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Abstract

The human T-lymphotropic viruses (HTLV) are a
family of retroviruses that causes adult T-cell
leukemia/lymphoma (ATL). The objective of this
study is to elucidate the host genes affected by the
HTLV-1 Tax protein, find how host genes are
affected, and how this influence is related to several
cancer pathways. The DAVID program was used to
examine genes affected by Tax, and the gene list was
significantly enriched: pancreatic cancer, chronic and
acute myeloid leukemia, small cell lung cancer,
prostate cancer, non-small cell lung cancer, colorectal
cancer, glioma, melanoma, and bladder cancer. The
influence of Tax on genes involved in these pathways
was studied and the effects on the progression of the

pathway were deduced. HTLV-1’s Tax protein
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contributes epigenetically to the development of
different cancers by altering normal transcription and
translation, cell cycle signaling systems, and tumor
suppressing mechanisms. The discovered effects of
Tax on the NF-xB, MAPK, Cyclin-CDK, ErbB, Jak-
STAT, VEGF, TGF-B, PI3K-Akt, and B-catenin
pathways active during the progression of pancreatic
cancer, chronic myeloid leukemia, small cell lung
cancer, and colorectal cancer indicates that HTLV-
1’s effects are not limited to ATL, can activate
cancer-specific biomarkers including ZEB-1, ZEB-2,
EZH2, E2F, TRIM33, GLUT1, HK2, PKM2, and
LDHA, and can mimic the cancer-specific oncogenes
BCR-ABL, K-Ras, and APC. Four signaling
networks were elucidated to represent these signaling

events, creating a useful representation of an HTLV-
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1 infection’s role in different cancers, which can aid

in identifying and characterizing HTLV-1-associated
cancers, determining prognosis, and selecting

effective treatments for patients.

Keywords: Human T-lymphotropic virus type 1
(HTLV-1); Molecular mechanisms; Signaling
network; Pancreatic cancer; Chronic myeloid
leukemia (CML); Small cell lung cancer (SCLC);

Colorectal cancer (CRC); Tax; Carcinogenesis

Introduction

The involvement of HTLV-1 in different types of
cancer has been implicated, with the main protein
involved in cancerogenesis of host cells being Tax.
However, more information is needed on the specific
genes affected by Tax in cancer and their subsequent
interactions with each other to promote cancer
progression. Thus, this study aims to elucidate
interactions between viral and host proteins during an
HTLV-1 infection and determine both specific
properties and the comprehensive effect of HTLV-1

in different cancers.

Human T-lymphotropic Virus

The HTLVs (human T-lymphotropic viruses) are
retroviruses that cause adult T-cell
leukemia/lymphoma (ATL) [1]. There are four types of
HTLV that have been identified (HTLV-1, HTLV-2,
HTLV-3, HTLV-4) [1]. Viral proteins encoded in
the HTLV-1 genome play a role in the proliferation
and survival of the infected cells [2]. Its genome
includes the Gag, Pol, and Env genes, which encode
structural proteins that aid in replication. Rex is the
regulator of viral mRNA splicing. Tax controls the
expression of viral and cellular genes through several
pathways: CREB/ATF, NF-xB, AP-1 and SRF [3]. It

is considered to play a central role in the process
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leading to ATL, and modulates cellular processes by

binding with proteins, transcriptional activation and
repression, and dysregulating cellular processes,
including the cell cycle and the maintenance of
genomic integrity, which promotes cell proliferation

and resistance to apoptosis [4].

HTLV’s Presence in Different Cancers

HTLV-1 has been found to be involved in different
types of cancer. Some of the cancers are: pancreatic
cancer, chronic myeloid leukemia, bladder cancer,
biliary tract cancer, esophageal cancer, gastric cancer,
colorectal cancer, liver cancer, lung cancers, and
glioblastoma [5-7,9]. HTLV-1 proviral DNA has
been associated with inflammation of these organs
and has been found in their cancer cells, but the
mechanisms of inflammation and carcinogenesis as
well as interactions among viral and cellular proteins
in the pathways leading to different cancers are

largely unknown.

HTLV-1 and Pancreatic Cancer

The majority of pancreatic cancer cases are exocring,
occurring in cells lining the pancreatic duct that
either form glands or surround an empty space, and a
small percentage of cases are endocrine, which occur
in the hormone-producing islet of Langerhans cells
[8]. HTLV-1’s presence in pancreatic cancer has been
found before [9], and cases have been reported of
ATL patients experiencing acute pancreatitis, but the
reason is not certain [10]. Patients with acute
pancreatitis are twice as likely to develop pancreatic
cancer [11]. BRGL1 is an essential oncoprotein in both
the acute myeloid leukemia cell cycle and pancreatic

ductal adenocarcinoma tumor initiation [12].
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HTLV-1 and Chronic Myeloid Leukemia

Chronic myeloid leukemia (CML) is a cancer of
myeloid cells, which produce red blood cells,
platelets, and most types of white blood cells [13]. It
originates in hematopoietic stem cells (HSCs) and is
characterized by the accumulation of apparently
normal myeloid cells [14]. HSCs give rise to two cell
lines: myeloid cell lines, which include monocytes,
macrophages, neutrophils, basophils, eosinophils,
erythrocytes, megakaryocytes, and platelets; and
lymphoid cell lines [15], which include T cells, the
cells involved in ATL. Cancer in myeloid cells
progresses from the chronic phase to blast crisis,
which has a poor prognosis [16]. Blast crisis occurs
when blast cells exceed 20% or 30% (based on
different definitions) of all the cells in the blood or
bone marrow [17], which results in hyperviscous
blood and a relative reduction of other cell types [18].
Myeloid cells have been shown to be targets of
HTLV-1 and may exhibit impaired function, with
HTLV-1 DNA having been detected in hematopoietic
stem cells [19], but there is no information on the
mechanisms of HTLV-1-induced CML.

