issue in medical image
segmentation [15]. U-Net [16] and its variants [17-20]
capture the multi-scale information by connecting features
from shallow and deep layers. Attention- based methods [21]
guide the training to focus on important image regions such
as object edges such that the segmentation accuracy can be
improved.

Methods
In this section, we introduce the proposed information 

fusion module. We begin by describing the base network, 
fully convolutional network (FCN) (1), and the feature 
refinement unit [22]. We then explain how the multi-scale 
features are combined through the information fusion 
module. Figure 2 de- picts our network architecture. Fully 
convolutional network (FCN) has been extensively used for 
semantic segmentation since it was introduced in 2015 [1]. 
To simplify the flowchart, we omit the convolutional layers 
and the output (softmax) layer in FCN in Figure 2. The 
convolutional features after four pooling layers, which are 
commonly known as FCN-32s, FCN-16s, FCN-8s, and FCN-
4s, are sent through the information fusion module before 

making the prediction. The information fusion module not 
only improves the discrimination ability of features, but also 
aggregates features at different level in a learnable fashion. 
In particular, the convolution features at each stage are first 
connected to a feature refinement unit (FRU). The detailed 
architecture of a FRU is shown in Figure 2. Inspired by the 
RefineNet [22], we add two additional convolutional layers 
and associated ReLU activation layers [23] in combine with a 
residual connection. This refinement process has shown to be 
effective in dealing with fine-scale features [22]. When used 
in colonoscopy image segmentation, the feature refinement 
is helpful for segmenting polyps that are relatively small as 
compared to the image size. It is well known that early layers 
in a CNN are responsible for extracting shallow, fine, and 
appearance information from the data, while layers in later 
stages tend to produce features at a coarse scale and are related 
to the semantic information [24,25]. The success of U-Net 
[16] has shown that combining these two types of features is
critical for producing accurate segmentation map for medical
images. Instead of directly concatenating all features, the
outputs of FRU are added together and followed by a 1 × 1
convolution. This essentially learns a weight for features from
each layer. Compared to a feature concatenation or a feature
summation, weights for each component can be learned

Figure 1: Example colonoscopy images of polyps (top row) and associated 
labels (bottom row) from Kvasir-SEG (6) dataset.

Figure 2: Network architecture of a standard FCN with the proposed 
information fusion module.

Figure 3: Segmentation results of different methods on CVC-612 (top row) 
and Kvasir- SEG (bottom row) datatsets.
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through the error back propagation. Therefore, features that 
contain different information can be combined in a data-
driven way. It is worth noting that we choose FCN as the base 
network for illustration purpose. The proposed information 
fusion module is flexible and generic. We can attach different 
number of FRUs based on the feature groups. For example, 
when the proposed information fusion module is used with 
U-Net, we can attach one FRU after each skip connection,
which results in a 4-stage fusion. The information fusion
module can also be used with other network architectures
as long as the convolutional features can be extracted from
different depths. The standard pixel-wise cross entropy loss
is used to train the network.

Experiments
In this section, we evaluate the proposed method by 

applying them to two publicly available polyp segmentation 
datasets. We compare the performance of multiple networks 
with and without adding the information fusion module.

Datasets and Baselines
Kvasir-SEG (6) is a recently released dataset for 

polyp segmentation. It consists of 1000 images and their 
corresponding ground truth. These images were manually 
labeled by a medical doctor and reviewed by an experienced 
gastroenterologist from Vestre Viken Health Trust in 
Norway. CVC-612 (7) is a benchmark dataset that has been 
used in many polyps segmentation studies. It contains 612 
images that were extracted from 31 colonoscopy videos. For 
both datasets, each pixel in the image is labeled as either 
polyp or non-polyp. To evaluate the efficacy of the proposed 
method, we compare the performance before and after adding 
the information fusion module with multiple networks, 
including FCN [1], U-Net [16], U-Net++ [17], ResUNet++ 
[19], PraNet [26]. Since the PraNet has a similar multi-level 
feature aggregation design, we compare it with the proposed 
method by replacing the parallel reverse attention module in 
PraNet with the proposed information fusion module.

