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Abstract 

The presence of contaminants in the water is a 

problem that worries humanity since the consumption 

of water with inadequate concentrations of 

contaminants can cause serious problems to human 

health, and different technologies have been used to 

reduce or eliminate those contaminants in drinking 

water. Adsorption has been highlighted because of its 

low cost and simplicity removal process and, 

graphene oxide has been reported as excellent 

adsorbent because it has functional groups that offer 

stability, antifouling, and hydrophilicity, important to 

contaminants removal from water. The review of 

literature related to graphene oxide, water 

contaminants, and their impact on human health was 

the basis for the execution of the present work. A 

thorough analysis of each selected article and critical 

analysis were made to report the ability to remove 

contaminants and factors that can contribute 
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positively or negatively to the contaminants removal 

process. A total of 204 articles were selected, mostly 

published in the last 5 years, because advances in the 

use of graphene oxide as adsorbent are reported 

annually. This article will help to understand better 

that graphene oxide alone or combined can treat 

different contaminants from drinking water. 

 

Keywords: Graphene oxide; Adsorption; Organic, 

Inorganic; Biological; Radiological contaminants 

 

1. Introduction  

Water is a crucial element of human survival [1, 2] 

and development [3]. Clean water is a finite natural 

resource, and water consumption is soaring due to the 

rapid growth of the population [4, 5], industrialization 

[6-14] and critical disposition of water pollution [15]. 

Because of the problems illustrated in the current 

paragraph, the majority of issues that humankind is 

facing in this area are interlinked to the water quality 

or quantity concerns and, owing to these water 

problems, the severe impact on the human health 

includes lack of better sanitation, exposure to the 

pathogens via the recreation or food chain, etc. [16]. 

 

In recent years, innovative solutions have been 

devised in attempts to solve these issues for water 

environmental remediation [17]. For example, 

graphene-based nanomaterials [18] have exhibited 

many exciting properties. These include adsorption of 

metal and organic dyes, antimicrobial capability, and 

photocatalytic degradation of organic molecules [19]. 

Because of its unique structure (two-dimensional 

material) [20-30], graphene oxide (GO) have been 

intensively investigated [31], for drinking water 

treatment process. 

 

GO can be obtained from the oxidation of graphite 

[32-34] and its exfoliation [35]. GO is conventionally 

prepared by chemical oxidation of graphite using 

Brodie, Staudenmaier, Hummers methods [2,36-41], 

or some variations of these methods and subsequent 

exfoliation of graphite oxide using various reduction 

techniques like thermal, microwave, laser, etc. [42]. 

Graphene oxide can be combined with other 

nanomaterials such as CuO [43], Fe−Mg (hydr) Oxide 

[44], FeOx [45], MoS2 [46], Ag [47], TiO2 [48], 

Fe3O4 [49], ZnO [50], to form nanohybrids material, 

to remove contaminants from water efficiently. The 

present work will focus on collecting relevant 

information from studies already done related to the 

most used graphene oxide preparation methods, its 

application, and factors that affect the adsorption 

capacity on drinking water treatment. The work will 

be useful to the researchers associated with water 

treatment using graphene oxide because they may 

have relevant information in this review article. 

 

 1.1. General understanding of contaminants in 

drinking water 

Several are the causes (intrinsic and extrinsic) that 

contribute to the presence of contaminants in water. 

Ingesting unrecommended contaminant 

concentrations such as biological, organic, inorganic, 

and radiological can create collateral damage to living 

organisms such as plants, humans, animals, etc. 

Inorganic contaminants such as Fluoride, arsenic [51], 

lead, copper, mercury, chromium, cadmium [52, 53] 

may have geological or anthropogenic, natural 

deposits and industrial practices [54] as sources and, 

can cause health consequences such as cancer, human 

health, aesthetic [16] and skeletal deformity [51]. 

