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Abstract 

Exercise plays a key role for bone remodeling throughout 

our lives. Within bone cells, osteocytes have the ability to 

translate mechanical stimuli to bone anabolic cellular 

signaling. A variety of protocols have been used to apply 

both direct and indirect stimuli to bone. Herein, we 

compared running and free fall impact exercise protocols 

and their effects on markers of osteogenesis and bone 

strength. 

 

Methods: 50 female Wistar rats (6 weeks-old) were 

randomly assigned to either a sedentary group (S) or one of 

4 exercise groups: treadmill training (T) and 3 Free-fall (F) 

groups (F30, F45, F60 respectively fall of 30, 45 and 60cm; 

5 days/week, 8 weeks). We evaluated BMD and BMC (by 

DXA), bone microarchitecture of the left femur and tibia 

(by µCT), mechanical strength of the left femur (three-point 

bending test), and bone marker levels (by ELISA). 
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Results: After 8 weeks of physical exercise (EXE), whole 

body BMD and BMC were both significantly higher from 

baseline in all EXE groups, with no difference between the 

4 EXE groups. Left femur and tibia BMC and BMD 

significantly increased in the F45 and F60 groups compared 

to the S and T groups. BV/TV, Tb.Th and Tb.N were 

significantly higher in F45 and F60 compared to all other 

groups. Tb.N was significantly higher in F60 compared to 

F45. Yield point stress and Young modulus were 

significantly higher for F45 compared to S and T groups. 

Bone alkaline phosphatase and osteocalcin levels were 

significantly higher in the F45 group compared to the 

remaining groups. NTX level was significantly decreased in 

the F45 compared to the S and T groups. 

 

Conclusion: Both treadmill and impact training protocols 

produced a benefit on BMD and BMC. Interestingly, impact 

mechanical stress was a better stimulus for bone trabecular 

structure than treadmill running. Biochemical and 

biomechanical bone parameters were more sensitive to 

moderate impact exercise (F45) while high impact exercise 

(F60) promotes further trabecular number. 

 

Keywords: Treadmill and free-fall impact exercise, 

female rats, microarchitecture, bending test. 

 

1. Introduction 

It is well recognized that bone formation and Bone Mineral 

Density (BMD) are both enhanced by physical exercise 

(EXE) [1-4]. EXE is recommended both to improve bone 

accretion in young women and to decrease bone loss in the 

elderly [5]. It is well accepted that EXE increases 

mechanical stresses within bone, which in turn enhances 

osteoblastic activation [6] and decreases osteoclast 

resorption [7]. Mechanical stresses are primarily detected in 

bone by the osteocytes [6,8,9], referred to as the controller 

of bone remodeling [10]. Osteocytes modulate bone 

remodeling by converting mechanical stress into biological 

messengers, and directing the recruitment and 

differentiation of osteoclasts and osteoblasts [11]. Several 

studies have demonstrated that these effects are modulated 

through the Wnt/β-Catenin pathway through the regulation 

of sclerostin expression, an osteocyte product which plays a 

key role as a circulating inhibition of the Wnt-signaling 

pathways [12]. Mechanical stress resulting from EXE 

reduces sclerostin expression and thus promotes bone 

formation [13,14]. In addition, mechanical signals 

generated by EXE increase osteocalcin expression, and 

bone alkaline phosphatase (ALP), two bone formation 

markers, while decreasing N-terminal telopeptide (NTX), a 

bone resorption marker [9,15]. Similarly, EXE produces 

changes in circulating levels of growth hormone (GH) [16] 

and insulin-like growth factor (IGF-1), which together have 

an anabolic effect on both bone and skeletal muscle [17]. 

The optimal form and dose of exercise however remain 

unknown at this point in time. 

