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Abstract 

Multidrug - resistant (MDR) bacteria are considered life-threatening and need fast identification and antibiotic 

sensitivity testing to overcome this problem. In the current article, we highlighting the potential of developing silver 

Nanoparticles (AgNPs) using Cinnamomum zylinicum bark extracts as a promising approach. UV, SEM, TEM and 

FT-IR analysis were carried out to characterize the biosynthesized AgNPs. UV-visible spectroscopy showed the 

presence of characterized peek at (420 nm), TEM showed spherical shaped and monodispersed nanoparticles of size 

range 10 to 78.9 nm and FT-IR spectrum confirmed the presence of various functional groups in the biomolecules 

which serve as a capping agent for the nanoparticles. Biosynthesized (AgNPs) have been evaluated as an 

antibacterial against MDR gram-negative bacteria Acinetobacter baumanni, Klebsiella pneumoniae, and 

Pseudomonas aeruginosa strains and gram-positive bacteria Staphylococcus aureus. The results showed that 

obtained silver Nanoparticles are efficient in inhibiting both gram-positive and gram-negative bacteria when 

compared with antibiotic giving a zone of inhibition of 25 mm against S. aureus, 24 mm against K. pneumonia, and 

P. aeruginosa and 22 mm against A. baumanni respectively. Furthermore, the effectiveness of AgNPs against these 

test strains was assessed with multiple broad spectrum antibiotics. The results demonstrated that the incorporation of 

antibiotics with AgNPs has amazing antibacterial effects. The highest extent was observed with gentamycin against 

S. aureas, K. pneumonia, P. aeruginosa and A. baumanni, respectively. The minimum inhibitory concentrations 

(MICs) of AgNPs were also determined using microdilution assay. This study gives encouragement that AgNPs can 

be used to improve the effectiveness of the current antibiotics against MDR bacteria.  
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1. Introduction 

Nanotechnology is the potential future solution for the elimination of antibiotic-resistant microbes, which can 

stimulate the creation and synthesis of a new generation of antibiotics [1]. Nanotechnology has an important role in 

promoting the treatment of highly virulent bacterial diseases, especially those that resistant to antibiotics and are 

difficult to control with traditional treatments [2-6]. The antibiotic resistant bacteria has increased rapidly in the last 

few years, and become a growing problem that has impacted the world and brought about the beginning of the end 

for the old generation of antibiotics [7]. The miss-use of traditional antibiotics to combat bacterial infection has led 

to the current and major challenge of resistant bacteria, especially the multi-resistant bacteria (MDR) such as 

Methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pneumonia, and Neisseria meningitides [8]. It 

is known that silver is capable of killing 650 microbial germs that harm the human body [9]. Extensive studies have 

been carried out in evaluating antibacterial potentials of Nano particles. The antibacterial effects exhibited by NPs 

accentuate the potential of their advancement into future generation of antimicrobial agents [10]. NPs derived from 

plants that manifest promising antibacterial activities have high potential to be developed into future antibacterials 

mainly due to their low toxic effects [11].  

 

NPs have been previously reported to inhibit gram-positive bacteria such as Staphylococcus spp [11, 12] 

Streptococcus spp. [13], and Bacillus spp [14, 15], and gram-negative bacteria such as Escherichia spp [16], 

Pseudomonas spp [17], Salmonella spp [18], Shigella spp [17, 21], Proteus spp. [21, 22], and Vibrio spp. [21, 23]. 

More promising, NPs have also shown potential to inhibit antibiotic-resistant bacteria such as Methicillin-resistant 

S. aureus (MRSA) [24, 25] and drug-resistant E. coli [26]. Previous studies have also manifested the diverse 

mechanisms for the silver Nanoparticles’ bactericidal effect. Besides that AgNPs interact with the surface of the 

membrane, they can also penetrate into the bacterial cell membrane [27]. Moreover, silver Nanoparticles can attach 

to the DNA inside the bacterial cells, suppressing its replication or interaction with the bacterial ribosome [28]. It 

has been observed that silver Nanoparticles have the ability to damage the structure of the bacterial cell membranous 

enzymes, which cause bacterial death eventually [29]. The goal of this study is to develop new therapeutic 

antibacterial drug using silver Nanoparticles to combat the growing threat of antibiotic-resistant bacteria.  

