
J Bioinform Syst Biol 2021; 4 (4): 122-139 DOI: 10.26502/jbsb.5107025 

Journal of Bioinformatics and Systems Biology                             Vol. 4 No. 4 – December 2021 122 

Research Article 

Identification of Promising Antagonists of the Tumor 

Microenvironment Immunosuppressive Adenosine 2A Receptor 

through a Pharmacoinformatics- Based Approach 

Soumaya Rafii
1
, Yassine El Ghallab

2
, Amina Ghouzlani

1
, Sarah Kandoussi

1
, Abdallah 

Badou
1*

 

1
Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy of Casablanca, Hassan II 

University, Casablanca, Morocco 

2
Laboratory of Drugs Sciences, Biomedical Research and Biotechnology, Faculty of Medicine and Pharmacy, 

Hassan II University, Casablanca, Morocco 

*Corresponding author: Abdallah Badou, Cellular and Molecular Pathology Laboratory, Faculty of Medicine 

and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco. 

Received: 19 September 2021; Accepted: 06 October 2021; Published: 25 October 2021 

Citation:Soumaya Rafii, Yassine El Ghallab, Amina Ghouzlani, Sarah Kandoussi, Abdallah Badou. Identification 

of Promising Antagonists of the Tumor Microenvironment Immunosuppressive Adenosine 2A Receptor through a 

Pharmacoinformatics-based approach. Journal of Bioinformatics and Systems Biology 4 (2021): 122-139. 

Abstract 

Tumor cells can reverse the immune system's control 

through secretion or surface expression of several 

molecules such as immune checkpoint inhibitors. 

Blocking these immune checkpoint molecules could 

reactivate the immune system against cancer cells. In 

the present study, we focused on the use of natural 

substance-derived molecules and their ability to 

inhibit the adenosine 2A receptor (A2AR).  Eighty-

eight molecules were selected using the 

nutrigenomeDB and fingerprint method, then 

evaluated according to their absorption, distribution,  

metabolism, excretion, and toxicity (ADMET) 

properties using admetSAR tools. Furthermore, 

structural study of “molecule-A2AR” binding sites 

affinity and druggability were also assessed using 

autodock vina, discovery studio visualizer, and 

Cavityplus. Our results identified two molecules, 

suregadolideA and suremulolA, which exhibited 

suitable ADMET properties. These molecules bound 

to A2AR with high affinity and showed an important 

drug score. These molecules will now be tested 

experimentally on cells to check whether they could 

be used as potential A2AR antagonists, able to 
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overcome the immune system inhibition, leading to 

the control of tumor progression. 

Keywords: Immune checkpoint inhibitors; Natural 

molecules; A2AR expression; A2AR antagonists;

ADMET; Docking; Druggability. 

1. Introduction 

To protect the human body against various dangers, 

the immune system plays a crucial role in 

maintaining intrinsic homeostasis through various 

molecules such us immune checkpoint inibitors [1]. 

However, these can be cooped by the tumor to escape 

the immune system's surveillance. Therefore, the 

immune cells, which are ready to act on cancer cells, 

find themselves controlled by different molecular 

pathways, inhibiting their activation and their effector 

functions [1]. Among several checkpoint molecules, 

we consider that adenosine 2A receptor (A2AR) is 

known to be involved in tumor progression [2,3]. It 

could protect cancerous tissues from immune 

clearance via inhibiting T cell response in head and 

neck squamous cell carcinoma and melanoma [2,3]. 

Activation of A2AR on T cells prevented TCR-

mediated transcription factor AP-1 signaling and 

promoted T cell tolerance [4]. In patients with 

glioma, the A2AR/CD73/CD39 pathway was the 

most frequently expressed, followed by the PD-1 

pathway [5]. In sarcoma, the blockade of the A2AR 

on adoptively transferred T cells by synthetic A2AR 

antagonist led to higher levels of IFN-γ secretion by 

tumor-infiltrating CD8+ T cells [6]. In order to target 

immune checkpoint molecules, several studies 

assessed the ability of  therapeutic natural molecules. 

One objective is to avoid adverse side effects that can 

occur with antibody-based immunotherapy and, 

another major objective is to make this type of 

therapy more accessible to most patients [7,8]. Drug 

discovery takes place over a long time, taking around 

20 years. Even with the increase in their expenses in 

the last few years, the number of new drugs 

introduced into the market has been steadily 

decreasing. It is a consequence of preclinical and 

clinical safety issues [9]. In silico studies play an 

essential role in solving this problem. They are being 

used for an early-stage prediction of potential safety 

issues, increasing the drug discovery success rate, 

and reducing costs linked with developing a new 

drug [9]. In silico studies are primarily concerned 

with the properties of absorption, distribution, 

metabolism, elimination and toxicity (ADMET) of 

the drug in the body in which the drug will be 

administered. These characteristics define the stages 

in the fate of a drug in the body [10]. Also, molecular 

docking is an important tool in assessing a molecule's 

affinity with a receptor and determining the function 

of their interaction via binding sites [11]. In this 

study, we attempted to identify potential molecules 

capable of blocking the A2AR. To do this, we started 

with a screening of 88 molecules according to their 

ADMET characteristics. Subsequently, we assessed 

the affinity to the A2AR and evaluated the function 

and druggability upon binding site occupancy. Our 

results revealed two A2AR-targeting molecules with 

interesting features, suregadolideA and suremulolA. 