HTLV-1 and Small Cell Lung Cancer

A small percentage of lung cancers (10-15%) are
small cell lung cancers (SCLC), which grow and
spread more quickly than non-small cell lung cancers
and are more prone to relapse [20]. A SCLC patient’s
cells were found to have serum with high levels of
soluble interleukin-2 receptors (IL2-R) [21]. IL2-R is
found on activated T-cells' that are stimulated to
proliferate by IL2, and even three IL2-R-positive
myeloid cell lines have been identified [22]. It is
possible that HTLV-1 is the cause of IL2-R’s
presence on SCLC cell surfaces [22], and Tax has
been found to induce the expression of IL2-R on T-

cells [23]. Interleukin-2 is an immune cytokine
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signaling molecule, and IL2-R is a biomarker for

inflammatory diseases, including pathogen-caused
inflammatory liver diseases [24], one of which is
hepatitis B, listed in Table 2. HTLV-I is involved in
HTLV-I associated T-cell bronchioloalveolitis [25],
and pulmonary lymphocytosis has been found to
occur in HTLV-I carriers [26], and no explanation
exists to explain why HTLV-1 is associated with

pulmonary inflammation.

HTLV-1 and Colorectal Cancer

Cancers of the colon and rectum are the fourth
leading cause of cancer-related deaths worldwide
[27], with about 65% of colorectal cancer (CLC)
cases being unrelated to family history or genetic
predisposition [28]. Mutation of adenomatous
polyposis coli (APC), a tumor suppressor mutated in
80% of CLC cases [29], is the first step in
transforming normal colorectal epithelium to
adenoma [30], which is a benign epithelial glandular
tumor. Three major conditions can develop during
the transition between adenoma and carcinoma:
chromosomal instability (CIN), where several
structural or numerical chromosomal changes
happen; microsatellite instability (MSI), where DNA
mismatch repair functions incorrectly and results in
many point mutations, small deletions, and insertions
near nucleotide repeat tracts; and CpG island
methylator phenotype (CIMP), which is associated
with  epigenetic  instability involving DNA
hypomethylation or hypermethylation [31]. These
conditions alter gene expression in tumor suppressing
pathways, including KRAS, BRAF, TP53, MLH1,
MSH2, BAX, and TGFBR [32]. CRC is the result of
cumulative genetic and epigenetic changes that
transform normal cells into tumors, where certain
mutations are highly prevalent in certain stages [31].
For example, Wnt/B-catenin signaling is active in

adenomas, and K-Ras activity and the loss of p53 are
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involved in the transition to invasive and malignant

behaviors [31]. HTLV-1-infected lymphocytes can be
transferred when infants ingest maternal milk,
implying a transmission route through the digestive
tract, and a study found that infectious HTLV-1

virions are able to cross the intestinal epithelium
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through transcytosis and infect underlying dendritic

cells [33]. Infection with HTLV-1 and CRC
development have been compared before [9], but
combination of specific effects of HTLV-1 on the
CRC pathway is unknown. Genes affected by Tax
protein [34] are presented in Table 1.
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Table 1: Genes Affected By Tax Protein

DOI: 10.26502/fjhs016

Cell Cycle and DNA Repair Cell Signaling Cytoskeleton | PDZ Proteins | Proteasome Transcription and Translation Transport
CDC20 MAD1L1 CDC42 BCR1 ACTB BEST1 PSMA4 ATF1 REL NRF1 SRF CALR
CDK4 CDKN2B RASA2 PIK3R1 ANXA1 DLG1 PSMB4 ATF2 CREM KAT2B SUV39H1 | COPB1
CDK®6 CDKN2A GPS2 PPP2CA KRT5 POLR2A ATF3 CCNT1 | p300-CBP | TAF11 XPO1
CHEK1 RAD51 GABBR2 | RAC1 GSN DNAJA3 ATF4 TOP1 ARHGEF7 | TAX1BP1 | DCTN4
CHEK?2 RANBP1 CHUK SMAD2 INA LIN7A ATF5 Ergl FKBP4 TBP CFDP1
CCND1 RB1 IKBKB SMAD3 TUBA1A MAGI3 SMARCC1 | Elk1 RELA GTF2A1 | RANBP2
CCND2 CROCC IKBKG SMAD4 PRL ACTL6A Etsl RPL6 CRTC1 SCAMP1
CCND3 TOP1 MAPK3K1 | MAP3K? DLG4 SMARCEL | HDAC1 | DEFB4A | CRTC2 SCAMP2

ASCC2 TAX1BP1 TAX1BP3 SMARCA4 | EIF3E SRSF2 CRTC3 SNAP23
UBE2N CEBPB JMID2A | NCOR2 TARBP2 | COPB1
CARM1 MBD2 SP1 TTPA
CREB1 MSX2 SPI1 XBP1
NFKB1
Fortune Journal of Health Sciences Vol. 4 No. 1 - March 2021 164
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Methods

The methods used are illustrated in Figure 1 diagram.
DAVID (Database for Annotation, Visualization and
Integrated Discovery) [35] combines functional
genomic annotations and allows for the visualization
of gene and protein pathways and interactions [36].
Genes from Table 1 were submitted to DAVID with

User Genes Genome

DOI: 10.26502/fjhs016
functional annotation to search for KEGG pathways

in which the gene list in Table 1 is enriched.

The EASE Score, a modified Fisher Exact test, is
calculated by DAVID to determine the degree to
which the submitted genes are expressed in the
resulting pathways [37].

User Genes Genome

In Pathway LH PH-LH PH In Pathway LH-1 PH-LH+1 PH
Not In Pathway LT-LH PT-LT-(PH-LH) | PT-PH Not In Pathway LT-LH PT-LT-(PH-LH) | PT-PH
LT PT-LT PT LT-1 PT-LT+1 PT

Table for Fisher’s Exact test (left) [37], where p = S DI@HIOHD! o o0 on values in a 2x2 contingency table,
alblcld!n!

(PH)!(PT—PH)!(LT)!(PT-LT)!

orp = (LH)!(PH-LH)!(LT-LH)!(PT—LT—PH+LH)!(PT)!

[37], where the resulting p-value

_ (PH)!(PT-PH)!(LT-1)!(PT-LT+1)!
p= (LH-1)!(PH-LH+1)!(LT-LH)!(PT-LT—PH+LH)!(PT)!’

Population Total (PT) is the total number of genes in
a genome, Population Hits (PH) is the number of
genes in a selected pathway of the genome, List Total
(LT) is the number of genes in a submitted list, and
List Hits (LH) is the number of genes from the
submitted list that belong in the selected pathway
[37].