 

Several forms of EXE have been observed to increase bone 

mass including high impact exercise (i.e jumping) and 

lower impact activities such as running 17-20. Treadmill 

exercise is often used [18-21] as a strategy to enhance bone 

remodeling given that the dose of exercise can be 

accurately estimated. Running has been shown to both 

increase bone formation and decrease bone resorption in 

weight bearing sites [20]. BMD and trabecular bone 

microarchitecture improve in growing rats subjected to 

running [19,20,22]. Interestingly, none of these studies 

detected changes in bone strength. Impact exercise 

constitutes an alternative model recognized to improve 
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bone mass, BMD and trabecular microarchitecture (BV/TV, 

trabecular thickness and porosity) [23,24]. Jump exercise is 

known to generate high mechanical stress and significant 

anabolic effects [25]. Biomechanical bone properties are 

related to the amount of strain applied [26] and the loading 

rate [27]. It has also been shown that impact exercise 

significantly enhance femoral breaking load and cross-

sectional moment of inertia [28]. Free-fall impacts are 

similarly an effective stimulus for enhancing bone 

formation through an increase in ultimate breaking force in 

the shaft of the forelimbs but not the hindlimbs [29]. 

Interestingly, only a few differences in BMD and Cross 

Sectional Area (CSA) have been observed when comparing 

drops from different heights [29]. 

 

 Accordingly, the purpose of the current study was to 

compare various forms of low and high impact exercise and 

their effects on a comprehensive evaluation of bone 

strength, morphology, and biochemistry. To achieve our 

goal, we compared treadmill running exercise (T) and 3 

free-fall impact (F) regimens from 30, 45 and 60cm in an 

effort to determine an optimal dose of exercise to influence 

bone heath status. 

 

2. Materials and Methods 

2.1.  Animals and in vivo experimental design 

All experiments were approved by the animal protection 

committee of the University of Orleans (CEEA VdL: 2011-

11-2). Fifty female Wistar rats, aged 6 weeks-old, were 

purchased from Janvier Animal Production (Janvier Animal 

Production, Le Genest-St-Isle, France). After one week of 

acclimation, animals were randomly assigned to one of 5 

groups: control / sedentary rats (S), impact exercises from a 

height of 30cm (F30), 45cm (F45) or 60cm (F60), and a 

treadmill group (T). DXA analysis was conducted at time 0 

(W0) under anesthesia with ketamine-xylazine (80-

10mg/kg, intraperitoneally, Panpharma). At the end of the 

study, all animals were euthanized with an intraperitoneal 

injection of pentobarbital sodium chloride (0.1mL/100g of 

body weight, Ceva santé animal) [25]. Animals were 

maintained in observation for a few minutes following 

cardiac exsanguination. The blood was centrifuged and the 

serum was frozen at −80°C. Left femurs were dissected free 

of connective and fat tissues and stored at −20°C and +4°C 

respectively. 

 

2.2. Exercise protocols 

Treadmill running (T): This protocol corresponded to a 

previously established and adapted method [30] of running 

at 8m/min, 1h per day, 5 days/week for 8 weeks (Figure 1). 

Free fall impact rats performed impact exercises for 8 

weeks. During the acclimation period, rats were 

familiarized to the impact exercise protocol: initial height 

was 25cm, and this was gradually increased to 30cm, 45cm 

or 60cm. Rats were submitted to 10 drops per day at a 

frequency of 1 drop per 10sec, 5 days/week for 8 weeks 

from a height of 30cm (F30), 45cm (F45) or 60cm (F60) 

(Figure 1). As previously described, the rats were lifted 

horizontally for the drop thus causing them to land on all 

four feet [31]. 
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Figure 1: Densitometric characteristics and composition. A) Whole body BMC increases (difference to W0). B) Whole body 

BMD increases (difference to W0). C) Body composition: fat mass, lean mass and weight. The rats in O groups were 

ovariectomized. Rats in E groups were submitted to 10 impacts per day, 5 days a week during 8 weeks. Rats in Sr groups 

received 625 mg/kg/day of SrRan. The critical p-value were p=0.05: *, p<0.01: **, p<0.001: ***, NS: non significant and a: vs 

Sh, b: vs ShE, c: vs ShSr, d: vs ShESr, e: vs O, f: vs OE, g: vs OSr and h: vs OESr. 