These two molecules showed no cellular toxicity and 

exhibited appropriate ADME properties. 

Furthermore, these two molecules bound to A2AR 

with high affinity and showed an important drug 

score. 

2. Methodology 

2.1 Searching for natural molecules, which could 

bind to and inhibit A2AR 

NutriGenomeDB exploratory and analytical platform 

was used for the choice of natural molecules that 
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could bind to and inhibit A2AR [12]. This platform 

defines specific genes by differential expression 

analysis of nutrigenomic experiments, performed on 

human cells available in the Gene Expression 

Omnibus (GEO). Each experiment is defined by a set 

of genes, representing approximately 10% of 

differentially expressed genes, sorted by differential 

expression levels. The modulation of expression 

levels of the A2AR gene by natural molecules were 

obtained in tabular form, showing ten independent 

experiments. The significance is evaluated according 

to adjusted.p-value(<0.05). The platform is available 

on http://nutrigenomedb.org/search.  Analogs of 

natural molecules were collected from articles and 

using natural product activity and species source 

database (NPASS) [13]. This search for similar 

structures was performed based on fingerprint 

methods (threshold≥0.70). Graphics were generated 

by GraphPad prism6. 

2.2 ADMET prediction of natural molecules 

The absorption, distribution, metabolism, and toxicity 

of natural molecules determine their pharmacokinetic 

profile. In this study, the prediction of ADMET 

characteristics was performed using the admetSAR 

prediction tool, based on SMILES structures of the 

molecules of interest [14]. Graphics were generated 

by GraphPad prism6. 

2.3Ligands and receptor preparation 

ChemOffice Professional version 

18.0.0.231(http://www.cambridgesoft.com/) was used 

to generate a better ligand conformation for docking 

in Protein Data Bank(PDB) file format, the 

drawed3D geometry structures of natural molecules 

and were optimized to minimum energy (Allinger 

1977). All rotatable bonds present in the ligands were 

treated as non-rotatable. The Gasteiger charges were 

added to the ligand atoms before docking (Gasteiger 

and Marsili 1980). The crystal structure of A2AR 

(PDB ID: 6gdg) was retrieved from RCSB Protein 

Data Bank (https://www.rcsb.org/). All water 

molecules and heteroatoms were removed from the 

crystal structures, and polar hydrogen atoms were 

added using Discovery Studio Visualizer 

v19.1.0.18287 (https://www.3ds.com/) Grid box 

preparation and docking. Docking experiments were 

conducted with selected natural molecules using 

A2AR as specific target. Grid box parameters were 

set by using the graphic user interface AutoDock 

Tools (ADT), version 1.5.6, of Molecular Graphics 

Laboratory(MGL) software packages of the Scripps 

Research Institute (Michel et al. 2011). The center 

grid box was set at x = 78.122, y = 89.064, and z = 

85.083 points. The number of points in x, y, and z 

dimensions was adjusted to 84, 120, and 76. The 

spacing value between grid points was 1Å. The 

molecular docking program AutoDockVina (version 

1.1.2) (Trott and Olson 2010) was used to perform 

the docking experiment. The Lamarkian Genetic 

Algorithm was used to explore the best conformation 

space for the ligand with a population size of 150 

individuals during the docking process. The 

maximum number of generations was set at 27000, 

and the evaluation one was set at 2500000. Other 

parameters were fixed as default. 

2.4Visualisation of binding sites 

Using the Discovery Studio Visualization software, 

we started by visualizing the results using the 

receptor and ligands in PDB.qt format. Then we 

evaluated the interactions between the A2AR and 

each ligand to calculate the length of the bonds. 

Finally, we labelled the interacting residues in order 

to determine the amino acid region on which the 

ligand would bind. 

https://www.3ds.com/
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2.5 Study of druggability of natural molecules-

A2AR binding sites  

Identification of possible binding sites in receptor 

structure enables us to analyze and classify natural 

molecules through their druggability. Cavityplus is a 

better tool for precise and robust protein cavity 

detection and functional analyses [15].  A2AR are 

uploaded in the PDB format and analyzed by 

CAVITY with default parameters to detect potential 

ligand-binding sites. The CAVITY module was 

performed with default parameters and ‘no Ligand’ 

mode. 