To be more certain that the results were not due to
random error, the Benjamini-Hochberg Procedure
was used by DAVID to calculate adjusted p-values
based on the EASE Score p-value. The adjusted p-
values from the Benjamini—-Hochberg Procedure
reduce the false discovery rate [38]. To calculate
adjusted p-values, the EASE Score p-values are
ordered from smallest to largest, given ranks of
increasing consecutive natural numbers starting from

1, and EASE Score p-values are compared to iQ,
Fortune Journal of Health Sciences

in terms of gene-enrichment. Modified table for EASE Score (right)

larger and more conservative, and

where i is the rank, m is the number of tests, and Q is

the false discovery rate [39]. All p-values lower than
the largest p-value that satisfies p < iQ are

considered significant.

Kyoto Encyclopedia of Genes and Genomes (KEGG)
is a database that maps the functions of biological
systems [40]. DAVID indicated several KEGG
pathways, which are depicted in the results along
with their EASE Score p-values and Benjamini-
Hochberg p-values. Initially submitted genes from
Table 1 and their surrounding genes in the pathway
were studied to investigate Tax’s effects on different
pathway genes, their connections to each other, their
effects on the progression of the pathway, and their
relationship with specific cancers. Based on the
KEGG pathways, information from existing literature

was used to deduce properties of HTLV-1-associated
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cancers by comparing the molecular mechanisms of

HTLV-1’s ATL with the

carcinogenesis pathways containing genes that

Tax protein in

respond to Tax in pancreatic cancer, CML, SCLC,

and CRC and finding connections between the two.

Use of DAVID to search for relevant
KEGG pathways. DAVID converts gene
IDs that are not recognized to alternative

names describing the same gene.

Google search for
proteins involved
inan HTLV
infection

DLVED

Creation of Tax-induced signaling networks
in the four cancers and analysis of
interactions and their effects on cancer
biomarkers, prognosis, and treatment.

DOI: 10.26502/fjhs016
To depict the analysis of KEGG pathways, four novel

signaling networks were elucidated, consisting of
cancer-specific proteins and their interactions with
Tax and each other.

DAVID filters through known biological pathways in
the KEGG database and presents the ones that contain
submitted genes, calculating an EASE score for cach.

Out of all the cancer-related pathways, genes in the pancreatic
cancer, CML, SCLC, and CRC pathways were studied for their
response to Tax and significance to their respective cancers.

Figure 1: Flowchart of Methods. A flowchart of the tools and methods used in this study

Fortune Journal of Health Sciences
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Results and Discussion

Table 2: Signaling Pathways Affected by Tax. Based on the list of genes and proteins from Table 1 entered into
DAVID, this table lists several pathways that contain genes and proteins affected by Tax in order of smaller p-values

to larger p-values from the EASE Score.

Pathway P-Value Benjamini

Viral carcinogenesis 4.30E-27 3.20E-25
Pancreatic cancer 6.20E-18 3.10E-16
Chronic myeloid leukemia 2.10E-11 6.20E-10
Small cell lung cancer 2.90E-08 6.20E-07
Pathways in cancer 5.50E-08 1.00E-06
PI3K-Akt signaling pathway 1.90E-07 3.20E-06
TNF signaling pathway 2.30E-07 3.50E-06
Prostate cancer 5.70E-07 7.70E-06
Acute myeloid leukemia 3.10E-06 3.30E-05
Epstein-Barr virus infection 4.20E-06 4.10E-05
p53 signaling pathway 8.50E-06 7.90E-05
MAPK signaling pathway 2.30E-05 1.80E-04
Ras signaling pathway 3.60E-05 2.70E-04
Hippo signaling pathway 5.40E-05 3.80E-04
Transcriptional misregulation in cancer 5.70E-05 3.90E-04
Non-small cell lung cancer 4.70E-04 2.40E-03
Apoptosis 5.10E-04 2.60E-03
Colorectal cancer 6.50E-04 3.00E-03
Glioma 8.70E-04 3.60E-03
Melanoma 1.30E-03 5.20E-03
TGF-beta signaling pathway 2.30E-03 8.70E-03
NF-kappa B signaling pathway 3.00E-03 1.00E-02
Bladder cancer 1.20E-02 3.30E-02
AMPK signaling pathway 1.30E-02 3.60E-02
Whnt signaling pathway 1.70E-02 4.70E-02
MicroRNAs in cancer 2.20E-02 5.80E-02

Pathways have EASE Score p-values that are lower than 0.05 and lower than their Benjamini-Hochberg adjusted p-
values. The cancer-related pathways are emphasized and significantly associated with the genes that Tax influences,
including pancreatic cancer, chronic and acute myeloid leukemia, small cell lung cancer, prostate cancer, non-small

cell lung cancer, colorectal cancer, glioma, melanoma, and bladder cancer (Table 2).

Fortune Journal of Health Sciences Vol. 4 No. 1 - March 2021 167
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Pancreatic Cancer

The PI3K-Akt signaling pathway is one of the most
commonly activated signaling pathways in pancreatic
cancer [41]. Interference with the PI3K-Akt signaling
pathway marks the transition of a normal duct to
Pancreatic Intraepithelial Neoplasia 1-A and 1-B
(PanIN-1A and PanIN-1B). This is when epithelial
lesions, or an abnormal growth of squamous cells,
appear on ductal epithelium [42]. In the PI3K-Akt
signaling pathway, the PI3K complex is responsible
for the activation of Akt through the activation of
PIP3 [43]. By activating PI3K, Tax causes Akt to
increase the activity of two cell-survival-related
proteins: CREB, a transcription factor that causes the
transcription of survival genes [43]; and MDM2,
which inhibits p53 [43]. Akt phosphorylates CASP9
[44], which is a caspase essential in apoptosis [45],
and this phosphorylation downregulates the apoptotic
activity of the enzyme [46]. The effect of Akt on
these genes induces cell proliferation. Akt also
stimulates the NF-kB pathway by phosphorylating
IKK o and B, which induces the degradation of IkB,
phosphorylating the p65 subunit of NF-xB
(p65/RelA-p50) so that the p65/RelA-p50 dimer
translocates into the nucleus and regulates
transcriptional  activity [47]. This activated
transcriptional activity results in products that inhibit
components of the apoptotic machinery in normal
and cancerous cells [48]. Additionally, cells
expressing an overactive p65 subunit of NF-xB
showed an elevated expression of ZEB-1 and ZEB-2
and increased ZEB-1 promoter activity, which are
linked with cell cycle progression or survival and a
epithelial to  mesenchymal transition (EMT)
phenotype [49]. EMT is when epithelial cells lose
their cell polarity and cell-cell adhesion [50], and it is
shown to be widely associated with the invasiveness
of pancreatic cancer [51]. Thus, the activation of NF-

kB, ZEB-1, and ZEB-2 by Tax supports pancreatic
Fortune Journal of Health Sciences
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cancer progression. In addition to Akt activation,

Tax’s direct binding to IKK amplifies the same
effects. Meanwhile, excessive input from PI3K will
result in the hyperactivation of Rac, which is
implicated in tumorigenesis and metastasis [52], so
Rac activation by Tax is another association with

pancreatic cancer (Figure 2A).