 

2.3. Bone densitometry measurements (DXA) 

BMD, BMC and body composition were measured by DXA 

(Discovery, Hologic, Bedford, USA) using a specific small 

animal body composition mode [32]. Both measures were 

made once at week 0 (W0), week 4 (W4) and week 8 (W8) 

before sacrifice. The root-mean square coefficient of 

variation (CV) was 1.2% for WB BMD measurement. The 

root-mean square CV was determined from three repeated 

measures with repositioning 10 rats as previously described 

[33]. 
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2.4. Morphological and topological characteristics of 

the trabecular bone 

Trabecular microarchitecture of the distal metaphysis of the 

left femur was evaluated post-mortem using a µCT 

(Skyscan 1072, Skyscan, Belgium) as previously described 

[32-34]. Briefly, the X-ray source was set at 80kV and 

100µA with an isometric pixel size 15.49µm. 225 slices 

were selected for each sample and analyzed by NRecon and 

CTan softwares (Skyscan 1072, Skyscan, Belgium). The 

following parameters were measured: Bone Volume/Tissue 

Volume BV/TV (%), Trabecular Number Tb.N (1/mm), and 

Trabecular Thickness Tb.Th (mm). 

 

2.5. Morphological characteristics of cortical bone 

Cortical bone of all left femurs was analyzed with the same 

acquisition characteristics as trabecular bone. Cortical 

porosity Ct.Po (%) (BV/TV equivalent) and pore number 

Po.N (1/mm) (Tb/N equivalent) were measured as 

previously described [35]. 

 

2.6. Bone mechanical testing 

Mechanical properties of all left femurs were assessed by a 

three-point bending test with a universal testing machine 

(Instron 3343, Instron, Australia). Femurs were secured on 

the two lower supports separated by a distance of 20mm. At 

a loading rate of 1mm/min the following mechanical 

parameters were recorded: ultimate strength (N), stiffness 

(N/mm), yield point stress (N/mm²), moment of inertia 

(mm4) and Young’s modulus (MPa). This protocol was 

adapted from Maurel et al. [32]. 

 

2.7. Biochemical analysis 

Bone turnover markers were analyzed at W0 and W8 (end 

of the protocol). Osteocalcin and bone alkaline phosphatase 

(ALP) were evaluated as markers of bone formation with 

N-terminal telopeptide of type I collagen (NTx) for bone 

resorption. ELISA kits were obtained from EIAab (China) 

and used according to the manufacturer’s instructions. 

 

2.8. Statistical analysis 

All numerical variables were expressed as mean ± SEM. A 

p-value of p≤0.05 was chosen for significance. Statistical 

analysis was performed using GraphPad Prism software 

(GraphPad Prism, USA). Physical exercise effects were 

analyzed using a nonparametric Mann-Whitney test to 

compare groups. The effects of time were analyzed with a 

1-way repeated measures ANOVA. 

 

3. Results 

3.1. BMC and BMD (Table 1, Figure 2) 

Whole body BMC and BMD (difference to W0) increased 

significantly in all groups at W4 and W8. 
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Figure 2: Microarchitecture of the trabecular and cortical bone at the left femurs of Wistar female rats. The rats in O groups 

were ovariectomized. Rats in E groups were submitted to 10 impacts per day, 5 days a week during 8 weeks. Rats in Sr groups 

received 625 mg/kg/day of SrRan. The critical p-value were p=0.05: *, p<0.01: **, p<0.001: ***, NS: non significant and a: vs 

Sh, b: vs ShE, c: vs ShSr, d: vs ShESr, e: vs O, f: vs OE, g: vs OSr and h: vs OESr. 
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3.2. Body weight, lean and fat mass (Table 1) 

Weight decreased significantly only in the F30 compared to 

the S group (p = 0.050). Fat mass decreased significantly in 

all EXE groups compared to sedentary rats. Note that no 

differences were observed for lean body mass. 

 

 

Table 1: Microarchitecture of the trabecular bone on vertebras of Wistar female rats. The rats in O groups were 

ovariectomized. Rats in E groups were submitted to 10 impacts per day, 5 days a week during 8 weeks. Rats in Sr groups 

received 625 mg/kg/day of SrRan. The critical p-value were p=0.05: *, p<0.01: **, p<0.001: ***, NS: non significant and a: vs 

Sh, b: vs ShE, c: vs ShSr, d: vs ShESr, e: vs O, f: vs OE, g: vs OSr and h: vs OESr. 