3. Results and Discussion 

3.1 EnglerinA negatively modulates the expression 

of the A2AR gene 

To explore the best natural substances able to 

downregulate the expression of A2AR, we used 

NutriGenomeDB platform, the first nutrigenomics 

data exploration platform that studies the impact of 

nutrients and bioactive food molecules on gene 

expression. The present study showed only the 

experiments where the A2AR gene appears in the 

gene subset defined by the analyzed nutrigenomic 

experiments. Nutrigenomic gene sets were defined by 

the top 10% differentially expressed genes sorted by 

their differential expression level (figure1). The 

results showed that A2AR was in the top 10% genes 

only in ten platform experiments. In addition, 

englerinA was the only compound, which showed a 

statistically significant decrease on A2AR gene 

expression (log2 fc = -1; p-value = 0.001 and 

adjusted p-value = 0.042). The analysis was carried 

out on renal cell carcinoma (A-498) after 20 hours of 

treatment with EnglerinA. In the same sense, we 

observed a decreasing trend of A2AR expression in 

human myotubes, 24 hours after treatment with 

eicosapentaenoic acid (log2 fc = -0.3) and in prostate 

cancer cells 24 hours after treatment with 6-acetoxy-

anopterine (6AA) (log2 fc=-0.3). Supplementary 

table 1 contains more details on each experiment. 
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Figure 1:EnglerinA negatively modulates the expression of the A2AR gene 
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3.2 EnglerinA toxicity prediction: 

Many molecules have favorable properties but still, lead to failure when administered to a living organism due to 

theirtoxicities. Using admetSAR tools based on a SMILES structure, we were able to identify a prediction of the 

toxicity of englerinA (table 1). Results of toxicity prediction revealed that englerinA could induce Human either-a-

go-go-related gene (hERG) inhibition. 

Natural molecules 
Ames 

mutagenesis 

Carcinoge

nicity 

Hepatoto

xicity 

hERG 

inhibition 

Genotox

icity 

Englerin A - - - + - 

(+)-Crassalactone D - - - - + 

Goniobutenolide A - - + - + 

Altholactone - + + - + 

Dihydrokawain - - - + - 

Goniodiol - - - - + 

6R,7R,8R-8-Methoxygoniodiol - - - - + 

Goniotriol - - + - + 

(+)-3-O-Acetylaltholactone - + + - + 

Cheliensisin A - + + - + 

Goniodiol 7-acetate - - + - + 

CHEMBL500869 - - + - + 

Cryptochinone A - + + - + 

Cryptochinone B - + + - + 

7-O-Methylcryptochinone A - + + - + 

7-O-Methylcryptochinone B - + + - + 

Avicennone A - - + - - 

Beilschmiedic Acid L - - - - - 

Beilschmiedic Acid K - - - - - 

(+)-Crassalactone A - - + - + 

(+)-Crassalactone B - + + - + 

(+)-Crassalactone C - - + - + 

Howiinol A - - + - + 

CHEMBL2252769 - - + - 

CHEMBL524317 - - + + + 

CHEMBL251681 - - - - - 

Icariside F2 + - - + - 

Beilschmiedic Acid I - - - - - 

Beilschmiedic Acid M - - - - - 

Plakortolide B - -      - + - 

Plakortolide D - - - + - 

CHEMBL2252772 - - - + - 

Pulveraven A - + + - + 

Pulveraven B - + + - + 

Dulcidiol - - - + - 

Phyllaemblic Acid Methy Ester - - - - - 

Beilschmiedic Acid N + - - + - 

CHEMBL2252776 - - + + + 

Longumoside B - - - - - 

CHEMBL2252772 - - - + - 

Visartiside D - - - - - 

CHEMBL2252774 + - - + - 

Eutigoside C - - - - - 

Reissantin D - - - + - 

Gleditschiaside A - - - - - 
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Luzonoid A + - - + - 