As the cells transition into PanIN-2 and PanIN-3,
changes happen in the pathways that regulate the cell
cycle, leading to uncontrolled proliferation, increased
survival, and genomic instability, which can also be
induced by Tax. This is when dysplasia and
cribriforming can be seen in epithelial cells [42]. In
the pl6-cyclin D1-CDK4/6-Rb pathway, cyclin D1
activates CDK4, which then phosphorylates (and
inhibits) the Rb protein, leading to cell cycle
progression, and pl6 inhibits CDK4, keeping Rb
hypophosphorylated (active) and preventing cell
cycle progression [53]. Cyclin D1 promotes the cell
cycle’s progression through the G1 phase by
enhancing NDR1/2 kinase activity [54], and the
overexpression of cyclin D1 is commonly seen in
cancer [55]. The activation of cyclin D1 by Tax
contributes to cancer, and the inhibition of pl6 by
Tax prevents the inhibition of CDK4, reinforcing the
cell cycle’s progression through the G1 phase. The
loss of the CDKA4/6 inhibitor CDKN2A, which
encodes pl6, is a signature genetic event in
pancreatic ductal adenocarcinoma [56], the most
common type of exocrine pancreatic cancer that
constitutes 95% of cases [57]. Although CDKN2A is
not “lost” in an HTLV-1 infection, its gene product is

suppressed by Tax and a similar effect is achieved.

Tax binds to and inhibits Smad2/3 and Smad4 in the
TGF-B signaling pathway [58]. Smads are receptors
and signal transducers of the transforming growth

factor beta (TGF-pB) superfamily, which play a role in
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cell development and growth [59]. The pathway

induces cell cycle arrest and apoptosis, a tumor-
suppressing function [60]. The result of Tax
inhibition on the TGF-B pathway is an increased
likelihood of developing pancreatic cancer, as
abnormal TGF-B signaling is considered a primary
EMT inducer, and the abrogation of TGF-f signalling
switches cells towards a cohesive migratory
phenotype [61]. Inhibition of p16 is usually an early
effect of pancreatic cancer while p53 inhibition is a

late stage effect [41]. Figure 2A shows the activation

PANCREATIC CANCER

Chromosome Unstah le (CIN) pathway
Normal duct

I PI3K-Akt
signaling pathway, /

Pancreatic ductal cell

[(Bad_}—[Belxl ]~ cellswvival
dp

+p{ [CASPO |- ——P Suppressed apoptosis
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of the ErbB pathway, Jak-STAT pathway, and VEGF

pathway in the intermediate stages, and these
pathways promote resistance to apoptosis, with
VEGF promoting angiogenesis, the growth of new
blood vessels. The inhibition of the TGF-B pathway
is shown near the end of non-viral pancreatic cancer
development. Tax is able to bind to and interact with
proteins in these molecular pathways and induce the
changes simultaneously. A block-diagram of Tax
interactions affecting pancreatic cancer are presented

on Figure 2B.
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Figure 2A: Pancreatic Cancer Pathway. A KEGG pathway depicting the cellular events that take place during

pancreatic cancer. Genes from Table 1 are marked with red stars.
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Figure 2B: Role of Tax in Pancreatic Cancer Pathway. A diagram that represents the analysis of the individual

protein-protein interactions in the pathway (Figure 2A) as well as existing literature, and the combined picture of

their connections to each other and to pancreatic cancer is novel. Arrows indicate the activation of a protein by its

preceding protein, and lines ending with squares indicate the inhibition of a protein by its preceding protein.

Chronic Myeloid Leukemia

Activation of the BCR-ABL tyrosine kinase is a
crucial causing factor of CML [16], and the BCR-
ABL oncogene is the primary target that must be
blocked to prevent CML [62]. The activation of PI3K
in ABL
leukemogenesis [63], where BCR-ABL activates the

is an essential signaling mechanism
PIBK/mMTOR pathway, increasing the production of
reactive oxygen species [64], which damages DNA
and the cell division process. In this case, Tax is able
to replace the effects of the BCR-ABL oncogene by
activating the PI3K/mTOR pathway. As said before,
this PI3K activation
proliferative proteins CREB and MDM2,

increases the activity of
and
downregulates the activity of apoptotic protein
CASP9. AKT phosphorylates and activates mTOR,
which causes cyclinD1 and CDK to bind together and
promote cell division [65]. IKK activates NF-xB
through Akt activation by PI3K, as well as through
the direct binding of Tax with IKK. BCR-ABL1
activates lymphoid and myeloid leukemogenesis

through the expression of IKK [66], supporting the

Fortune Journal of Health Sciences
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idea that Tax’s activating effect on IKK contributes
to chronic myeloid leukemia in a manner similar to
BCR-ABL1. KEGG diagram of this pathway is
presented on Figure 3A and on Figure 3B is
elucidated a block diagram of Tax interactions
affecting CML.

The activity of BCR-ABL is necessary but not
induce CML though [67],

combination of many gene mutations is needed for

enough to and a
CML to develop. However, Tax’s effects are not
limited to those of BCR-ABL either. p14ARF is a
tumor suppressing protein that is encoded by the
same locus (CDKN2A) as p16, which also known as
pl6INK4a, but pl4ARF uses a different reading
frame [68]. pl4ARF is epigenetically silenced in
ATL [68], and both pl4ARF and pl6INK4a
promoter methylation occur often in leukemias and
lymphomas [69], and p14ARF and p16INK4a mRNA
levels are significantly low in CML patients [70].
Overexpression of MDM2 causes the degradation of
pl4ARF [71], and since Tax increases MDM?2
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activity through the PI3K-Akt pathway, HTLV-1 is

involved in CML through the indirect inhibition of
pl4ARF. pl4ARF is negatively regulated by p53
[71], and Tax inhibits the activity of p53 through
PI3K as well. It is unknown whether Tax can directly
bind to pl4ARF because pl4ARF shares no
structural homology with p16INK4a [72]. However,
Tax binds directly to pl6INK4a and inhibits it,
preventing the inhibition of CDK4/6 by pl16INK4a
and allowing CDKA4/6 to inhibit the tumor suppressor
Rb [72].