 

3.3. Bone microarchitecture of the left femur (Figure 3) 

BV/TV and Tb.Th increased significantly in the F45 and 

F60 groups compared to S, F30 and T. Tb.N increased 

significantly in F45 and F60 compared to all other groups. 

Tb.N was also significantly higher in F60 compared to F45. 

No difference was observed between S, F30 and T. Tb.Sp 

decreased significantly in F60 compared to all groups. 

There was no difference for Ct.Po, Ct.Th and Po.N. 
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Figure 3: Osteocyte analysis. A) Osteocyte apoptosis represented by % of cleaved caspase-3 immunostaining. B) Lipid cell 

immunostaining. The rats in O groups were ovariectomized. Rats in E groups were submitted to 10 impacts per day, 5 days a 

week during 8 weeks. Rats in Sr groups received 625 mg/kg/day of SrRan. The critical p-value were p=0.05: *, p<0.01: **, 

p<0.001: ***, NS: non significant and a: vs Sh, b: vs ShE, c: vs ShSr, d: vs ShESr, e: vs O, f: vs OE, g: vs OSr and h: vs OESr. 

 

3.4. Biomechanical analysis of the left femur (Table 2) 

Yield point stress increased significantly in F45 compared 

to S, F60 and T (p = 0.016, p = 0.024 and p = 0.005 

respectively). No difference was observed between S, F30, 

F60 and T. Young’s modulus significantly increased in F45 

compared to S and T (p = 0.071 and p = 0.041). No 

difference was observed between the other groups. Moment 

of inertia decreased significantly in F45 groups compared to 

S and T (p = 0.032 and p = 0.036 respectively). No 

difference was observed between the other groups. CSA 

decreased significantly in F30 compared to S and F60 (p = 

0.022 and p = 0.009 respectively). Concerning ultimate 

strength and stiffness, no difference was observed between 

all groups. 
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Sh ShE ShSr ShESr 
n = 12 n = 12 n = 12 n = 12 

134.193 ± 11.313 133.189 ± 10.635 149.433 ± 13.724 143.813 ± 17.755 
g **, c h * g h ***, c e f * a b *  h * 

3.944 ± 0.258 3.814 ± 0.282 4.524 ± 0.360 4.754 ± 0.312 
c d e f g h *** c d e f g h *** a b ***, h **, f g * a b ***, h * 

4.207 ± 0.459 3.996 ± 0.537 4.164 ± 0.570 4.733 ± 0.715 
f h ***, e g * f h ***, e g **, d * f h ***, e g * b f h * 

269.313 ± 34.599 279.731 ± 33.865 290.530 ± 33.398 258.325 ± 42.611 
f ** f ***, h * f ***, h **, e * NS 

221.410 ± 25.469 223.396 ± 18.969 252.840 ± 18.029 248.460 ± 20.232 
c **, d h * c h **, d * b **, a e f * a b e f * 

8994.939 ± 1790.523 9500.987 ± 1572.135 10308.371 ± 1080.342 9064.169 ± 1536.809 
f **, c h * f h ***, e ** f h ***, e ** f **, c e h * 

O OE OSr OESr 
n = 12 n = 12 n = 12 n = 10 

144.433 ± 11.040 145.163 ± 13.110 153.405 ± 11.234 157.778 ± 13.046 
b h * b h * b ***, a ** a b ***, d e f * 

4.556 ± 0.176 4.996 ± 0.0440 4.941 ± 0.368 5.274 ± 0.528 
a b ***, h **, f g * a b ***, c e * a b ***, c e * a b ***, c e **, d * 
4.818 ± 0.435 5.555 ± 0.751 4.872 ± 0.585 5.776 ± 0.857 

b **, a c f h * a b c ***, d e g * b **, a c f h * a b c ***, d e g * 
256.185 ± 20.202 232.273 ± 18.045 264.452 ± 21.385 243.035 ± 34.205 

c f * b c ***, a g **, e * f ** c **, b * 
223.143 ± 25.247 227.152 ± 25.271 241.152 ± 25.082 256.580 ± 25.469 

c d h * c d h * NS b **, a e f * 
7746.458 ± 667.965 7032.411 ± 1146.176 8446.560 ± 1135.202 7558.501 ± 949.115 

c ***, b **, d * b c ***, a d **, g * c **, f * b c ***, a d * 

L
e

ft
 F

e
m

u
r 

Ultimate strength 
(N) 