Luzonoid B + - - + - 

Luzonoid C + - - + - 

Luzonoid D + - - + - 

Jolkinol B - - + + - 

Cytochalasin Z9 - + + + + 

12-Demethylneocaesalpin F - - - + - 

CHEMBL2436431 - - - - - 

Eicosapentaenoicacid - - - - - 

Arachidonicacid - - - - - 

Doconexent - - - - - 

(6Z,9Z,12Z,15Z)-Hexadecatetraenoic Acid - - - + - 

Gamolenic Acid - - - + - 

Mead Acid - - - + - 

(E)-Hexadec-9-Enoic Acid - - - + - 

Octadeca-9,12,15-Trienoic Acid - - - - - 

(E)-Pentadec-10-En-6,8-Diynoic Acid - - - - - 

Dicranin - - - - - 

Linolenic Acid - - - - - 

Adrenicacid - - - - - 

Palmitoleic Acid - - - + - 

Docosapentaenoic Acid - - - - - 

Petroselenic Acid - - - + - 

Oleandrigenin - - - - - 

Coroglaucigenin - - - - - 

3-oxo-8beta,14beta-epoxy-ent-abieta-

11,13(15)-dien-16,12-olide 
- - - - - 

cardenolide - - - - - 

stearidonicacid - - - - - 

suregadolide A - - - - - 

suregadolide B - - - - - 

suremulol A - - - - - 

6α-Acetoxyanopterine - - + + + 

Strophanthidol - - - + - 

Albopilosin B - - - - - 

Xindongnin B - - - - - 

Periplogenin - - - + - 

Gitoxigenin - - - - - 

Digoxigenin - - - - - 

Acovenosigenin A - - - - - 

Sarmentogenin - - - - - 

Vitexilactone - - - + - 

Digitoxigenin - - - - - 

Deacetylvitexilactone - - - - - 

Table1: Toxicity profile of antagonists potential molecules. 
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3.3 Screening of analogs 

The predicted toxic effect of englerinA on the heart 

prompted us to look for other similar ligands which 

exhibit less toxicity on the body. For this reason, we 

analyzed other studies on the NPASS platform by 

fingerprint method to find similar natural structures 

and analogs of englerinA. To widen the field of 

candidate molecules, we have also analyzed similar 

eicosapentanoic acid molecules and 6-acetoxy-

anopterine, which also tended to decrease the A2AR 

gene (a total of 88 natural molecules was evaluated). 

Since absorption, distribution, metabolism, excretion, 

and toxicity (ADMET) characteristics are essential in 

developing and designing therapeutic substances, the 

violation of these characteristics causes several drugs 

failure and renders them ineffective despite their 

strong affinity to the target of interest. According to 

ADMET characteristics, we started the selection 

based on their toxicity profile which includes 

genotoxicity, mutagenicity, hepatotoxicity, side 

effects on the heart, and carcinogenicity (table 1).  

Natural molecules HIA Oral bioavailivility Caco2cells 

Beilschmiedic Acid L + - - 

Beilschmiedic Acid K + - - 

CHEMBL251681 + - - 

Beilschmiedic Acid I + - - 

Beilschmiedic Acid M + - - 

Phyllaemblic Acid Methy Ester + - - 

Longumoside B - - - 

Visartiside D - - - 

Eutigoside C + - - 

Gleditschiaside A + - - 

CHEMBL2436431 - - - 

Eicosapentaenoicacid + + - 

Arachidonicacid + + + 

Doconexent + + - 

Octadeca-9,12,15-Trienoic Acid + - + 

(E)-Pentadec-10-En-6,8-Diynoic Acid + - + 

Dicranin + + - 

Linolenic Acid + - + 

adrenicacid + - - 

Docosapentaenoic Acid + - - 

Oleandrigenin + + - 

Coroglaucegenin + + - 

3-oxo-8beta,14beta-epoxy-ent-abieta-11,13(15)-dien-16,12-olide + + + 

cardinolide + + + 

stearidonicacid + + - 

suregadolide A + + + 

suregadolide B + + + 

suremulol A + + + 

Albopilosin B + - - 

Xindongnin B + - - 

Gitoxigenin + + - 

Digoxigenin + - - 

Acovenosigenin A + - - 

Sarmentogenin + + - 

Digitoxigenin + + + 

Deacetylvitexilactone + - + 

*HIA: Human intestinal absorption. 

Table 2: Absorption prediction of selected natural molecules 
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Our results showed that among the 88 analyzed 

molecules, only 36 were not toxic. The 36 selected 

molecules were then evaluated according to their 

intestinal and caco2 cell absorption capacity and their 

oral bioavailability (table2). However, we were able 

to select only eight substances capable of being 

absorbed by the intestine and coco2 cells and were 

therefore orally bioavailable. The latest sort focuses 

on the capacity of distribution and metabolism of 

thesetop molecules. Distribution was assessed by the 

ability to cross the blood-brain barrier, and to 

eventually impact P-glycoprotein (PGP) and plasma 

protein binding (PPB) levels (table 3). Only 

substances with the capacity to cross the BBB and 

were neither substrates noinhibitors of PGP and 

having a PPB rate <0.9 were retained. Results 

showed that onlyarachidonic acid, cardenolide,  

suregadolideA, suregadolideB, and suremulolA, 

showed a good absorption rate. Arachidonic acid, 

cardenolide, suregadolideA, suregadolideB and 

suremulolA, exhibited high probabilities of intestinal 

absorption, anability to cross the BBB (greater than 

90%), an absorption by caco-2 cells and a suitable 

oral bioavailability (greater than 51%) (figure2). In 

order to evaluate the metabolism of these five 

molecules, we analyzed two parameters: substrates 

and inhibitors of CYP enzymes (table3). Our results 

demonstrated that suremulolA is a substrate for two 

cytochromes (CYP) enzymes, CYP3A4 and 

CYP2C9. However, the other four substances are 

substrates for only one CYP enzyme. Otherwise, 

suremulolA does not induce CYP inhibition, unlike 

arachidonic acid and suregadolideB which induce 

CYP1A2 inhibition. 

