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Abstract
Introduction: To adapt and replicate deep learning-based methods for the 
automated detection of flow signals in OCT imaging, focusing on their 
application to the retinas of healthy cynomolgus monkeys.

Methods: From 193 healthy cynomolgus monkeys, an unprecedented 
number of 382 coregistered OCT and OCTA stack pairs were obtained for 
training, evaluation, and separate testing. An adapted U-Net architecture 
with an additional max-pooling layer to account for the large spatial input 
format was used. The net was trained with an Adam Optimizer and a Mean 
Squared Error loss function until the loss on the validation set reached 
a plateau (21,000 steps).The following metrics were calculated for each 
OCT and OCTA B-scan pair in the test set: mean-squared error (MSE), 
structural similarity index (SSI), and peak signal to noise ratio (PSNR).

Results: The developed deep learning method allowed to automatically 
detect the flow signal within the native structural OCT scans in animals. 
The average MSE over all test set image pairs was 0.00370368 with a 
standard deviation of 0.000825. Average SSI was 0.88339 with a standard 
deviation of 0.02167 and the average PSNR was 24.43170 dB with a 
standard deviation of 1.08154 dB. No large difference in the distribution 
of MSE, SSI, and PSNR were found among eyes and among individual 
cynomolgus monkeys.

Conclusion: Deep learning can reliably detect retinal flow signals from 
standard OCT scans in healthy cynomolgus monkeys, offering a viable 
alternative to OCTA imaging and enabling broader access to vascular 
analysis in preclinical research.

Keywords: Deep learning; Optical coherence tomography angiography; 
Cynomolgus monkeys

Introduction
For decades, the retinal and choroidal vasculatures have mainly been 

displayed using invasive imaging methods such as fluorescein angiography 
[1] and indocyanine-green angiography [2]. In recent years, these techniques 
have been complemented by optical coherence tomography (OCT) imaging, 
which allows for imaging close to histological resolutions [3-5]. Although 
vascular signals can be detected in structural OCT images [6], the technical 
enhancement to OCT angiography (OCTA)[7, 8] has for a long time been 
more of a research tool, providing new insights into diabetic retinopathy[9], 



Maloca PM, et al., J Biotechnol Biomed 2025
DOI:10.26502/jbb.2642-91280198

Citation:	Peter M Maloca, Philippe Valmaggia, Nadja Inglin, Beat Hörmann, Sylvie Wise, Philipp Müller, Pascal W Hasler, Nicolas Feltgen, Nora 
Denk. Inference of Angiography Flow Information from Structural Optical Coherence Tomography Images in Cynomolgus Monkeys 
Using Deep Learning. Journal of Biotechnology and Biomedicine. 8 (2025): 312-321.

Volume 8 • Issue 3 313 

age-related macular degeneration [10], or uveitis [11]. 
These OCTA data are created by postprocessing OCT data 
acquired at the same location and highlighting regions with 
different signal reflectance over a short period. The reasons 
for the delayed translation from research to clinical practice 
were the difficulty in interpreting [12] findings due to the 
occurrence of image artifacts [13] and the relatively long 
acquisition times due to the repetitive measurement of OCT 
signals at identical anatomical positions [14]. In addition, 
the widespread adoption of OCTA is limited because it 
demands both hardware and software upgrades to existing 
OCT devices or is only possible with novel and relatively 
expensive CTA equipment. Convolutional neural networks 
(CNN) have positively transformed ophthalmology in terms 
of automated image segmentation [15], disease classification 
[16], and even the assessment of the need for referral to a 
clinic [17]. In most cases, supervised deep learning [17, 18] 
is used, which relies on a high degree of ground-truth labels, 
which are mostly generated by human experts [19] through 
a laborious, time-intensive, and consequently expensive 
procedure [19, 20]. In addition, the learning ability of the 
deep learning algorithm may be limited and more complex 
owing to the naturally occurring differences in judgment 
between human experts [20] and human-derived errors.