Cross-sectional area 
(mm²) 

Moment of inertia 
(mm 4 

) 
Yield point stress 

(N/mm²) 
Stiffness 

(N/mm) 
Young's Modulus 

(Mpa) 

L
e

ft
 F

e
m

u
r 

Ultimate strength 
(N) 

Cross-sectional area 
(mm²) 

Moment of inertia 
(mm 4 

) 
Yield point stress 

(N/mm²) 
Stiffness 

(N/mm) 
Young's Modulus 

(Mpa) 

 

Table 2: Biomechanical testing at the left femurs of Wistar female rats. The rats in O groups were ovariectomized. Rats in E 

groups were submitted to 10 impacts per day, 5 days a week during 8 weeks. Rats in Sr groups received 625 mg/kg/day of 

SrRan. The critical p-value were p=0.05: *, p<0.01: **, p<0.001: ***, NS: non significant and a: vs Sh, b: vs ShE, c: vs ShSr, 

d: vs ShESr, e: vs O, f: vs OE, g: vs OSr and h: vs OESr. 

 

3.5. Bone remodeling markers (Table 3) 

ALP and OCN levels increased significantly in F45 

compared to all groups. ALP level was lower in T 

compared to all groups. NTX level decreased significantly 

in F45 and F60 compared to S and T. 
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Table 3: Bone remodelling markers of Wistar female rats. Alkaline phosphatise (ALP) and ostéocalcine (OCN) were bone 

formation markers and NTX a bone resorption marker. The rats in O groups were ovariectomized. Rats in E groups were 

submitted to 10 impacts per day, 5 days a week during 8 weeks. Rats in Sr groups received 625 mg/kg/day of SrRan. The 

critical p-value were p=0.05: *, p<0.01: **, p<0.001: ***, NS: non significant and a: vs Sh, b: vs ShE, c: vs ShSr, d: vs ShESr, 

e: vs O, f: vs OE, g: vs OSr and h: vs OESr. 

 

4. Discussion 

Mechanical stress is an essential factor for maintaining 

overall bone health. During loading, bone receives diverse 

forms of mechanical stimuli resulting in complex cellular 

responses. These amount/forms of loading induce 

biological signals within osteocytes that result in various 

downstream signals and alteration/maintenance of bone 

homeostasis. In this study, the aim was to explore bone 

microstructure, biomechanical, and biomechanical 

responses to different forms and rates of physical exercise. 

We compared treadmill running to free fall impact and 

compared gradual increased heights of the latter (30, 45 and 

60cm). Our results demonstrated that free fall impact 

exercises were more effective for enhancing bone 

microarchitecture, formation and strength than treadmill 

exercise. Second, bone formation was affected by the 

amount of applied mechanical stress. Both the F45 and F60 

conditions produced greater advantages for bone 

remodeling compared to the F30 group. Biomechanical 

responses favored the F45 training condition. 

 

Following 8 weeks of training, all forms of exercise 

decreased fat mass compared to the sedentary condition. 

Surprisingly, there was no exercise effect on lean body 

mass. Weight decreased significantly only for the F30 

compared to the S condition (p = 0.050). This was likely 

due to a higher decrease in fat mass in this group compared 

to the other groups (-20%; Table 1).  
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Whole body BMC and BMD significantly increased at W8 