Distribution 
Metabolism and Excretion 

BBB 
Pgp 

(S) 

Pgp 

(I) 
PPB 

CYP3

A4 (S) 

CYP2

C9 (S) 

CYP2

D6 (S) 

CYP2

C19 (I) 

CYP2

D6 (I) 

CYP 

IA2 (I) 

UGT 

Catelyzed 

Arachidonic acid + - - 0.843 - + - - - + - 

(5Z,9Z)-14-

Methylpentadeca

-5,9-Dienoic 

Acid 

+ - - 1.028 - + - - - + - 

3-oxo-

8beta,14beta-

epoxy-ent-abieta-

11,13(15)-dien-

16,12-olide 

+ - - 0.958 + - - - - - - 

cardinolide + - - 0.898 + - - - - - - 

suregadolide A + - - 0.702 + - - - - - + 

suregadolide B + - - 0.871 + - - - - + - 

suremulol A + - - 0.632 + + - - - - + 

Digitoxigenin - + - 1.181 + - - - - - + 

* BBB: Blood- brain barrier; Pgp: p-glycoprotein; (s): Substrate; (I): Inhibitor; PPB: Plasma protein binding. 

Table 3: Distribution and metabolism  prediction of selected molecules 
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Figure 2:Probabilities of absorption and distribution of natural molecules. 

3.4 Assessment of the affinity of the sorted 

molecules for A2AR 

To assess the affinity of arachidonic acid, 

cardenolide, suregadolideA, suregadolideB and 

suremulolA for the A2AR. AutoDock Vina software 

has been used for this purpose. Affinity for the 

protein was estimated through vina score, which is 

also known as docking energies (Kcal/mol). Caffeine 

has been reported to show potent effects on the 

inhibition of A2AR (table 4), with an energy score 

ranging from -7.7 to -9.9 Kcal/mol. Furthermore, the 

classification of molecules with the highest energy 

score to the lowest was described, arachidonic acid 

with -7.7 Kcal / mol, cardenolide with -8.3Kcal / mol, 

suregadolideB with -9.2 Kcal / mol, suremulolA with 

- 9.8 Kcal / mol and suregaolideA with -9.9 Kcal / 

mol. These molecules showed an energy score 

inferior to that of the control, caffein (-6.7 Kcal / 

mol), indicating high affinity to A2AR. 

Natural molecules Binding Energy (Kcal/mol) 

Caffein −6.7 

Arachidonicacid −7.7  

Cardenolide −8.3 

Suregadolide B −9.2 

Suremulol A −9.8 

Suregadolide A −9.9 

Table 4: Binding energy values of the selected natural molecules 
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Structural analysis of “molecules-A2AR” binding sites and druggability 

Such as ADMET properties and affinity prediction of molecules, determination of binding sites is of particular 

interest in designing a therapeutic process. Indeed, this allows a prediction of potential druggability of distinct 

molecules. Therefore, using the discovery studio visualizer, each substance's binding sites on the A2AR were 

identified. Each binding site is made up of aminoacid residues (figure 3). Our results indicated that arachidonic acid 

(a),cardenolide (b), suremulolA (e) and suregadolideB (d) have one conventional hydrogen bond interaction with 

aminoacids. However, suregadolideA(c) has three conventional hydrogen bonds. As control, caffeine(f) presented 2 

hydrogen bonds. Other important interactions such as hydrophobic interaction, Pi-alkyl, alkyl interactions were 

observed for all molecules. 

a)                                                                                            b) 

                          Arachidonic acid                                                                                            Cardenolide 

      c)                                                                                                  d) 

                       Suregadolide A                                                                                               SuregadolideB 
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             e)                                                                                       f) 

                   Suremulol A                                                                                                             Caffeine 

Figure3: 2D structure of substances binding sites on A2AR. 