OCT images are always simultaneously generated with 
OCTA data. As OCT and OCTA are indispensably linked 
[21] to each other, previous studies proposed [22, 23] not 
to use humans as “ground truth generators” for supervised 
deep learning but to involve machine learning [24, 25] as 
a connecting mechanism to automatically detect the flow 
signal in OCT scans. This recent approach not only reduces 
the burden on experts and facilitates the generation of 
more objective training data, but also enables researchers 
without direct access to high-end OCTA devices to apply 
the proposed deep learning technology, as it allows for 
ground truth generation through non-human annotation 
interactions, thereby minimizing human bias. Furthermore, 
it also enhances the speed of generating OCTA data and 
allows for the retrieval of retrospective structural OCT data 
recorded at a time when OCTA was not yet available and 
for the gain of new insights into vascular flow. Considering 
the widespread use of OCT imaging in contrast to the scarce 
OCTA application in animal models such as the cynomolgus 
monkey, we adjusted and tested the aforementioned method 
[22] for the first time in an extensive number of retinas of 
healthy cynomolgus monkeys, which are frequently used 
for preclinical research on ocular therapeutics such as drug 
development [26] or ocular gene therapy [27].

Materials and Methods
Animals, husbandry

The retrospective OCT data consisted of scans centered 

on the healthy fovea cynomolgus monkeys (Macaca 
fascicularis) of Asian or Mauritius origin. These data were 
obtained from routine examinations during pharmaceutical 
product development; therefore, no further procedures were 
performed on them. The monkey housing was kept at a 
constant temperature between 20°C and 26°C, a humidity 
between 20% and 70%, and a 12:12 h light–dark cycle. The 
monkeys were fed with a standard diet of pellets enriched 
with fresh fruits and vegetables. Clean and freely available 
tap water purified by reverse osmosis and UV irradiation was 
also provided. The animals were provided with appealing 
psychological and environmental enrichments. The animals 
were anesthetized with a mixture of ketamine 10 mg/kg and 
dexmedetomidine 25 μg/kg IM. Immediately prior to imaging, 
a single dose of midazolam 0.2 mg/kg IM was administered 
to maintain the eyes in a central position. Dilated pupils were 
obtained using topical tropicamide treatment.

OCT imaging
The OCT measurements were performed on a dilated 

pupil under anesthesia using the Spectralis HRA + OCT 
Heidelberg device (Heidelberg Engineering, Heidelberg, 
Germany), as previously reported[28]. Scans consisting of 
512 B- scans with 512 × 496 pixels each were performed 
over an en face area of 10°× 10°. The 3D scans corresponded 
to a volume of approximately 2.9 × 2.9 ×1.9 mm. Macula 
OCT scans from 193 healthy cynomolgus monkeys were 
included in this study. From four individuals, only one eye 
was available (Table 1). This resulted in 382 coregistered 
OCT and OCTA scan pairs (193 × 2 − 4).

Device generated OCTA ground truth
The deep learning algorithm developed in this study 

learned from ground truth that consisted of the coregistered 
OCT and OCTA scan pairs. No additional human ground 
truth annotation was required since each OCT/OCTA scan 
pair was automatically coregistered by the manufacturer’s 
software. The OCT and corresponding OCTA scans were 
then exported as raw data from OCT devices as sets of two-
dimensional (2D), 8-bit grayscale B-scans in the bitmap 
image data (BMP) format using the Spectralis proprietary 
built-in software.

Image preparation and preprocessing
The focus of this study was to infer OCTA data from raw 

OCT data. In the first step (Fig. 1) a previously developed 
and validated deep learning network [29] was used to extract 
retina (Figure 1b) from the original OCT structural B-scan. 
In the second step, from the original OCTA B-scan, masks 
were created to extract only the OCTA signal from the retina 
(Fig. 1d). The extracted OCT and its corresponding original 
OCTA image were then used as the expected image pair for 
the training of the deep learning algorithm.
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Ground-truth generation
The basic dataset was split randomly for deep learning 

with a 4:1:1 ratio (Table 1) to generate a training, validation, 
and test sets. Each OCT and OCTA volume consisted of 512 
B-scans.

All B-scans were resized to 512-by-512 pixels to be used 
as inputs for the deep learning algorithm. No normalization or 
image augmentation was applied to the input images.

Training Set Validation Set Test Set

Number of individuals 129 32 32

Number of eyes 254 64 64

Number of OCT-
OCTA B-scan pairs 130,048 32,768 32,768

Table 1: Ground-truth distribution for deep learning.

Figure 2: Visualization of the U-Net architecture used in this study.