Organic contaminants such as pharmaceuticals [55], 

pesticides, synthetic and natural hormones, industrial 
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compounds, and personal care products, among others 

[56], usually the sources are agricultural, public 

hygienic, industrial and hospital, can cause cancer, 

hormonal disruptions and nervous system disorder 

[54] to the human body. Biological contaminants such 

as pathogenic organisms (bacteria, protozoan, and 

viruses) [53] are often caused by human and animal 

fecal waste [57], wastewater from sewage [54]. The 

contaminants' presence in drinking water can cause 

dysentery, cholera, and gastroenteritis can damage the 

nervous system (neurotoxins) and skin [54]. 

Radiological contaminants such as Uranium [58], 

alpha particles, beta particles, and photon emitters, 

radium 226 and radium 228 (combined) [54] can 

come from natural sources [58], some industrial waste 

[54] and can cause cancer [58], skin and nervous 

system toxicity [53]. In particular, graphene oxide 

(GO) nanosheet (oxygenated graphene sheets bearing 

carboxyl, hydroxyl, and epoxide functional groups) 

offer an extraordinary potential for making functional 

nanocomposite materials with high chemical stability, 

strong hydrophilicity, and excellent antifouling 

properties, all of which are promisingly exploited in 

water treatment processes. Most water-related 

applications of Graphene oxide have focused on its 

adsorptive [19] mechanism to remove different 

contaminants. 

 

2. Methodology 

The objetive of the review is to understand better the 

synthesis of graphene oxide, its evolution, and the 

different possible applications in removing biological, 

organic, inorganic, and radiological contaminants in 

the water. A total of 204 articles were mostly obtained 

through the Web of Science and analyzed, discussed, 

and compared according to the type of contaminants 

to be removed from the water and consider different 

factors that may improve water pollutants removal. A 

critical analysis of some literature was also made 

based on the experience and detailed explanation 

reported by other authors in different literature works. 

To better report up-to-date information, of the 204 

articles selected, the overwhelming majority were 

published between 2015-2020. 

 

3. Graphene Oxide Evolution and 

Preparation  

Several methods are used to produce graphene oxide, 

which provides distinctly different materials with a 

significant difference in the relative abundance of 

various functional oxygen-containing groups. The 

most common of them are Hummers and Brodie's 

methods [59-61], Staudenmaier method [62-64], 

Hofmann method [65, 66], and other modified 

methods such as modified Staudenmaier's method 

[67], modified Hofmann method [68], modified 

Hummer [69-74] and improved Hummer [75-77]. 

These standard methods have evolved since their 

discovery to the current date (see Figure. 1); they 

differ from each other because of the involved 

chemicals, oxidation time, and environmental safety; 

for example, C. Schafhaeutl, Brodie, Staudenmaier, 

and Hofmann's methods use strong chemicals, 

produce toxic gases and long oxidation time, 

compared to Hummers and Improved hummers 

methods. The choice of the procedure to be used 

depends on each methods advantages and 

disadvantages (see Table 1) and the purpose of the 

produced GO.  
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Figure 1: Evolution and difference between methods used to prepare GO using chemical oxidation. 

 

Since the works of literature, [87-91] and [92] shows 

the synthesis procedure of Graphene oxide using 

Brodie method, Staudenmaier method, Hofmann 

method, Hummers method, Marcano Improved 

Hummers method and modified Hummers method 

respectively. They provide distinctly different 

materials with a significant difference in the relative 

abundance of various functional oxygen-containing 

groups, significantly different properties [59], and 

different structures obtained. The distribution of the 

types of oxygen-containing groups available could 

affect the performance of the GO (or its exfoliated 

form, graphene oxide) materials in specific 

applications [83].  