 

2. Materials and Methods 

2.1 Bacterial identification  

Nutrient broth and Nutrient agar, Mueller Hinton Broth (MHB), Mueller Hinton Agar (MHA), silver nitrate, were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). The Staphylococcus aureus, Acintetobacter baumanni and 

Klebsiella pneumoniae, and Pseudomonas aeruginosa mutans strains used in the present study were collected from 

King AbdulAziz hospital, Mekkah, KSA. All four strains were routinely grown in nutrient agar at 37°C. The 

characterization of bacteria was performed as outlined by Kalimuthu et al. [30]. The morphological characterization 

was carried out according to the methods indicated in Bergey’s Manual. Molecular characterization was conducted 

using the 16s rRNA technique. The nucleotide sequences of resistant strains of P. aeruginosa and K. pneumoni have 

been submitted to GenBank under accession no. MN121254, MN121255, MN121256, and MN121250 respectively. 
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2.2 Preparation of aqueous extract of C. zylinicum 

10 gm of Barks of C. zylinicum were used for biosynthesis of the AgNPs due to its cost effectiveness, ease of 

availability and medicinal properties. C. zylinicum was homogenized into fine powder and boiled with 100 mL 

distilled water for 30 min at 60°C and the extract was obtained after filtration through Whatman No. 1 filter paper 

and was used for biosynthesis experiments [31]. 

 

2.3 Biosynthesis of AgNPs using C. zylinicum aqueous extracts 

10 mL of aqueous extract of C. zylinicum was mixed with 1 mM of silver nitrate solution (100 mL) in the dark 

condition for 24 h. The synthesis of silver nanoparticles was done at 60°C by adding the aqueous extract of C. 

zylinicum drop by drop on magnetic stirrer. A change in the color of the solution from light yellow to dark brown 

indicated the synthesis of AgNPs. The obtained yield of AgNPs was calculated according to Kalishwaralal et al. 

[32].  

 

2.4 Characterization of synthesized silver nanoparticles 

The biosynthesized AgNPs were characterized according to the method described by Gurunathan et al. [33]. UV-vis 

spectra were measured using a (UV-2450, Shimadzu, Tokyo, Japan). The shape and size of silver nanoparticles were 

determined by TEM. For TEM, a drop of aqueous silver nanoparticles sample was fixed on a carbon coated grid, 

and let dry in room temperature; the micrographs were acquired using TEM. The particle sizes were measured by 

dynamic light scattering (DLS) using a Zetasizer Nano ZS90 (Malvern Instruments, Malvern, UK). Fourier 

transform infrared spectroscopy (FT-IR) (Thermo Scientific Smart iTR™ ) was used to characterize the changes and 

the composition on the surface of the synthesized nanoparticles. 

 

2.5 Determination of the minimum inhibitory concentrations (MICs) of AgNPs 

Two-fold broth microdilution of AgNPs and different antibiotics were carried out in 96-well microtiter plates using 

MHB according to the Clinical and Laboratory Standards Institute (CLSI 2005). To examine AgNP MICs, S. 

aureus, A. baumanni and K. neumoniae, and P. aeruginosa mutans strains were exposed to 0-10 µg/mL AgNPs 

prepared in phosphate-buffered saline (PBS). Each concentration of AgNP solution was mixed with 1 mL of the 

bacterial suspension in MH media until the final concentration of bacteria is ~10
5
-10

6
 (CFUs)/mL O/N. Then, 10-

fold dilution has been done and 100 µL of which was cultured on MH agar media. The viability loss was estimated 

by colony counting method and compared with those on control plates (AgNP free MH media). All experiments 

were performed independently in triplicate. The MIC was defined as the minimum concentration of AgNPs that 

inhibit the growth of bacteria. Control tests were carried out with solutions containing all the reaction components 

except for AgNPs. In addition, different concentrations of antibiotics alone, AgNPs alone, and/or a combination of 

both were carried out in different microtitre plates under the same conditions. The optical density of each well was 

measured at 600 nm by using ELISA reader. All samples were repeated trice and the average values were calculated 

independently.  
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2.6 Agar diffusion assay 