Results
For both datasets, we follow the common experimental 

setup used in [19,26] by randomly split the data into three 
sets, training (80%), validation (10%), and testing (10%). 
The performance of network is measured with standard 
semantic segmentation metrics, Dice and mean Intersection 
over Union (mIoU). All networks are implemented using 
PyTroch framework [27]. The experiments are conducted on 
an AWS EC2 p3.2xlarge instance. For baseline networks, i.e., 
without information fusion module, we use numbers reported 
by the original authors. To have a fair comparison, we use 
the same hyperparameters as the authors specified in the 
original papers when training the network with information 
fusion module. For networks that the training details are not 
provided, we train the network 100 epochs with a batch size 
16. The initial learning rate is set to 0.01. For optimization,
we use the SGD optimizer with cosine decay for learning rate
schedule [28]. We also use the standard data augmentation,
such as random flip, crop, rotation, and color jittering, etc., to
improve the model performance.

Table 1 shows the segmentation results of all networks. 
As can be seen that the information fusion module (indicated 
by (IF) in the table) consistently improved the model 
performance on both datasets. When applied to a basic network 
like FCN [1], the information fusion module improved Dice 
from 0.794 to 0.822 by 3.5%, and mIoU from 0.763 to 0.792 
by 3.8% on the Kvasir-SEG dataset. A similar trend can be 
observed on the CVC-612 dataset as well as for U-Net. With 
advanced variants of U-Net, the additional connections in 
U-Net++ [17] and ResUNet++ [19] are expected to enhance
the feature combination from different layers. The model
with in- formation fusion module still achieved higher Dice
and mIoU. We attribute this to the weighted summation with
learned weights compared to simple feature concatenation
and feature summation. The improvement on the recently
published PraNet [26] is relatively small as opposed to other
networks. This is because the PraNet also adopts multi-scale

Method
Kvasir-SEG CVC-612

Dice mIoU Dice mIoU

FCN [1] 0.794 0.763 0.768 0.728

FCN (IF) 0.822 0.792 0.791 0.762

U-Net [16] 0.818 0.746 0.823 0.755

U-Net (IF) 0.833 0.77 0.845 0.773

U-Net++ [17] 0.821 0.743 0.794 0.729

U-Net++ (IF) 0.831 0.767 0.819 0.742

ResUNet++ [19] 0.813 0.793 0.796 0.796

ResUNet++(IF) 0.827 0.812 0.815 0.816

PraNet [29] 0.898 0.84 0.899 0.849

PraNet (IF) 0.899 0.849 0.903 0.857

Table 1: Segmentation results of networks with (indicated by (IF)) and without the information fusion module on Kvasir-SEG and CVC-612 dataset.
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feature fusion using an attention module, which shares the 
same motivation as the proposed information fusion module. 
It is worth mentioning that the performance achieved by the 
PraNet is the state-of-the-art on both datasets. Considering 
that the PraNet results are close to the empirical upper bound 
of these two datasets, the improvement achieved by the 
information fusion module is considerably significant. Fig. 3 
shows the qualitative results for models with and without the 
in- formation fusion module on CVC-612 and Kvasir-SEG 
datasets. We observe similar trends from all the compared 
networks and choose FCN and PraNet as examples. As can 
be seen that networks with the proposed information fusion 
module produced segmentation masks with sharper edges 
compared to the ones produced by networks without the 
proposed module. The ba- sic network (FCN and PraNet) 
tended to make mistake when the boundary between polyps 
and surrounding mucous membrane is blurry. With the in- 
formation fusion module, the networks (FCN (IF) and PraNet 
(IF)) were able to separate these polyps from background. We 
attribute this improvement to the ability to combine fine-scale 
features with coarse-scale features.

Conclusion
In this paper, we have proposed a novel approach to 

improve semantic segmentation networks for medical image 
segmentation. The proposed information fusion can be easily 
incorporated as a module for all common segmentation 
networks. The feature refinement and weighted feature 
summation that provided by the information fusion module 
have been demonstrated to be effective in improving the 
segmentation performance on real polyp segmentation 
datasets when compared with other basic networks.
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