 

 

Figure 2: Structure of graphene oxide produced using (a) Brodie and Staudenmaier methods, reprinted with the 

permission of [93]; (b) Hofmann method, reprinted from the literature [94] with the permission of Spring Nature and 

Copyrights Clearance Center – license number 4917670969786; (c) Hummer method, reprinted from the literature 

[95] according to MDPI policy and; (d) Modified method, reprinted from the literature [96] with permission of 

Elsevier and Copyrights Clearance Center – license number 4917460128617. 
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 Different structures of Graphene oxide (see Figure 2) 

produced using different methods is shown a few 

defects [59] and less oxygen [82] (see Figure 2a), 

more oxygen compared to Figure 2a (see Figure. 2b) 

and a higher proportion of C=O bond type (see 

Figures 2c and 2d). The O−C=O bond type 

occurrence indicates a significant presence of the 

carboxyl group [83]. 

 

Methods Advantages Disadvantages 

C. Schafhaeutl 

 

The earliest method [78]. 

 

Not clear about the type of graphitic 

oxidation [78]. 

Brodie 

 

 

 

Less aggressive [97]. 

 

 

 

Very long reaction time-up to several 

days; Have certain risk of self-ignition or 

explosion [98]; Lower sorption capacity 

and lower activity [59]. 

Staudenmaier 

 

Highly oxidized Graphene oxide in a single 

reaction vessel [99], compared to Brodie method. 

Large particles and lower interlayer 

spacing [100]; Hazard and time consumer 

[101]. 

Hofmann 

 

 

Avoid the usage of corrosive fuming HNO3 [102]; 

High degree of oxidation, small particles, 

compared to Staudenmaier method [100]. 

Risk of explosion [65, 103, 104]. 

 

 

Hummer 

 

 

 

 

 

Few hours to complete the reaction; Avoid the 

evolution of explosive ClO2 [105]; Eliminate the 

formation of acid fog [106]; Non-toxicity [107, 

108], compared to above methods. 

 

 

Toxic gases are produced [105, 109, 110]; 

The residual Na
+
 and NO3

-
 ions are 

difficult to be removed from wastewater 

formed [106]; Allows the diffusion of 

oxidizing agents into the interlayer spaces 

of graphite [111]. 

Improved 

Hummer [37]. 

 

Eliminate the generation of toxic gases, avoiding 

the NaNO3 [106, 112-114]; Large amount of 

oxidized graphite is provided [115-117]. 

Separation and purification processes are 

tedious processes [115]. 

 

Modified 

Hummer 

Improved level of oxidation and, therefore, 

product performance [115]. 

Production of NOx gases [102, 115]. 

 

Improved method 

[118]. 

 

Less acid used; Reduce the cost of waste-acid 

treatment as well as lowering the impact on the 

environment. 

The temperature must be well controlled 

to reduce the safety risk. 

 

Simplified 

Hummer [119]. 

Oxidized graphene without the use of a strong 

oxidation agent. 
- 

 

Table 1: Advantages and disadvantages of the Graphene oxide preparation methods, including some hummer’s 

modified methods. 
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4. Strategies for Graphene Oxide Application 

Many techniques have been utilized for water 

purifications, in which the adsorption is known as a 

simple, effective, and economical method to achieve 

high-performance water purification due to its high 

ability to remove various soluble and insoluble 

organic and inorganic contaminants [120]. Graphene-

based nanocomposites and its derivatives [52] are 

developed as the impressive adsorbent materials 

owing to its outstanding features [121]. Graphene 

oxide (GO) as the most studied graphene-derivatives, 

is a precursor material in graphene preparation and 

has a large number of carboxyl, hydroxyl [122-124], 

carbonyl, and epoxy carboxyl groups on its surface 

[125-127], which are responsible for binding both 

organic and inorganic species [128]. Graphene oxide 

is hugely hydrophilic and has oxygen functional 

groups on the structure [8, 129-137], making it ideal 

to be used in aqueous solution [125]. Water flow is 

afforded due to the spacing between nanosheets, 

which is typical of the order of 0.3-0.7 nm [138]. It is 

ideal for water permeation while blocking the 

transport of larger molecules [139]. Figure 3a shows 

the adsorption mechanism that graphene oxide has. It 

is possible to see that only water can pass from the 

graphene oxide layer; the large and small particles are 

blocked and not allowed to pass the GO layer. 