The agar diffusion assay was accomplished as illustrated by Shahverdi et al. The bactericidal activity of antibiotics 

in combination with or without AgNPs was tested against bacterial strains on Mueller Hinton Agar plates. Broad-

spectrum antibiotics were selected to analyze the combined effect of antibiotics and AgNPs. According to CLSI 

standard, antibiotics were used at appropriate concentrations as follows: amoxycillin (10 µg/mL), cefatoxime (25 

µg/mL), sulbactam (15 µg/mL), gentamicin (20 µg/mL), and flucoxacilin (30 µg/mL). Each filter disk was soaked 

with the minimum inhibitory concentration of AgNPs for each bacterial strain. A single colony of each test strain 

was grown overnight in MHB on shaker with (200 rpm) at 37°C. 0.5 McFarland standard was composed by diluting 

the overnight bacterial cultures with 0.9% NaCl and then plated on MH agar plates together with the prepared disks 

containing several antibiotics. Similar experiments were executed with AgNPs alone. After incubation at 37°C for 

24 h, a zone of inhibition (ZOI) was measured. The assays were completed in triplicate. The increment in 

antibacterial activity of different antibiotics has been calculated by the formula (B - A)/A x 100, where A and B are 

the ZOI for antibiotic and antibiotic+AgNPs, respectively [34]. 

 

2.7 Disk diffusion assay to evaluate synergistic effect 

To evaluate the synergistic effects of green synthesized silver nanoparticles with various antibiotics were studied 

according to [35] against MDR strain on MH agar plates using disk diffusion method. The antibiotic discs used were 

amoxycillin (10 µg/mL), cefatoxime (25 µg/mL), sulbactam (15 µg/mL), gentamicin (20 µg/mL), and flucoxacilin 

(30 µg/mL). The bacterial inoculum was diluted in 5 ml of NaCl to obtain 0.5McFarland and cultured on the plate. 

Each disc was soaked in 5µL of different concentration (10, 20, 40, 60, 80, and 100) µg/ml of AgNPs, and then the 

plates were incubated at 37°C overnight. The inhibition zones were measured as described by Fayaz et al. [35] and 

compared with those obtained from antibiotics which tested in Antibiotic susceptibility. Statistical analysis was 

performed using all the assays were performed in triplicate and the results are presented as means ± SD. 

 

3. Results and Discussion 

3.1 UV-Vis spectroscopy 

Addition of bark extract of C. zylinicum into the aqueous solution of silver nitrate produced a color change in the 

mixture to brown (Figure 3) duration the reaction period due to silver nanoparticles’ Surface plasmon 

resonance (SPR) excitation [36]. When 5 ml of bark extract of C. zylinicum was added to1 mM of silver nitrate 

solution (10 ml), the color of the solution changed from faint light to colloidal brown suggesting the formation of 

silver nanoparticles. UV spectra of Plasmon resonance band was observed at 420 (Figure 4) according to those 

reported by [37]. The UV-Visible spectra recorded after 1 h from the initiation of reaction. The results of the UV-vis 

spectra recorded, suggested that the bioreduction was achieved using C. zylinicum bark extract as reducing agent and 

that formation of silver nanoparticles occurred rapidly within 1h. These results were in agreement with that reported 

by Ahmed et al. who found that A. indica leaf extract was the most rapid reducing agent for silver nitrate solution 

and the UV-vis spectra was detected rapidly within 15 min indicating the formation of silver nanoparticles. 

 

https://www.collinsdictionary.com/dictionary/english/suggest
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Figure 2: Photograph of zone of inhibition of AgNPs/C.zylinicum, 

and AgNPs/Gentamycin, Gentamycin, and C. zylinicum barkextract 

against (A) A. baumanni , (B) K. pneumoniae, (C) P. aeruginosa, 

(D) S. aureus. 