The activation of mMTOR, the inhibition of p16INK4a,
and Tax’s direct binding to the cyclin D/CDK
complex all stimulate cyclin/CDK activity. Increased
cyclin/CDK activity hyperphosphorylates Rb, which
binds to and suppresses E2F in the
hypophosphorylated state [73]. The resulting
separation of Rb and E2F increases E2F activity and
allows it to transcribe more genes necessary in the S
phase, leading to cell cycle progression [73]. A study
examined Rb expression in CML cells undergoing
blast crisis and found that all the megakaryoblastic
crisis cases lacked the expression of the Rb encoded
protein, which suggests that CML transformation
megakaryoblastic is associated with the loss of Rb
[74]. Megakaryoblastic crisis is a rare subtype of
blast crisis, and its cause is unknown [75]. Tax’s
inhibitory effect on Rb activity is a propelling factor

of CML entering the megakaryoblastic crisis.

A study found that levels of TGF-B type II receptor
(TGFBR2) (p = 0.012) and Smad4 (p = 0.043) were
significantly low in patients with CML, and that
caused reduced tumor suppressive effects in CML
[76]. In the TGF-B signaling pathway, TGF-B binds
to a TGFBR2, which forms a complex with TGFBR1,
and the resulting complex phosphorylates a receptor-

regulated Smad (R-Smad) so that it forms an active
Fortune Journal of Health Sciences

DOI: 10.26502/fjhs016
Smad signaling complexes that regulate the

transcription of genes related to apoptosis and
immune function [77]. One such complex is between
Smad2/3 and TRIM33, which is a protein that
controls gene expression, and the Smad2/3-TRIM33
complex  stimulates  the differentiation  of
hematopoietic progenitors [78]. Tax’s inhibition of
Smad4 and Smad2/3 prevents Smad2/3-TRIM33
complex activity. Since CML involves blast phase
cells failing to differentiate and causing a rapid
accumulation of non-functional cells in the bone
marrow and blood [79], Smad inhibition by Tax is a
causing factor that contributes to differentiation
failure through TRIM33. Interestingly, a knockout of
the TRIM33 gene in premalignant pancreatic
progenitors produces the same effects as a SMAD4
knockout [78,80], indicating their similar role in

pancreatic tumor suppression as well as in CML.

EVI1 gene overexpression affects BCR-ABL to
induce CML, and one of the transcription factors that
EVIL recruits is HDAC, a transcriptional repressor
[81]. Inhibiting HDAC alleviates EVI1-mediated
repression of TGF-p signaling [81]. HDAC inhibition
is a proposed treatment for hematological cancers,
especially CML, and the method is undergoing trial
studies [82], so HDAC plays a role in EVI1
tumorigenesis. HDAC has an opposing role though: it
has been shown to negatively regulate Tax activity by
competing with CBP to bind with Tax [83]. CBP
controls cell growth, cell division, and differentiation
[84], so HDAC reduces these functions. Thus, in
hematological cancers that do not involve HTLV-1,
HDAC inhibitors may be an effective treatment, but
since HDAC downregulates the oncogenic viral
protein Tax, inhibiting HDAC may, to some extent,
work against treatment of CML cases involving
HTLV-1.
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Figure 3A: Chronic Myeloid Leukemia Pathway. A pathway depicting the cellular events that take place during

chronic myeloid leukemia. Genes from Table 1 are marked with red stars.
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Small Cell Lung Cancer

p15INK4b is a CDK inhibitor, and when Tax binds to
pl5INK4b, it inactivates pl5INK4b and restores
CDK4 kinase activity [85]. The lack of pl5Ink4b
(CDKN2B) expression is frequently seen in blood
disorders like acute myeloid leukemia and
myelodysplastic syndromes [86], so it is a point of
commonality between SCLC and CML. The
dysregulation of p15INK4b in neuroendocrine lung
tumors was found to happen regardless of p16INK4a
and pl4ARF status [87]. Neuroendocrine cells are
spread throughout the human body, but are mainly
found in the small intestine, pancreas, and lung
bronchioles, and they help heal the epithelium after
injury from infection [88]. Neuroendocrine cells may
become overactive turn into cancerous cells, and a
small portion of lung cancers are neuroendocrine
[89]. Neuroendocrine tumors can form in different
organs and the most common ones are
gastrointestinal tumors [89], which relates to the
colorectal cancer pathway that will be addressed later
below. p15INK4b dysregulation by Tax is therefore a

Fortune Journal of Health Sciences

factor that can be common to pancreatic cancer,
CML, SCLC, and gastrointestinal tumors. KEGG
diagram of this pathway is presented on Figure 4A
and on Figure 4B is elucidated a block diagram of

Tax interactions affecting small-cell lung cancer.

SCLC cells have high levels of NF-kB activation,
which is significantly associated with cancer
advancement and poor prognosis, and inhibiting NF-
kB prevents lung cancer cell survival and
proliferation [90]. KRAS is an oncogene that
accounts for 90% of Ras mutations in lung cancers,
and KRAS activity, combined with p53 loss,
collaboratively activate NF-xB in SCLC cells
[90,91]. As Tax activates IKK, it prevents IkB from
keeping NF-kB bound and inactive, which indicates
that Tax’s role is similar to that of KRAS in that it
activates NF-xB to induce SCLC cell proliferation.
The functions of NF-xB and p53 are in contrast with
each other: p53 induces apoptosis, and the
stimulation of NF-xB promotes resistance to

programmed cell death. [92]. A regulatory
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mechanism coordinates these opposing outcomes in a

cellular decision-making event, where both p53 and
NF-xB inhibit each other’s ability to stimulate gene
expression through changing the relative levels of
their transcription factors [92]. Thus, the activation of
NF-kB inhibits p53 transactivation, so while p53 loss
contributes to the activation of NF-xB in SCLC,
Tax’s activation of NF-«xB also inhibits p53, creating
a positive feedback cycle that, again, supports SCLC
cell proliferation.