Figure. 1. Automatic retina OCT and OCTA segmentation. 
An original OCT B-scan (a) was processed using a validated 
deep learning algorithm to compartmentalize the retina (b, 
highlighted in blue), which was then extracted from the remaining 
tissue (c). The corresponding original OCTA scan from the same 
position, generated by the manufacturer's OCTA software (d), 
was accordingly delineated at the border between retinal pigment 
epithelium and choriocapillaris (e). Then, all pixels below a virtual 
line located 20 pixels above the inner edge of the choriocapillaris-
retinal pigment epithelium complex (e, arrow) were masked to 
remove hyperreflective regions not belonging to the retinal OCTA 
signal. This procedure resulted in a structural retinal B-scan (c) 
and its corresponding OCTA B-scan (f), which were subsequently 
utilized for training and testing of the deep learning algorithm.

Deep learning training and validation
An adapted and validated U-Net architecture[19] with 

an additional max- pooling layer to account for the large 
spatial input format was used (Fig. 2). The neural network 
architecture applied in this study was a convolutional 
neural network (CNN) whose architecture is related to 
the architecture of a CNN used in a previous study [30]. 
In contrast to that in the previous study, the output of 
the last convolutional layer of the current CNN was one 
channel instead of four, representing the pixel intensities 
of an OCTA B-scan on a continuous scale in the interval 
[0, 1]. The CNN was trained with an Adam optimizer 
and a mean squared error (MSE) loss function until the 
loss calculated over the validation set reached a plateau 
(21,000 steps). A batch size of 8 was used, and training 
was performed on a NVIDIA GeForce GTX TITAN X 
GPU. The neural network was trained in Python 3.5 using 
TensorFlow v1.14. Hyperparameters were tuned and set 
as described in the comparable study [19]. Therefore, 
hyperparameters were initially selected based on domain 
knowledge and subsequently fine-tuned to achieve optimal 
model accuracy. The learning rate, set at 6e-5, was 
chosen based on initial exploratory runs to ensure stable 
convergence. Additionally, experiments were conducted 
to assess the impact of different batch sizes, settling on 
a batch size of 8 to balance computational efficiency and 
model performance. Early stopping based on validation loss 
was employed to determine the optimal number of training 
iterations, preventing overfitting.
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Statistical analysis, evaluation metrics, and 
visualizations

The following metrics were calculated for each OCT and 
OCTA B-scan pair in the test set: mean squared error (MSE), 
structural similarity index (SSI), and peak signal-to-noise 
ratio (PSNR). The MSE was aggregated with respect to each 
eye and its distribution was visualized with box plots. The 
data in the box plots were sorted with respect to the mean 
MSE per eye. The box plots were drawn using Matplotlib 
v3.3.4 in Python 3.8.

Qualitative evaluation
As the 2D OCTA data used in this study were relatively 

difficult to evaluate in a cross-sectional display, the data 
were computed in an en face data representation and in the 
3D realm as previously reported [30, 31]. For this purpose, 
volume-rendered 3D reconstructions as described earlier 

[31, 32] of the retinal vessels were depicted in Figs. 6 and 7 
using the AMIRA software (version 2020.1; Thermo Fisher 
Scientific, Waltham, US).

Results
Quantitative evaluation

Table 2 provides a summary of the analysis results. The 
mean (standard deviation [SD]) squared error (MSE) of all 
normalized test set image pairs was 0.0037 (0.0008). The 
mean (SD) structural similarity index (SSI) was 0.8834 
(0.0217), and the mean (SD) peak signal-to-noise ratio 
(PSNR) was 24.4317 (1.0815).

No substantial differences in the distributions of MSE, 
SSI, and PSNR were found among the eyes. The distribution 
of the observed MSE values was visualized as box plots for 
the eyes (Figure 3) and individual animals (Figure 4).

Mean Squared 
Error

Minimum 
Squared Error

Maximum Squared 
Error

Standard Deviation 
Squared Error

Structural 
Similarity Index

Peak Signal-to-Noise 
Ratio in dB

count 32768 32768 32768 32768 32768 32768

mean 0.0037 0 0.9944 0.0404 0.8834 24.4317

std 0.0008 0 0.0110 0.0055 0.0217 1.0815

min 0.0006 0 0.5320 0.0085 0.7315 0.1943

25% 0.0031 0 0.9922 0.0376 0.8744 23.6606

50% 0.0038 0 1 0.0409 0.8867 24.2501

75% 0.0043 0 1 0.0440 0.8973 25.0371

max 0.0089 0 1 0.0618 0.9290 32.0591

Table 2: Summary of deep learning performance.