 

Many studies are made to prove the significant 

advantages that graphene oxide has in removing the 

contaminants from water. Graphene oxide, by itself, is 

an attractive adsorbent and becomes increasingly 

interesting in the removal of contaminants when 

combined with other nanomaterials, forming 

nanohybrids. To better understand the importance of 

graphene oxide in the contaminants removal process, 

table 2 shows different technologies and performance 

of graphene oxide to remove contaminants from the 

water. 

 

4.1 Strategies for using graphene oxide to remove 

bacterias from water 

Pathogens are microscopic, single-celled organisms 

that thrive in diverse environments, including water. 

To remove the harmful ones, LIU et al [140] studied 

the antibacterial activity of different graphene-based 

materials. They found that the produced graphene 

oxide had higher antibacterial activities than other 

studied materials (graphite oxide, graphite, and 

reduced graphene oxide), under similar concentration 

and incubation conditions. According to them, the 

reason for GO's excellent bacteria adsorption is 

related to the size [141] of diameter (small diameter 

has higher antibacterial activity than larger diameter). 

Another reason is related to stable dispersions with 

small nanosheets (because of carboxyl, hydroxyl, and 

epoxy groups introduced on graphene oxide sheets), 

thus offers more opportunities to interact with cells for 

cell deposition. They showed that the incubation time 

and nanomaterials concentration to remove E. coli 

from water have a relationship.  The loss viability 

increases from 49.1 ± 6.0% after 1h incubation to 69.3 

± 6.1% after 2h, and further increases to 81.5 ± 3.9% 

after 3h and 89.7 ± 3.1% after 4h. The loss of E.coli 

viability jumps from 10.5 ± 6.6% at the graphene 

oxide concentration of 5 μg/mL to 91.6 ± 3.2% at 80 

μg/mL. The majority of E. coli was killed after 

incubation with graphene oxide at 80 μg/mL 

concentration. 

 

Ming et al [142] studied the adhesion of bacteria to a 

graphene oxide film. They tested the interaction 

between graphene oxide film with several bacteria, 

such as Escherichia coli (E. coli), Staphylococcus 
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aureus (S. aureus), Shewanella-MR 1 (Shewanella), 

and Bacillus. They studied the ability to graphene 

oxide to get electrons to adhere to bacteria (see Figure 

3b). As an electron acceptor, graphene oxide was 

easier to get electrons from Shewanella than that of 

the other bacteria studied; it was why Shewanella's 

adherence to the GO film was low (below 3%). 

Moreover, the strategy of impressed current provided 

new insight into the increase in the adherence of 

bacteria. In this study, they also found that exerting a 

positive current would draw the electrons from 

graphene oxide and enhance graphene oxide ability to 

obtain electrons from bacteria, resulting in effective 

adsorption of bacteria on graphene oxide films. The 

ease that graphene oxide has to adhere to bacteria 

comes from the nature of graphene oxide to get 

electrons from bacteria. They also reported the 

dependency between the mass of graphene oxide and 

adherence effects toward different bacterias. Was 

possible to understand that when the graphene oxide 

film mass was in the range of 0.398mg to 3.184mg, 

the adherence percentages for E.coli changed from 

20% to more than 100%, while they changed only 

from 18.4% to 31.4% for S.aureus, from 12.0% to 

52.3% for Bacillus, and from 0.8% to 3.1% for 

ShewanellaMR-1. 

 

Akhavan and Ghaderi, [143] studied the toxicity 

against bacteria of graphene oxide nanowalls achieved 

by electrophoretic deposition of Mg
2+

 graphene oxide 

nanosheets. They reported that the bacterias were 

effectively damaged by direct contact with the 

nanowalls, very sharp edges of the, resulting in 

inactivation of the bacteria by the nanowalls; The cell 

membrane of S. aureus bacteria was more damaged, 

compared to the cell membrane of E. coli. Assigned 

the more resistance of the E. coli bacteria against the 

direct contact interaction with the nanowalls as 

compared to the S. aureus bacteria to the existence of 

an outer membrane in the structure of Gram-negative 

E.coli bacteria and the lack of such an outer 

membrane in the form of Gram-positive S. aureus 

bacteria. 