Genomic alterations of the PI3K/Akt/mTOR pathway
are distinguishable in SCLC, as well as a high
prevalence of inactivating mutations in TP53 (the
gene that codes for p53) and RB1 (the gene that
codes for Rb), and an increase in MYC [93].
Specifically, in SCLC cells with a PI3K mutation, the
inhibition of PI3K signaling led to apoptosis, and the
inhibition of cell viability, transformation, and tumor
growth, although in the same cells with PTEN loss,
such an inhibition had no effect [94]. PI3K catalyzes
PIP2 to form PIP3, and the lipid phosphatase PTEN
induces the opposite effect by dephosphorylating
PIP3 into PIP2 [95]. With PTEN opposing the
proliferative functions of PI3K in SCLC, when the
activation of PI3K is combined with the inhibition of
PTEN, this removes the possibility of treatment
through PI3K inhibition. This is exactly what Tax
does: Table 2 indicates that Tax activates PI3K and
its downstream signaling, and a study showed that
Tax downregulates PTEN through the NF-«xB
pathway [96].

The mutation of RBL1 is highly prevalent in SCLC. A
study of SCLC cases identified such a mutation in
75% of patients [97]. While most SCLC TP53
mutations are caused by carcinogens from smoking,
no evidence shows the same cause for RB mutations

[98]. This is unusual, because SCLC is primarily
Fortune Journal of Health Sciences
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caused by carcinogens from tobacco smoke, although

the exact reason normal cells become cancerous cells
is unknown [99]. It is unknown how often HTLV-1
Tax is associated with SCLC, but when it happens,
the increased cyclin/CDK activity caused by Tax
accounts for the lack of Rb activity in SCLC. The
combination of TP53 and RB1 mutations accounts
for over 90% of SCLC cases [100], and even though
Tax does not mutate these genes, it interferes with the
signaling of their gene products. A study found that
EZH2 is upregulated in SCLC and is a promising
therapeutic target [101]. It promotes SCLC by
activating E2F [101], which Rb normally inhibits.
Tax can support or even replace the tumorigenesis
effects of EZH2 by inhibiting Rb and increasing the
activity of E2F.

According to Figure 4A, MYC inhibits p15INK4b,
activates CDK4/6-CyclinD1, and thus represses Rb.
Specifically, MYC suppresses pl6INK4a and p21
[102], both of which inhibit CDK4/6 [103]. The
result is an active CDK4/6-CyclinD1 complex, and a
downregulated Rb. MYC deregulation is frequently
found in neuroblastoma, retinoblastoma,
medulloblastoma, Wilm's tumors, prostate cancer
with neuroendocrine differentiation, SCLC, Merkel
cell carcinoma, and ovarian carcinoma [104]. Unlike
other oncogenes such as RAS or EGFR, the MYC
gene is usually not mutated in cancer, and its
increased expression is either a result of amplification
or deregulation [104]. Tax transactivates the MYC
gene by altering the transcriptional activity of
transcription factor NFkB [105]. This points towards
epigenetic MYC activation as a commonality with an
HTLV-1-based cause in many different cancers. In
SCLC, MYC withdrawal in mice leads to tumor
regression [104], highlighting the notable impact that

Tax mediated dysregulation has in SCLC.
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Colorectal Cancer

Tax activates the GTPase Racl and initiates the
activation of many downstream signaling events that
are related to cell proliferation, transcription, and an
EMT phenotype in CRC. Racl activates PAK [106],
a protein that is hyperstimulated in cancer. Racl also
activates NFkB and members of the MAPK family
[106], which are responsible for cell proliferation,
differentiation, development, and inflammatory
responses [107]. Racl also activates NOX1 and leads
to the production of reactive oxygen species [106],
which causes oxidative damage in DNA, causing
mutations that lead to cancer [108]. Excessive ROS
production causes the release of pro-inflammatory
cytokines, and alters the microbiota, which are
associated with chronic intestinal inflammation and
an increased risk of colorectal cancer [109]. In
mammalian and drosophila cells, Racl is necessary
and sufficient to cause ROS-dependent intestinal
stem cells proliferation and regeneration [110,111].
Because Tax activates Racl, it causes the same
downstream effects of NFkB, MAPK, and NOX1
activation, allowing an HTLV-1 infection to cause
ROS production, gut microbiota alteration, and
intestinal inflammation. KEGG diagram of this
pathway is presented on Figure 5A and on Figure 5B
is elucidated a block diagram of Tax interactions

affecting colorectal cancer.

In the Wnt/B-catenin/TCF pathway, the AXxin
complex is composed of the scaffolding protein Axin,
the tumor suppressor APC, and several others, and it
degrades cytoplasmic B-catenin in the absence of Wnt
[112]. Racl forms a complex with JNK2 and B-
catenin to promote the nuclear translocation of B-
catenin [112], so Racl opposes the effects of the
Axin complex and activates [-catenin, which then

activates the transcription of the proto-oncogenes
Fortune Journal of Health Sciences
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MYC and CCNDI [113]. In cancer, deregulated B-
catenin signaling in the intestinal epithelium’s tight
junctions and adherens junctions occurs, which
mediates uncontrolled proliferation [114]. An
accumulation of PB-catenin is usually the result of
APC and CTNNBI1 mutations that help B-catenin
bypass degradation in the absence of Wnt [114], so
Tax’s activation of Racl mimics APC mutations by
preventing B-catenin degradation. As expected, Racl
is overactive in CRC and associated with
tumorigenesis, and CRC patients with an overactive
Racl had shorter survival rates [115]. Racl is
involved at multiple different steps in the progression
of CRC, so the same can be said for Tax. The
activation of Wnt/B-catenin signaling stimulates
benign adenoma growth along with KRAS (gene that
codes for K-RAS) mutations, and in cooperation with
p53 inactivation, contribute to invasive and malignant
behaviors in CRC [31]. B-catenin activation, KRAS
mutation, and p53 inactivation through Racl and
Whnt/B-catenin signaling combine to support the

significant role of Tax in CRC.