Figure 3: Boxplots of the mean squared error (MSE) per eye in the test set.



Maloca PM, et al., J Biotechnol Biomed 2025
DOI:10.26502/jbb.2642-91280198

Citation:	Peter M Maloca, Philippe Valmaggia, Nadja Inglin, Beat Hörmann, Sylvie Wise, Philipp Müller, Pascal W Hasler, Nicolas Feltgen, Nora 
Denk. Inference of Angiography Flow Information from Structural Optical Coherence Tomography Images in Cynomolgus Monkeys 
Using Deep Learning. Journal of Biotechnology and Biomedicine. 8 (2025): 312-321.

Volume 8 • Issue 3 316 

Figure 4: Boxplots of the mean squared error (MSE) per individual animal in the test set.

Figure. 5: Visualization of inferred OCTA deep learning based on data from the test set. In the original crosse-sectional OCTA B-scans 
from three eyes (a–c), the OCTA signals are recognizable as a cluster of whitish dots with a narrowing in the area of the fovea (in the center 
of the image). The bottom row contains the respective predictions of the neural network of the corresponding location (e–g). Furthermore, 
an original en face projection from individual in a)  of the OCTA signal was depicted from (d) and its corresponding deep learning en face 
predicition (h).

Qualitative evaluation

The predictions by the deep learning algorithm on the test 
set showed a clear delineation of vessels (Figure. 5).

In the original crosse-sectional OCTA B-scans from three 
eyes (a–c), the OCTA signals are recognizable as a cluster of 
whitish dots with a narrowing in the area of the fovea (in the 
center of the image). The bottom row contains the respective 
predictions of the neural network of the corresponding 

location (e–g). Furthermore, an original en face projection 
from individual in a) of the OCTA signal was depicted from 
(d) and its corresponding deep learning en face predicition 
(h).

The three-dimensional (3D) reconstructions derived from 
the original and predicted OCTA stacks effectively illustrate 
the detailed architecture of the retinal vascular system. 
(Figures 6 and 7).
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Discussion
OCTA allows for the in vivo depiction of the retinal 

microvasculature [21]. By default, an appropriate OCTA 
instrument [26] and sophisticated OCTA algorithms must 
be used to generate OCTA data [21]. However, in a recent 
study [22], deep learning was implemented to circumvent the 
former existing technical OCTA constraints and allowed for 
the extraction of the retinal vasculature from retrospective 
OCT data in humans. A central strength of this study is its 
capability to generate OCTA-like visualizations directly 
from standard structural OCT data, effectively functioning 
as an OCT-to-OCTA translation model. This approach is 
particularly valuable as it broadens access to vascular imaging 
by eliminating the need for specialized OCTA hardware, 
thereby enabling wider adoption of advanced retinal vascular 
analysis in both clinical and research settings.

Motivated by this advantage, we investigated the 
feasibility of applying this deep learning–based OCTA 
synthesis in cynomolgus monkey retinas. This species is of 
particular relevance in ophthalmic research due to its close 
genetic and anatomical resemblance to humans, making it 
a widely accepted preclinical model for drug development. 
However, despite its importance, only limited OCTA data 

were made available for cynomolgus monkeys. In this context, 
our study is the first to demonstrate in the maculae of healthy 
cynomolgus monkeys that retinal perfusion can be inferred 
digitally from structural OCT using deep learning, thereby 
confirming earlier findings. Notably, when comparing our 
results with those of Lee et al. [22], we observed comparable 
performance in terms of mean squared error (MSE), further 
supporting the robustness of this method in non-human 
primates.

Therefore, we were interested in evaluating the feasibility 
of such OCTA deep learning technology in cynomolgus 
monkey retinas. This is all the more important because the 
cynomolgus monkey [26, 33] has become a commonly used 
preclinical species for ophthalmic drug development owing 
to its genetic and anatomical similarities to humans [4, 34] 
and only a few OCTA reports exist in this species [35, 36].