 

 

 

 

                         

                     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      C. zylinicum extract          AgNO3                AgNPs 
 

Figure 3: (a) Light yellow color of the C.zylinicum bark extract, (b) 

1 mM of AgNO3 solution, (c) dark brown color of the reaction 

mixture indicating the formation of AgNPs. 

Figure 1: a Zone of inhibition (ZOI) graph of AgNPs/C. zylinicum, AgNPs/Gent, C. zylinicum 

extract, and Gentamycin against (A): A. baumanni, (B): K. neumoniae, (C): P. aeruginosa, and 

(D): S. aureus. 

 

a b c 



J Nanotechnol Res 2019; 1 (3): 095-107       DOI: 10.26502/jnr.2688-8521008 

Journal of Nanotechnology Research   96 

 

 
 

Figure 4:  UV-visible absorption spectrum of biosynthesized AgNPs by the reduction of AgNO3 solution with the C. zyilinicum after 1h. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Graph representing the distribution particle size of biosynthesized 

AgNPs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: SEM micrograph of synthesized silver nanoparticles using C. zylinicum 

bark extract magnified 750x. 
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Figure 7: Transmission electron microscopic (TEM) images of the biosynthesized AgNPs. 

 

 

 
 

Figure 8: FTIR analysis of biosynthesized AgNPs/C.zylinicum. 
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Tested strains 

Gentamycine 

(Standard 

antibacterial 

agent) 

*Diameter of 

inhibition 

zone (mm) 

produced by 

AgNPs  

(Mean ± SD) 

*Diameter of 

inhibition 

zone (mm) 

produced by 

AgNPs + 

antibiotic 

(Mean ± SD) 

 

 

MICs of AgNPs 

(µg/ml) 

 

 

p-value 

Staphylococcus aureus 0.46 ± 0.06 25 ± 0.20 4.8 ± 0.2 4.5 ± 0.04 0 .096 

Acinetobacter baumannii 17.3 ± 0.48 22 ± 0.21 19.9 ± 0.4 5.7 ± 0.02 0.057 

Pseudomonas aeruginosa  2.8 ± 0.20 24 ± 0.14 20.8 ± 0.3 3.1 ± 0.01 0.072 

Klebsiella pneumonia 20.7 ± 0.32 24 ± 0.19 21.5 ± 0.6 2.8 ± 0.03 0.01 

*Three repeats were performed for each tested strain 

p-value significant <0.05 

p-value non-significant >0.05 

AgNPs (20 µg/ml ), concentration of antibiotics (20 μg/ ml) 

 

Table 1: The antimicrobial activity (inhibition zone in mm) and the minimum inhibitory concentration values of the 

biosynthesized AgNPs against different bacterial strains. 

 

3.2 SEM, TEM and particle size  

The dynamic light scattering (DLS) profile of the synthesized AgNPs using C. zylinicum aqueous bark extract is 

shown in (Figure 5). The shape of the synthesized silver nanoparticles was analyzed by SEM magnified at 750x is 

shown in (Figure 6). The image obtained by the SEM showed spherical nanoparticles and some particles of irregular 

shape. As well as, the biosynthesized silver nanoparticles were studied by TEM. The image obviously showed that 

particles size were in the range from 10 to 78.9 nm (Figure 7). The nanoparticles are spherical shaped and 

homogeneous which comply with the shape of SPR band in the UV-visible spectrum. 

 

3.3 FTIR analysis of AgNPs 

FTIR analysis of silver nanoparticles was conducted to confirm the role of the plant extract as a capping and 

reducing agent and existence of specific chemical groups responsible for the characteristic chemical reactions 

of biosynthesized AgNPs (Figure 8). The broad band at 3353 cm
-1

 is due to stretching vibration of bonded and non-

bonded –O–H groups. The band at 1638 cm
-1

 are attributable to stretching vibration of carbonyl group which is 

characteristic for the secondary amides and other compounds containing C=O group [38]. The strong bands at 1413 

cm
–1

 correspond to the bending vibrations of CH which is indicative for the lignins presence. The observed peak at 

1302 denote C(O)–O stretching vibrations and –OH in plane vibrations/amide III (e.g. in aromatic ethers). The 

absorption bands at 1100-1000 cm
–1

 in the fingerprint region suggest several modes such as C-H deformation or C-

O or C-C stretching, pertaining to carbohydrates. The C-O-C groups exhibit strong bands at 1076 cm
–1 

[39]. The 
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absorbance bands at 539 cm
–1

 represent C-O-O and P-O-C bending of aromatic compounds (phosphates). The 

phytochemical constituents of C. zylinicum bark extract are expected to interact with metal salts through these 

functional groups and facilitate their reduction to nanoparticles [40]. 