PI3K signaling deregulation is a common feature in
CRC [31] and its main contribution to tumorigenesis
is made through growth factor signaling [31],
regulating the proliferation of both normal and
cancerous colon cells [116,117]. PIK3CA mutations
arise late in the adenoma-carcinoma sequence, and
are thought to be involved in invasion [118]. EGFR
inhibition and MEK inhibition are therapies for
reducing the oncogenic potential of tumors
[119,120], but in many cases, especially KRAS-
mutant CRC cells, resistance appears against these
therapies [121,122]. Blocking the PI3K/Akt pathway
is able to revert CRC resistance to EGFR inhibition
and MEK inhibition [123]. Thus, Tax’s activation of

PI3K may promote proliferation and invasion in late
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stages of CRC and contributes to CRC resistance

against EGFR inhibition and MEK inhibition during
treatment. Additionally, PI3K activates Akt, which
then converts Bax from a pro-apoptotic protein to
anti-apoptotic protein [124]. Bax protein plays a
significant role in the cancerogenesis mechanism of
CRC [125]. Similarly, Akt activation phosphorylates
BAD and promotes cell survival [126], and an
increased expression of phosphorylated BAD occurs
in CRC cells, playing a role in tumorigenesis [127].
Because Tax activates PI3K, Tax can also initiate
these downstream effects of Bax conversion and
BAD phosphorylation in CRC.

Tax activates PB-catenin through Racl. MYC and
CCNDI are transcriptional targets of B-catenin [128],
both of which are oncogenic. The overexpression of
Cyclin D1 increases during the adenoma to
carcinoma sequence and is associated with the
advanced tumor stage and a short survival period in
CRC [129]. Even before tumor progression, Cyclin
D1, CDKs and CDK inhibitors are significantly
associated with the cell cycle transition into CRC
[130]. Tax causes an increased transcription of
Cyclin D1, so it plays a role in the adenoma to
carcinoma sequence of CRC. MYC is overexpressed
in up to 70-80% of CRC cases [130], making the
eventual activation of MYC by Tax a significant
contribution to CRC. CD36 is a tumor suppressor
whose expression progressively decreases from
adenomas to carcinomas and is associated with a
poor CRC survival rate, and it normally causes the
ubiquitination of GPC4, inhibiting B-catenin/c-Myc
signaling and suppresses the expression of GLUTL,
HK2, PKM2 and LDHA [128], genes involved in
glucose transport and glycolysis, whose inhibition is
an anticancer treatment [131]. Excessive glycolysis
usage paired with lactic acid fermentation instead of

oxidative phosphorylation is bioenergetically less
Fortune Journal of Health Sciences
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efficient and requires increased glucose import,

which are hallmarks of cancer known as the Warburg
effect [132]. By activating B-catenin, Tax stimulates
the expression of these downstream glycolytic genes
and promotes an increase in glycolysis as the main
source of energy, producing an effect similar to that
of dysregulated CD36 and exhibiting the Warburg
effect. Specifically in CRC, disrupting CD36
expression in both inflammation-induced CRC
models and ApcMin/+ mice models increases CRC

tumorigenesis [132].

TGF-B receptor type 2 (TGFBR2) mutations are
found in CRCs with microsatellite instability (MSI),
which are repeating stretches of DNA distributed
throughout the genome that are prone to high
mutation rate, accounting for 15% of CRC cases
[133]. TGFBR2 mutations are also found in CRCs
with loss of heterozygosity and chromosomal
instability, in which unstable chromosomes or parts
of chromosomes are duplicated or deleted,
accounting for 85% of invasive CRC cases [133].
Most CRC cells with high levels of MSI have
TGFBR2 mutations, because TGFBR2 carries
microsatellite sequences [134]. As a result, a
disruption of TGF-B signaling is a pivotal cause of
many molecular subtypes of CRC pathogenesis
[134]. TGFBR2 mutations occur in around 30% of
CRCs and is the most common mechanism that
results in altered TGF-B signaling [135]. In MSI
CRCs, TGFBR2 frameshift mutations have been
found in over 80% of cases [136], supporting its
important role as a tumor suppressor especially in
MSI CRC. TGFBR2 normally activates TGFBRL,
which then phosphorylates Smad2 and Smad3,
transcription factors that bind to Smad4 in response,
and together, they regulate the transcription of TGF-
B-responsive genes that are associated with

malignancies [137]. Several TGF-B-responsive genes
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code for CDK inhibitors p15, p21, and p57 [138], So

when Tax inhibits Smad2/3 and Smad4 and abrogates
TGFBR2 mediated gene transcription, it leaves
CDKs highly active. Since the reconstitution of
TGFBR2 in MSI CRC cell lines decreases CDK4
activity, leading to a decrease in cellular proliferation
[139], the lack of CDK inhibitors and resulting
proliferation caused by Tax is a factor contributing to
MSI in CRC. Besides that, TGFBR1*6A, a common
hypomorphic variant of TGFBRL1, has been found to
account for 3% of all CRCs, a percentage that is
higher than that of mismatch repair genes MLH1,
MSH2, MSH6 and PMS2 [139], which already cause
distinguishable cancer risk profiles [140], so the
effect of Tax’s disruption in TGF-B signaling on
CRC is comparable to that of established CRC
biomarkers.

The genes SMAD2 and SMAD4 belong on
chromosome 18g21, which is frequently affected by
loss of heterozygosity (LOH) in MSI CRC [133].
This can cause SMADA4-deficient CRC, which has a

low survival rate [133]. Additionally, the Cancer
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Genome Atlas database indicates SMAD4 as one of

the most frequently mutated genes in CRC [141].
RNA sequencing comparing SMAD4-proficient and
SMADA4-deficient mice epithelial colon cells showed
an upregulation in many inflammation genes [142].
By inhibiting SMAD4, Tax produces an effect
similar to that of LOH in MSI CRC and predicts a
low survival rate. Ccl9 is an upregulated gene in a
SMADA4-deficient intestinal tumor mouse model, and
it cooperates with Ccrl to recruit myeloid cells to
promote invasion and metastases [143]. A similar
situation of increased levels of myeloid-derived
suppressor cells was found to promote human CRC
progression [144]. An increased presence of myeloid-
derived suppressor cells correlates with poor
prognosis and reduced survival in cancer patients
[145]. Upregulated Ccl9 and Ccrl along with
increased myeloid cell levels can be caused by Tax,
leading to poor prognosis and reduced survival.
Lastly, the loss of SMAD4 is a predictive biomarker
for chemoresistance in 5-FU-based chemotherapy
[133], indicating that Tax can contribute to

chemoresistance in 5-FU-based chemotherapy.
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Discussion