For the first time in the maculae of healthy cynomolgus 
monkeys, the present study confirms earlier results [22, 37] 
that indicated that the retinal blood flow can be displayed 
with a digital interpretation from OCT images by deep 
learning algorithms. When comparing the results with those 
of Lee et al. [22], we found comparable values for deep 
learning performance in terms of MSE. Compared with the 
previous OCTA inference studies [22, 23], this study applied 
a simplistic approach by using only one deep learning model 
with a larger input size and no dropout layers. It may well 
be that another neural network could have initiated and 
performed better. A minor deviation could be due to the 
amount of noise in the OCTA scans, which appeared less 
noisy and more homogeneous in an earlier work [22] and 
therefore influenced the measured values. This could be due 
to different types of OCT scanners used. In addition, the 
region of interest in the previous work was focused on the 
fovea as opposed to a region including the optic disc with 
larger vessels, which might be easier to detect for the network. 
However, the 3D reconstruction and single OCTA B-scan in 
the present study showed qualities comparable with those 
of the original OCTA data. Therefore, the OCTA inference 
methodology used appeared promising and applicable to 
animal models.

Despite being useful for the training and validation of 
the neural network, MSE does not sufficiently represent the 
quality of predictions. In addition, cynomolgus monkeys from 
two origins were also integrated [28], which in turn caused 
heterogeneity in the initial data. For future research, other 
scores and measures might improve the quality of predicted 
OCTA scans.

A limitation of the study is that only healthy eyes were 
enrolled, excluding segmentation results from diseased 
conditions. This limitation may limit the generalizability 
of the results to populations with ocular pathology, where 
segmentation patterns and results may be significantly 

Figure  6: Visualization of volume-rendered OCTA images of 
the fovea of an original OCTA stack (a) and a deep learning-
inferred OCTA stack (b) of the test set in the anterior view. 
Larger inflowing and draining retinal vessels are the most visible.

 
Figure 7: Visualization of volume-rendered OCTA images of 
the fovea of an original OCTA stack (a) and a predicted OCTA 
stack (b) from the test set in the posterior view. The same data set 
is used in Fig. 5d, h. The massive increased capillarity of the deep 
retinal vascular complex is thus well visualized.
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different. As Choroid and RPE was cut off, this might not be 
of great influence. Nevertheless, the deep learning algorithm 
may not predict as well if retinal or choroidal pathologies are 
present. This must be investigated in future studies.

Another limitation is that we used a single U-Net 
architecture and did not compare it with other algorithms 
such as generative adversarial networks (GANs) or Denoising 
Diffusion Probabilistic Models (DDPMs) [38, 39]. While the 
U-Net architecture employed in this study has proven effective 
for the OCT to OCTA conversion task, recent advancements 
in generative models such as Generative Adversarial 
Networks (GANs) and Denoising Diffusion Probabilistic 
Models (DDPMs) offer exciting future avenues.GANs, 
known for their ability to produce high-quality synthetic 
images by training a generator and discriminator adversarially 
[40], have shown promise in improving image quality and 
could enhance OCTA image synthesis by capturing complex 
vascular structures [41]. Similarly, DDPMs, which iteratively 
denoise data to model complex distributions, demonstrate 
robust capabilities in generating high-fidelity images, as 
seen in recent medical imaging applications [42], [43], [44], 
[45], [46], [47]. These models may be suitable to capture the 
subtle details of vascular networks within OCTA scans more 
accurately and should be included in upcoming studies to 
further improve the results.

The decision to choose a U-shaped model was based on its 
good performance in past studies and the feasibility of OCTA 
data synthesis was proven in this study [39, 48]. The use of a 
2D U-Net, which processes B-scans independently, may limit 
the model’s ability to capture full 3D spatial context.

However, the model performs well and offers a strong 
foundation for future improvements—especially since the 
shared weights allow for continued development by the 
community. There is no comparison with existing models 
on similar tasks using either human or animal data, making 
it difficult to assess how competitively the proposed method 
performs. However, this gap can be addressed in future 
studies.

In addition, future studies will need to demonstrate 
whether the developed model is compatible with images 
acquired by other OCT systems. Another limitation was that 
no data on peripheral OCTA were included in the current  
analysis. Nevertheless, good performance of the model used 
for data near the fovea, the location of sharpest vision, was 
found.

Conclusion
A significant contribution of this study is the development 

of a deep learning model trained on an extensive dataset of 
cynomolgus monkey retinal images. Comparable to human 
data, this model reliably detects retinal flow signals from 
standard OCT scans in healthy monkeys, offering a practical 

alternative to OCTA and expanding access to vascular 
analysis in preclinical research. A major strength of this 
study is its capacity to synthesize OCTA-like representations 
directly from conventional structural OCT data, thereby 
functioning as a translation framework from structural OCT 
to OCTA imaging.
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