 

3.4 Antimicrobial activity of silver nanoparticles 

Silver nanoparticles exhibiting antimicrobial activity against multidrug resistant bacteria, with different extents, as 

showed by the diameter of inhibition zone (Figure 1(A)-(B)-(C). The Gram negative bacteria (A. baumanni, K. 

pneumoniae, and P. aeruginosa) strains exhibited larger inhibition zones, compared with the Gram positive bacteria 

(S. aureus) (Figure 1D), that may vary because of the structure of the cell wall. The composition of Gram- positive 

cell wall contained a dense peptidoglycan layer composed of linear polyaccharide chains crossed through brief 

peptides forming a stiffer framework that makes silver nanoparticles hard to penetrate while there is a thin layer of 

peptidoglycan in Gram negative bacteria the cell wall [41]. The results of antibacterial activities of biosynthesized 

silver nanoparticles evaluated from the agar well diffusion method are given in (Figure 1). C. zylinica extract 

mediated silver nanoparticles revealed that the AgNPs showed great antibacterial activity against both gram negative 

and gram positive bacterial strain where the inhibition zone diameter were (25, 22, 24, and 24 mm) for S. aureus, A. 

baumannii, P. aeruginosa, and K. pneumonia, respectively (Table 1). However, gentamycine and C. zylinicum bark 

extract alone showed very low antibacterial activity because of the water medium of extraction as well as lower 

concentration used in the experiment. Although, it is to be presumed that, the tested bacterial strains were supposed 

to be resistant for gentamycine, it shows very low activity against A. baumanni, K. neumoniae, and P. aeruginosa, 

while it has no activity against S. aureus. Based on inhibition zone assay, biosynthesized silver nanoparticles 

combined with gentamycine antibiotic showed a great synergistic antibacterial activity against all tested bacterial 

strains (Figure 1).  

 

MIC was used to analyze the antimicrobial activity of silver nanoparticles. The technique which used to detect the 

MIC of silver nanoparticles is broth microdilution methods. The MIC is defined as the lowest concentration of the 

antimicrobial compound that inhibits the growth of a microorganism [42]. After 24 h of incubation at 37°C, no 

growth of A. baumanni, K. pneumoniae, and P. aeruginosa, and S. aureus in the microtitre plate supplemented with 

5.7, 2.8, 3.1 and 4.5 µg/ml of silver nanoparticles was observed, and the optical density was 0.041, 0.017, 0.038 and 

0.021, respectively. Therefore, the MICs were 5.7, 2.8, 3.1 and 4.5 µg/ml, respectively (Table 1). The biological 

characteristics of silver nanoparticles against microorganisms are underpinned by several mechanisms. Firstly, silver 

nanoparticles bind to negatively charged cell surfaces, alter cell membrane and cell wall physical and chemical 

characteristics and interfere with key functions such as permeability, osmoregulation, electron transport and 

respiration [27, 43, 44, 45]. Second, silver nanoparticles can interact with DNA, thiol group of L-cysteine protein 

and other phosphorus- and sulfur-containing cell constituents causing enzymatic dysfunction [43, 45, 46, 47]. 

Finally, the silver nanoparticles cause damage on proteins and DNA via release of reactive oxygen species (ROS) 

[48]. Third, Silver nanoparticles release silver ions, which generate a size and dose-dependent enhanced biocidal 

impact [45, 49]. 
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4. Conclusions 

Green synthesis of silver nanoparticles has a promising antibacterial action and has a great synergistic effect in 

enhancing the efficacy of antibiotics. There is now a huge effort in the production of extremely powerful and robust 

NPs for clinical use.  
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