To determine druggability of the molecules, we analyzed the structure of the A2AR to distinguish drug and non-

drug regions using the cavityplus online server. Results showed that A2AR consists of 33 cavities, of which four are 

druggable, five are less druggable, and the rest are undruggable. A set of aminoacid residues determines each cavity 

(supplementary table 2). Determining binding sites for each single molecule allowed us to determine the cavity 

where each natural molecule was attached (table 5). Results showed that suremulol A bound to cavity 6, which is 

druggable and has the strongest drugScore of 3364.00. Arachidonic acid bound to cavity1, and was druggable with a 

drugScore of 755.00. However, suregadolideA and suregadolideB bound to cavity 3, which is less druggable with a 

drugScoreof 174.00. However, cardenolide bound to cavity 16, which is undruggable presenting a drugScore of -

602.00. And, caffein bound to cavity 3 and cavity 8 which were less druggable  with a drugScore of 174.00 and  -

164.00 respectively. Our results revealed that suremulolA and suregadolideA are the best potential antagonists of 

A2AR. 

Natural molecules Cavity No. Drugscore Druggablility 

Arachidonic acid 1 755.00 Druggable 

2 28.00 lessdruggable 

Suregadolide A ; Suregadolide B ; 

Caffein 
3 174.00 lessdruggable 

4 768.00 Druggable 

5 -2.00 lessdruggable 

Suremulol A 6 3364.00 Druggable 

7 3310.00 Druggable 

Caffein  8 -164.00 lessdruggable 

9 -320.00 Undruggable 

10 -288.00 Undruggable 

11 -672.00 Undruggable 

12 -768.00 Undruggable 

13 -215.00 Undruggable 
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14 -783.00 Undruggable 

15 412.00 lessdruggable 

Cardenolide 16 -602.00 Undruggable 

17 -247.00 Undruggable 

18 -814.00 Undruggable 

19 -775.00 Undruggable 

20 -1117.00 Undruggable 

21 -629.00 Undruggable 

22 -736.00 Undruggable 

23 -1078.00 Undruggable 

24 -883.00 Undruggable 

25 -600.00 Undruggable 

26 -988.00 Undruggable 

27 -1189.00 Undruggable 

28 -1222.00 Undruggable 

29 -922.00 Undruggable 

30 -816.00 Undruggable 

31 -1233.00 Undruggable 

32 -1337.00 Undruggable 

33 -1655.00 Undruggable 

Table 5: Druggability study of natural molecules-A2AR binding sites 

Druglikeness of suremulolA and suregadolideA:  

To define the druglikeness of our molecules 

(druglikeness used for fast calculation of drug-like 

properties of a molecule and identify the potential of 

a drug candidate for good absorption), we used the 

lipinski and veber rules. Results demonstrated that 

suremulolA and suregadolideA complied with both 

rules (table6). However, these had less than five 

hydrogen bound donors (HBD), less than 10 

hydrogen bound acceptors (HBA), a molecular 

weight of less than 500 Da, and a partition coefficient 

log P of less than 5. Additionally, these exhibited a 

number of rotatable bounds (NBR) less than 10 and a 

polar surface area (PSA) of less than 140 Å. 

Lipinski rules Veber rules 

HBD <5 HBA <10 clogP <5 MW <500(Da) NBR<10 TPSA<140 (Å) 

Suremulol A 3 3 3.11 322.49 1 60.69 

Suregadolide A 2 4 2.58 332.44 0 66.76 

Table 6: Druglikness prediction of Suremulol A and Suregadolide A 

4. Discussion 

Several studies have been eager to design new 

immunotherapeutic treatments against cancers, by 

targeting inhibitory immune checkpoint molecules, 

such as the A2AR, in order to boost the anti-tumor 

immune response [6]. Recently, many researchers 
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have been interested in the use of natural molecules 

in order to avoid side effects that can occur by using 

antibody-based immunotherapy. Another objective is 

to make the therapy more accessible to the majority 

of patients by avoiding high costs [7,8]. The aim of 

our study was to search for adequate natural 

molecules that can be used as antagonists of the 

A2AR and that are in line with drug safety standards. 

Our study demonstrated that: 1) EnglerinA, 

eicosapentanoic acid and 6-acetoxy-anopterine 

downregulated A2AR expression, 2) SuremulolA, 

arachidonic acid, cardenolide, suregadolideB and 

suregadolideA exhibited suitable ADMET properties, 

3) SuremulolA  and suregadolideA presented high 

affinity and an important drug score, suggesting 

thatthese molecules could be suitable candidates for 

A2AR blockade. The first step consisted of choosing 

candidate antagonists capable of decreasing the 

expression of the A2AR. EnglerinA was found to be 

the only compound able to significantly inhibit the 

A2AR gene expression. Also, A2AR expression 

tended to decrease upon treatment with 

eicosapentanoic acid and 6-acetoxy-anopterine. 