compared to W0 for all groups. These findings are 

consistent with several previous reports. It has been shown 

that rats completing a 4 week interval-training program had 

higher femur BMD values compared to non-exercised 

controls [30]. In a tail-suspension-induced osteopenia 

model, Ju et al. have investigated the differential effects of 

jump exercise (10 jumps/day, 5 days/week, 40 cm of height 

for 5 weeks) compared to continuous running exercise on 

femoral BMD. They demonstrated that both jumping and 

running exercises significantly improved total femoral 

BMD [36]. At W8, BMC and BMD were significantly 

higher in the F45 and 60 groups compared to the S and T 

groups. Similar results were noted for trabecular bone 

microarchitecture of the left femur (BV/TV, Tb.Th, and 

Tb.N). Ju et al. have shown that jump exercise (10 

jumps/day, 5 days/week for 5 weeks, 40 cm of height) 

contributed to an increase of Tb.Th and BV/TV (but not for 

Tb.N) in a tail suspension-induced osteopenia model. 

However, the continuous running exercises (25 m/min, 60 

min a day, 5 days/week, for 5 weeks) increased BV/TV and 

Tb.N (but not Tb.Th). Consequently, different effects of 

these two exercises on trabecular bone microarchitecture 

were observed. Tb.Th was increased with jump exercise 

and Tb.N alone with treadmill running exercise [36]. In our 

protocol, Tb.Th increased in all free fall exercises and no 

modification was observed in treadmill exercise group. Yet 

Tb.TN significantly increased only in F45 and F60 and not 

in F30. Moreover, a significant advantage was observed in 

Tb.TN in F60 compared to F45.  

 

It was also observed in the current study that yield point 

stress increased significantly in the F45 compared to the S, 

F60 and T groups while Young’s modulus increased in the 

F45 compared to the S and T conditions. Changes in the 

newly forming and pre-existing bone matrix probably 

related to type I collagen, which is known to affect the post-

yield behavior of bone [37]. The significant increase in 

femur bone composition (increase in BMD, BV/TV and 

Tb.Th) impacts bone network structure, which probably 

explain the changes in femur biomechanical properties. 

Biochemical changes might have also interfered with bone 

matrix modification results from impact exercises notably at 

the collagen fiber level and thus improves bone 

microstructure. Both ALP and osteocalcin levels were 

significantly higher for all free fall groups compared to the 

T group. Interestingly, ALP and osteocalcin concentration 

were significantly higher in F45 compared to all groups. 

The increase in ALP and osteocalcin reflects greater 

osteoblastic activity induced by acute exercise but the 

response is known to be dependent on exercise intensity and 

modality but also to the age and sex [38]. The higher values 

of the F45 group as compared to the other exercise groups 

might reflect that ground reaction forces induced by the free 

fall impact (45 cm) would be more efficacious than those 

produced in other exercise groups in terms of bone 

formation [39]. However, the precise physiological function 

of ALP and osteocalcin in osteogenesis is still unclear. 

Osteocalcin a bone formation marker and identified as a late 

marker of osteoblastic activity. However it has a short half-

life, accumulate in patients with severe renal failure and 

Vitamin K dependent [37]. Some studies highlight that 

osteocalcin is involved in bone mineralization rather than 

matrix and ALP is involved in osteoid formation and bone 

mineralization [40]. Regarding NTX, recognized as a bone 

resorption marker, they are generated from the amino 

terminus of the type 1 collagen by cleavage of N-terminal 

region by cathepsin K during the resorption phase of bone 

turnover. After 8 weeks of training NTX expression was 

significantly decreased in the F45 compared to the S and T 
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groups. Although we do not assess directly the RANKL 

expression in our experiment [41], as the NTX production is 

a reflect of the resorption process, our results suggest that 

the mechanical signals induced by the F45 exercise on 

osteoclast gave a better limitation of bone resorption that 

those produced in the other groups. Thus,it may be 

hypothesized that changes in biochemical (NTX, ALP and 

osteocalcin) are sensitive to the amount of mechanical 

loadings on both osteoblast and osteoaclast (treadmill and 

F30 exercises are too low and F60 to high). 

 

5. Conclusion 

Both treadmill and impact training yielded positive benefits 

on BMD and BMC. However, free-fall exercise produced 

greater effects than treadmill running for several parameters 

of bone health. Both biochemical and biomechanical bone 

parameters were sensitive to the level of applied mechanical 

stress suggesting that this variable may be important in 

exercise prescription programs. 
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