In the PI3K pathway, Tax increases the activity of
CREB1, MDM2, and RACL1, tumorigenesis genes,
while downregulating CASP9 during the transition of
a normal duct to PanIN-1A and PanIN-1B. Tax
stimulates NF-xB transcriptional activity by
phosphorylating IKK a and B, degrading IxB, and
phosphorylating the p65 subunit of NF-xB. An
overactive p65 subunit of NF-xB increases ZEB-1
and ZEB-2 expression, a characteristic of the EMT
phenotype in pancreatic cancer. In the p16-cyclin D1-
CDK4/6-Rb pathway, Tax activates CyclinD1,
CDK4, and NDR1/2 kinase, leading to cell cycle
progression, and Tax inhibits p16, whose gene is
dysfunctional pancreatic ductal adenocarcinomas.
The inhibition of Smad2/3 and Smad4 in the TGF-
pathway by Tax induces EMT and a may bring
change towards a cohesive migratory phenotype in
pancreatic cancer cells. Inhibition of p16 is usually an
early effect of pancreatic cancer, while p53 inhibition
is a late-stage effect [146]. Tax simultaneously
affects proteins in pathways containing pl6, p53,
ErbB, Jak-STAT, VEGF, and TGF-B, which are
normally mutated in different stages in the
progression of pancreatic cancers not involving
HLTV.

Tax is able to replace the effects of the BCR-ABL
oncogene in CML by activating PI3K and its
downstream targets, CREB1 and MDMZ2, and
inhibiting CASP9. Through PI3K, Tax activates Akt
and subsequently mTOR, which activates cyclinD1
and CDK in the cell division process. IKK is
activated by Akt in BCR-ABL1-mediated
leukemogenesis in CML, and Tax induces the same
effects. Tax’s activation of the PI3K pathway
activates MDM2, which inhibits pl4ARF, a tumor

suppressor, but Tax cannot initiate CML
Fortune Journal of Health Sciences
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leukemogenesis through both pl4ARF and p53
simultaneously. Tax inhibits p16INK4a and prevents
the inhibition of CDK4/6, allowing CDK4/6 to
inhibit the tumor suppressor Rb, which is associated
with the megakaryoblastic crisis in CML. Rb also
increases E2F activity to promote the progression of
the S phase in the cell cycle. Tax prevents Smad2/3-
TRIM33 complex activity, which prevents
hematopoietic progenitors from differentiating in
CML. EVI1 recruits HDAC, which represses TGF-p
signaling, but it also negatively regulates Tax, so
inhibiting HDAC may work against HLTV-positive
cases of CML.

Tax suppresses pl5INK4b, which allows for CDK4
activity, an event common to multiple cancers,
including SCLC. Tax mimics the activity of K-Ras
by activating IKK, leading to NF-xB activation,
which along with p53 suppression, creates a cycle of
increased NF-xB and inhibited p53 that furthers
SCLC. Tax activates PI3K, which catalyzes PIP2 to
form PIP3, and with Tax downregulating PTEN,
PI3K inhibition is not a viable treatment in HLTV-
involved SCLC. The increased cyclin and CDK
activity caused by Tax inhibits Rb activity in SCLC,
and Rb inactivity along with TP53 inactivity are
exhibited in over 90% of SCLC cases. EZH2 is an
upregulated gene in SCLC as it activates E2F, a gene
that Rb normally inhibits. With Rb inhibited, Tax
produces effects similar to EZH2 by increasing E2F
activity. Tax activates MYC through NF-«xB, and
MYC suppresses pl6INK4a and p2l1 and thus
activates CDK4/6-CyclinD1 and represses Rb,
playing a pivotal role in SCLC.

Tax activates Racl and downstream genes NFKkB,
KRAS, MAPK, NOX1, PAK, which are involved in

the oncogenic process of CRC, and B-catenin, which

Vol. 4 No. 1 - March 2021 180



Fortune J Health Sci 2021; 4 (1): 160-190
activates GLUT1, HK2, PKM2, and LDHA,

promoting the Warburg effect in CRC. Cyclin D1 is
activated through both  B-catenin and the
TGFB/SMAD pathway. These p-catenin related
effects mimic the mutation of both APC, a tumor
suppressor mutated in 80% of CLC cases, and CD36,
a tumor suppressor that is highly associated with a
poor survival rate in CRC. Tax opposes TGFp
signaling by inhibiting the activity of a complex
between Smad2/3 and Smad4, resulting in excessive
Ccl9 activity and reduced production of CDK
inhibitors p15, p21, and p57. Tax activates PI3K,
which combined with KRAS inactivity, renders
EGFR inhibition and MEK inhibition therapies
ineffective against CRC. PI3K activation also

promotes apoptosis-resistance through Bax and BAD.

Tax influences many genes involved in pathways
other than that of adult T-cell leukemia, contributing
to the development of pancreatic cancer, CML,
SCLC, and CRC, statistically significant pathways
related to the HLTV Tax interactome by the EASE
Score  calculation and  Benjamini—-Hochberg
Procedure. The specific gene interactions allow for
greater clarity for researchers in developing drugs,
for HTLV-1-infected cancer patients in selecting
treatment options, and for potentially HLTV-infected
individuals in identifying their cancers. As HTLV-1’s
effects are not limited to ATL, cancer patients with
pancreatic cancer, chronic and acute myeloid
leukemia, small cell lung cancer, prostate cancer,
non-small cell lung cancer, colorectal cancer, glioma,

and melanoma should also get tested for HTLV-1.

HTLV-1 is a neglected public health problem: it is
estimated to infect 10 to 20 million people
worldwide, but is only associated with disease in
around 5% of infected individuals [147]. This leaves

9.5 to 19 million people unaware of the existence or
Fortune Journal of Health Sciences

DOI: 10.26502/fjhs016
the significance of their infection. The discovery of

associations between HTLV-1 and ten different
cancers sheds light on the significance of being
infected with HTLV-1, and this study created a large-
scale explanation of why being infected with HTLV-
1 increases the risk of four cancers that are
remarkably different from ATL. Although evidence
of HTLV-1’s presence in cancers other than ATL has
been found before, the molecular events behind the
conditions were not well-characterized until now.
The elucidation of the molecular mechanisms in
HTLV-1-associated cancers of the pancreas, myeloid
tissue, lungs, and intestines can assist researchers and
physicians in diagnosis, evaluating prognosis, and

treatment.
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