 

Rajapaksha et al [43] studied a hybrid GO-CuO to 

remove waterborne pathogenic bacteria (E. coli and S. 

Typhimurium bacteria). The resulting GO-CuO 

nanocomposite was found to be an extremely effective 

antibacterial nanomaterial, significantly inhibiting the 

growth of Escherichia coli and S. Typhimurium 

bacteria. The GO-CuONP nanocomposite revealed a 

moderate concentration-dependent antibacterial 

activity, with the inhibition increasing as a function of 

substrate concentration. The observed GO-CuONP 

could dramatically inhibit the growth of  E. coli and 

S. Typhimurium. The study shows that the ideal 

concentration of GO-CuONP for S. Typhimurium 

removal was 2mg/ml and 3mg/ml to remove E.coli; 

the removal capacity was ~98% and ~88%, 

respectively. The antibacterial activity of the 

GO−CuONP nanocomposite could arise from the 

combined effect of both the native graphene oxide and 

the surface deposited CuONP. However, it appears 

that the derived activity is mostly affected by the 

inherent antibacterial of the CuONPs; this means that 

the GO primarily acts as a scaffold structure. Were 

widely demonstrated that the results obtained are 

unsurprising because of the antibacterial activities of 

both CuO [144-147] and GO [148], are known. 

 

Song et al [149] studied the antibacterial properties of 

GO-Ag nanocomposites. Even requiring more 

investment, the combination exhibited great 

antibacterial activity, and the bactericidal process was 
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controlled within 25 minutes. They found that the 

antibacterial behavior of GO-Ag against both bacterial 

strains (E. coli and S. aureus) was not only a dose-

dependent process but also a time-dependent contact 

one. At 25 minutes, the antibacterial rates for E. coli 

reached 89.72%, 97.83%, 99.99%, and 99.99%, while 

the antibacterial rates for S. aureus were 70.32%, 

95.53%, 95.70%, and 97.65%, when the 

concentrations of GO-Ag were 40, 120, 200 and 280 

mg/L, respectively. GO-Ag was much more 

destructive to the cell membrane of E. coli than that of 

S. aureus, which could also provide evidence for the 

result mentioned above that antibacterial activity of 

GO-Ag against E. coli was more effective. Cell 

membranes were then first to be affected when the 

cells were exposed to harmful material. Negatively 

charged lipids quickly took up positively charged 

silver ions on cell membranes because of electrostatic 

attraction. 

 

Li et al [150] studied the multifunctional combination 

between Lysozyme (Lys), Tannic acid (TA) and GO, 

to remove bacterias from water. The results displayed 

high efficiency on the killing bacteria, both Gram-

negative bacteria (E. coli) and Gram-positive bacteria 

(S. aureus), and enhanced osteogenic differentiation. 

The results obtained can be justified by the natural 

characteristics from used materials; for example, 

graphene oxide kills bacteria through multiple ways: 

cutting the bacteria membrane by its sharp edge, 

inducing oxidative stress and, TA kills the bacteria 

through several mechanisms too, such as interacting 

with biomolecules and metal ions within bacteria, 

increasing the cell membrane permeability, 

destabilizing the cytoplasmic membrane, and 

changing protein to lipid ratios in the membrane. The 

incorporated GO, Lys, and TA play multimode in 

killing bacteria (see Figure 3c) because of their 

respective and different antibacterial mechanism. 

Under such multiple and different antibacterial 

mechanisms, if even one component was out of 

action, the antibacterial effect could be offset by 

another element, leading to high efficiency in killing 

bacteria. 

 

4.1.1 Effect of pH to remove bacterias from water: 

In addition to the contact time, size, and the 

concentration of the material in use, it was reported 

by Song et al [149] that the GO-Ag showed better 

antibacterial activity against both E.coli and S.aureus 

bacteria under the acidic condition in comparison to 

the disinfection of the same water at higher pH value. 