Studies have demonstrated that, englerinA, a 

sesquiterpene isolated from the Tanzanian plant 

Phyllanthus engleri, was found to be a potent and 

selective inhibitor of renal cancer growth cell lines 

[16]. In addition, englerinA was more potent in 

several cases than the current standards of care, 

sunitinib, and sorafenib [17]. Our results exhibited 

the ability of these molecules to act on their specific 

targets. However, an effective drug must also have 

other characteristics. One of the significant 

challenges in drug development is the careful 

evaluation of human drug toxicity. Furthermore, 

several marketed drugs were withdrawn from the 

market due to serious adverse effects [15]. Toxicity 

profile prediction showed that englerinA induced 

inhibition of the Human either-a-go-go-related gene 

(hERG) which  implicate  in regulating cardiac 

excitability and stability of normal cardiac rhythm 

[16]. Additionally, the evaluation of  hERG inhibition 

became a necessary pre-clinical assessment for 

candidate drugs [17]. Mutations in hERG may induce 

congenital long QT syndrome that has resulted in 

many drugs being removed from the market or 

terminated during clinical trials [18]. This led us to 

investigate other molecules similar to englerinA. We 

then assessed, using the fingerprint method, 

molecules with a similar structure to that of 

eicosapentanoic acid 6-acetoxy-anopterine. This 

method indeed allowed the identification of 

molecules with increased chance of displaying 

similar biological activities against the same target 

[19]. The first screening of eighty eight natural 

molecules was based on their toxicity profile. In our 

study, from 88 selected molecules, only 36 passed 

this selection process. Toxicity studies are crucial to 

determine possible mutagenic, carcinogenic, 

genotoxic, and heart health side effects. Mutagenicity 

is one of the most crucial endpoints of toxicity [20]. 

Additionally, the detection of mutagenicity upon drug 

discovery could stop the development of potentially 

dangerous drugs [21]. Equally, a genotoxic substance 

may promote carcinogenesis or laying the foundation 

for congenital disorders [22,23]. Another important 

criterion is hepatotoxicity. Liver toxicity still ranks 

among the highest reasons for drug attrition. Indeed, 

drug-induced liver injury is of great concern for 

patient safety [24]. Hepatic adverse effects in clinical 

trials often lead to late and costly termination of drug 

development systems. Thus, the early identification 

of a hepatotoxic  potential is of great importance 

[24]. Indeed, once a drug molecule enters the body, it 

encounters various obstacles on its way, related to 

absorption, distribution, metabolism, and excretion, 
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which are often referred to as ADME properties 

[10,14]. Once the non-toxic molecules have been 

selected, we performed absorption analysis, oral 

bioavailability and intestinal absorption. Our results 

showed that eight molecules present adequate 

absorption properties. Previous studies demonstrated 

that oral delivery is that the most accepted drug 

administration route among the varied delivery 

pathways [25]. However, in many cases, most orally 

administered drugs are metabolized and eliminated 

before reaching systemic blood circulation [26]. 

Therefore, poor bioavailability may cause a new drug 

to fail clinical trials, even if it had exhibited high 

efficacy in previous in vitro and in vivo tests [26]. 

Likewise, the prediction of human intestinal 

absorption (HIA) is crucial in developing oral drugs 

[27]. In our study, we found that only arachidonic 

acid, cardenolide, suregadolideA, suregadolideB, and 

suremulolA showed a good distribution capacity. 

During all the stages of the analysis procedure, we 

took into account the bioselectivity of the blood-brain 

barrier (BBB), which limits the diffusion of drugs. 

Almost 98% of all small molecules do not cross the 

BBB [28]. Another element limiting the distribution 

of drugs is P-glycoprotein (Pgp) that is expressed 

naturally on the plasmatic membranes of endothelial 

cells at the BBB [29], which plays a role in the 

multidrug resistance phenomenon, that  leads to 

chemotherapy failure in cancer treatments [30]. Also, 

plasma protein binding (PPB) is an essential 

pharmacokinetic property of drug discovery 

molecules. Only the free form of the drug is 

pharmacologically active. However, The plasma 

protein-bound form is pharmacologically inactive and 

cannot diffuse to reach its target [31]. PPB is strongly 

associated with drug distribution, metabolism, and 

clearance, influencing drugs' efficacy and potency 

[31]. Furthermore, some studies consider the degree 

of drug binding to plasma proteins, high (85-98%) 

and very high (>98%) protein binding, whereas 

medium to low (<85%) protein binding [32]. 

Additionally, other studies  consider that drugs with 

values higher than 0.9 are said to be highly bound, 

and those with values lower than 0.2 are said to show 

little or no plasma protein binding [33]. A final 

obstacle for any molecule is the metabolism 

(metabolism is carried out by enzymes such as 

cytochrome P450, contributing to about 75% of 

marketed drugs' metabolism), which poses a 

considerable threat to a drug's effectiveness. These 

enzymes are necessary for determining the 

pharmacokinetic profile of a drug [34]. Our results 

showed that suremulolA is observed to be a substrate 

for two cytochromes (CYP) enzymes, CYP3A4 and 

CYP2C9, and does not induce CYP inhibition. 