For E.coli, the antibacterial rates were 81.68%, 75.5% 

and 70.5%, and for S.aureus, the antibacterial rates 

were 58.23%, 45.96% and 40.6%, when the pH values 

were 5.5, 7 and 8.5, respectively. Different 

concentrations of silver ions released from AgNPs at 

varying pH values can explain the obtained results.
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Figure 3: (a) Mechanisms of GO adsorption, reprinted and modified from the literature [31] with permission of 

Elsevier and Copyrights Clearance Center-license number 4917471105182; (b) Schematic diagram of bacteria 

adhered on GO, reprinted with permission from literature [142], Copyright 2020, American Chemical Society, 

and; (c)  schematic diagram of multifunctional (TA-GO/ Lys)n to remove bacterias, reprinted with permission from 

literature [150] Copyright 2020, American Chemical Society. 

 

4.2 Strategies for using GO to remove different 

inorganic contaminants from water 

4.2.1 Heavy metals removal from water: Among 

the inorganic contaminants, heavy metals [151] and 

metalloids are the most harmful because they have 

high toxicity at low concentrations [152, 153]. Metal 

ions can easily interact with graphene derivatives 

because of the π-systems and carboxyl and hydroxyl 

groups on the edges and surfaces [154-156]. 

Graphene oxide has been studied to remove different 

types of inorganic contaminants from the water. Ain 

et al [74] have reported that magnetic graphene oxide 

can remove heavy metals (Pb
+2

, Cr
+3

, Cu
+2

, Zn
+2

, and 

Ni
+2

 ions) from water. The carbon material ability to 

adsorb metal cations from the solution depends on a 

range of parameters, including the mixture's pH and 

ionic strength [157]. The adsorption capacity of 

magnetic graphene oxide (MGO) was found to be 200 

mg/g for Pb
+2

, 24.330 mg/g for Cr
+3

, 62.893 mg/g for 

Cu
+2

, 63.694 mg/g for Zn
+2

 and 51.020 mg/g for Ni
+2

. 

The MGO increases by increased pH. High pH, the 

functional groups are deprotonated, and the surface of 

MGO becomes more negatively charged. More metal 

ions are attracted and attached to the surface of MGO 

due to the strong electrostatic [158] attraction, and the 

removal of efficiency is increased. 

 

4.2.2 Arsenic removal from water: Arsenic is one of 

the highly toxic and carcinogenic chemical elements, 

and its contamination in natural waters has become a 
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global problem [159]. Among the four different 

oxidation states of arsenic, As
3+

 is ten times more 

toxic than As
5+

 and seventy times more toxic than 

methylated arsenic compounds [160]. To remove 

those toxins from water, Wu et al [161] synthesized a 

magnetic Fe@Cu&GO composite by successive 

growth of Fe3O4 and CuO on the surface of GO sheets 

to remove arsenic (III/ V) from water and, they saw 

that graphene oxide increased the adsorption rate of 

As(V) and As(III) compared with Fe@Cu adsorption 

rate. They also compared the adsorbents results 

obtained from other research and concluded that the 

combination they made (Fe@Cu&GO) presents better 

As(III/ V) removal from water. The maximum 

amounts of adsorbed As(III) and As(V) were 70.36 

and 62.60mg/g, respectively. Pourbeyram et al [162] 

found high amounts of adsorbed As
3+

 and As
5+

 in the 

combination of graphene oxide and zirconium (GO-

Zr) nano-composite. The maximum adsorption 

capacity found in the study was 212.33mg/g and 

232.52mg/g for As
3+

 and As
5+

, respectively. 

 

β-FeOOH incorporated carboxylic graphene oxide 

nano-composite β-FeOOH@GO-COOH nano-

composite has removed 100% arsenic ions from 

water. The composite has shown tremendous 

adsorption efficiency even after 20 successive 

adsorption-desorption cycles and adsorbed >80% of 

both As(III) and As(V). The maximum adsorption 

capacity for β-FeOOH@GO-COOH was found to be 

77.5 and 45.7 mg/g for As(III) and As(V) ions, 

respectively. Figure 4a shows the bonding between β-

FeOOH@GO-COOH, As(III), As(V), and the 

stretching vibrations of As–O group in the As–O–Fe 

linkage at the surface of the β-FeOOH@GO-COOH 

composite. The adsorption behavior depends not only 

on the charge properties of the adsorbent surface but 

also on the specific interactions between functional 

groups on the adsorbent surface and the adsorbed 

species [163]. 

 

4.2.3 Mercury removal from water: Due to its 

volatility, persistence, and bioaccumulation, mercury 

(Hg) has been considered as one of the most toxic 

metals [164], which can affect the health of human 

beings [165]. To remove mercury from polluted 

water, Bao et al [166] reported in their research the 

higher Hg
2+

 adsorption capacity of Thiol-

functionalized magnetite/ graphene oxide (MGO). Its 

ability reached 289.9 mg/g in the solution with an 

initial Hg
2+

 concentration of 100mg/l. The adsorption 

capacity could be attributed to the affinity of Hg
2+

 by 

magnetite nanocrystals and thiol groups. Henriques et 

al [167] observed that GO macrostructures are a 

beneficial material on the sorption of Hg(II) from 

water solution. The different chemical surface 

modifications performed showed that the combination 

of oxygen and nitrogen functional groups (3DGON) 

increases by 96% the removal efficiency of Hg (II). 

 

Kabiri et al [168] studied a functionalized graphene-

based composite with a unique 3D architecture 

composed of graphene nanosheets decorated with 

αFeOOH nanoparticles and porous diatom silica 

microparticles and, the results showed high-efficiency 

adsorption of Hg ions in water. The adsorption 

performance for Hg removal was achieved with an 

adsorption capacity of ˃800 mg/g (at 400 mg/l Hg
2+

). 

Rathore and Biswas [169] showed that GO@SnS2 

exhibits highly selective and efficient removal of 

Hg(II) from the water with a capacity of 342.02 ± 

8.02mg/g. The highly accessible Hg(II) binding sites, 

S
2-

 from SnS2 and COO– on the GO surface, play a 

synergistic role in the effective Hg(II) capture. It can 
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sequester 99% Hg(II) selectively even in the presence 

of Na(I), K(I), Cs(I), Rb(I), Mg(II), Co(II), Cu(II), 

Ni(II), Zn(II), Pb(II), Cd(II), Mn(II), Fe(III) and 

As(III) with an extremely high separation factor. 

 

4.2.4 Fluoride removal from water: Fluorine, one of 

the 14 necessary elements to the human body and has 

a positive effect on human in a specific concentration 

(0.7mg/l), but excess fluoride intake (1.5mg/l) [170] 