Furthermore, the other four ligands are the substrates 

for a single CYP enzyme. A compound that is a 

substrate or non-inhibitor of CYP450 means that it 

will not hamper the biotransformation of drugs 

metabolized by the CYP450 enzyme. Additionally, 

binding energy is the primary parameter that is 

generated as a result of molecular docking. It values 

the interaction strength and affinity ofthe molecules 

towards the A2AR. However, the affinity results in 

an energy score of the bond between the two 

molecules. The lower the energy score, the stronger 

the affinity. All selected molecules showed an energy 

score inferior to that of control, «caffein». Indeed, 

these low molecules binding energy score results in a 

strong affinity between candidate molecules and 

A2AR. Molecule binding sites are one of the major 

biochemical functions of proteins. Thus, the 

identification of binding sites is an interesting point 

for the A2AR interaction function. Our results 

indicate that cardenolide, suremulolA, arachidonic 

acid, and suregadolideB have one conventional 
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hydrogen bond interaction with amino acids, caffein 

has two conventional hydrogen bonds and 

suregadolideA has three conventional hydrogen 

bonds. On the other hand, we observed other 

essential interactions such as hydrophobic, Pi-alkyl 

and alkyl. The hydrophobic interactions and 

conventional hydrogen bonding have essential 

contributions to the stabilization of the binding 

structures. Also, a strong inhibitor binding is 

reflected by the frequency of conventional hydrogen 

bonds [11,35]. Computational detection of protein 

cavities has been considered a vital step for structure-

based drug design. The druggability value reflects the 

possibility of a cavity being a good target for binding 

drug-like molecules. Equally, CavityDrugScore was 

able to separate druggable and undruggable proteins 

successfully [36]. Results showed that suremulolA 

bound to the most druggable cavity with the strongest 

drugscore, followed by arachidonic acid, which 

boundtoa druggable cavity. Then, suregadolideA, 

suregadolideB and caffein that boundto a less 

druggable cavity with a moderate drug score. In 

contrast, the cardenolide bound to an undruggable 

cavity, suggesting that the cardenolide could not 

exert any therapeutic function during its interaction 

with A2AR. Moreover, affinity analysis and 

druggability results, revealed that suremulolA and 

suregadolideA were good potential antagonist 

candidates for A2AR.  Besides, there are no violation 

of lipinski and veber rules for these two molecules. 

5. Conclusion 

Over the years, the process and criteria for accepting 

new drugs have become increasingly rigorous. Given 

increased costs and durations, in silico studies have 

become essential at an early stage of drug 

development. This helps in minimizing the cost of 

pre-clinical and clinical trials and thus minimize the 

risk of drug rejection. In our study, suremulol A and 

suregadolide A were selected as potential A2AR 

antagonist candidates. These two molecules exhibited 

properties, which were consistent with ADMET 

standards, lipinski and veber rules, and displayed a 

high drug score and a strong affinity to A2AR, 

supported by hydrogen and hydrophobic bonds. If 

confirmed, blocking A2AR in a cell-based approach, 

using suremulol A and/or suregadolide A, would lead 

to boosting the anti-tumor immune response. 
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Supplementary Information 

Symbol 
Log2 

FC 

Average

Expr 
p-value 

Adjusted 

p-value 

Experiment (GEO id, Cell type, Treatment, 

Concentration, Duration) 

ADORA2A 1.1 10.9 0.005 0.087 GSE56496 SW620 Rosemary 30ug 48h 

ADORA2A 0.7 7.4 0.003 0.035 GSE55897 MDA MB436 Indole3carbinol 24h 

ADORA2A 0.6 0.6 0.039 0.876 GSE44290 PaCa2 Aaspera leaves 48h 

ADORA2A 0.6 5.7 0.004 0.252 GSE50945 Placental cells Fish oil 

ADORA2A 0.5 6.9 0.009 0.335 GSE21976 Caco2 Bifidobacterium bifidum 4h 

ADORA2A 0.3 7.6 0.031 0.343 GSE100224 22Rv1 Wchinensis Extract 16h 

ADORA2A 0.2 6.1 0.028 0.59 GSE48668 HeLa delta Tocotrienol 30min 

ADORA2A -0.3 2.9 0.085 1 GSE18589 Myotubes Eicosapentaenoic acid 24h 

ADORA2A -0.3 6.7 0.004 0.124 GSE81277 LNCaP 6AA 10nM 24h 

ADORA2A -1 0 0.001 0.042 GSE86046 A498 EnglerinA 20h 

Supplementary table1: Technical and statistical data relating to the expression of A2AR gene in each experiment 
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