is harmful to human [171] and aquatic organisms 

[172]. To Remove fluoride ion from polluted water 

using GO, Chakra et al [173] reported in their study 

the combination between GO and zinc oxide 

nanocomposite. The adsorption capacity of GO-ZnO 

nanocomposites for fluoride was 16.608 mg/g. The 

increase in the removal of fluoride point outs that the 

fluoride adsorption perhaps occurs due to the 

diffusion of intriguing position inside the pores on the 

adsorbent surface. The fluoride ions removal from the 

water rises with an increase in agitation time to a 

small degree. Prabhu et al [174] reported an 

alternative adsorbent for fluoride removal, assembling 

nano-sized hydroxyapatite onto graphene oxide (GO-

nHAp). 44.068mg/g was said to be the highest 

adsorption. Liu et al [175] reported the maximum 

adsorption capacity of 17.67mg/g in the study about 

defluoridation by rice spike-like akaganeite anchored 

graphene oxide. Shang et al [176] enhanced fluoride 

uptake by bimetallic hydroxides (Zr-La) anchored in 

cotton cellulose (CC)/ graphene oxide composites 

(Zr-La-CC/GO). They reported that fluoride uptake 

was significantly increased from 45.1mg/g to 

81.3mg/g with an increased pH from 2.5 to 3.0. Zr-

La-CC/GO nanocomposites exhibited higher fluoride 

adsorption at lower pH conditions. It was reasoned 

that it could selectively adsorb the fluoride ions onto 

the positively charged Zr and La hydroxides and 

formed Zr-F and La-F complexes in the inner-sphere 

composites (see Figure. 4b). They protonated the 

Zr/La species in an acidic environment, which favors 

F
-
 or HF adsorption based on electrostatic attraction. 

At the equilibrium stage, the fluoride uptake capacity 

onto Zr-La-CC/ GO nanocomposites was about 

38.8mg/g. Wang et al [177] studied the synthesis of 

(ZrO2-Al2O3)/GO nanocomposite for high 

defluoridation. The results show a maximum fluoride 

adsorption capacity of 62.2mg/g and adsorption 

ability of 13.80mg/g when the F
-
 equilibrium 

concentration is 1mg/l. Figure 4c indicates that all 

three components (ZrO2, Al2O3, and GO), prepared by 

the sonochemical method and incorporated together, 

can significantly improve adsorption capacity. 

 

4.2.5 Copper removal from water: Cu
2+

 ion is an 

essential ion in biological systems, such as various 

redox processes and enzyme functions. Deficient or 

excessive Cu
2+

 ion levels are usually associated with 

some severe disorders [178]. Copper excess may 

severely affect the ecological cycle and, subsequently, 

human health [179], and the recommended 

concentration in drinking water has to be below 2mg/l 

[180]. To maintain potable water with recommended 

copper concentrations, Huang et al [181] studied a 

molecular beacon and GO-based fluorescent 

biosensor for Cu
2+

 detection; Zhang et al [182] 

studied the synthesis of nitrogen-functionalized 

graphene oxide for copper adsorbent; Wang et al 

[183], learned a graphene quantum dots as a 

fluorescent sensing platform for highly Cu
2+

 detection 

and, Shao et al [184], studied a nanoscale zero-valent 

iron decorated on bentonite/ graphene oxide for 

removal of copper ions. They found ~50nM as 

detection limit, 26.7451mg/g as adsorption capacity, 
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0.226μΜ as detection limit, and 184.5mg/g as 

maximum adsorption limit, respectively. 

 

4.2.6 Other important factors to consider to 

remove inorganic contaminants from water 

4.2.6.1 Effect of contact time: The contact time 

required to achieve more excellent performance to 

remove heavy metals from water depends on the 

combination of materials or the type of material used. 

For example, Ain et al [74] reported that the best 

results of removing heavy metals (Pb
+2

, Cr
+3

, Cu
+2

, 

Zn
+2

, and Ni
+2

 ions) from water, was verified from 25 

to 35 minutes. The study reported by Pourbeyram et 

al [162] shows that the adsorption of As(V) on the 

nanocomposite increased rapidly during the first 5 

minutes and gradually increased and finally reached 

equilibrium after 10 min. In the same condition, the 

removal of As(III) took some more time than As(V). 

The study made by Rathore and Biswas [169] 

reported results close to 100% of Hg(III) removal, 

although the long contact time required (close to 1500 

minutes) to achieve the maximum reduction of 

Hg(III). The reference [173] illustrates fluoride 

removal in the range of 0-240 minutes. The fluoride 

percentage values were escalating linearly up to 40 

minutes; afterward, it remains nearly invariable, 

signifying the accomplishment of adsorption 

equilibrium; suddenly, at 200minutes, it showed an 

increase in value up to 240 minutes. Therefore 240 

minutes showed the highest defluoridation (83%). The 

study made by Prabhu et al [174] reports an increased 

defluoridation capacity in the contact time from 5 to 

25 minutes, resulted in an increase in the adsorption 

capacity from 78% to 96%, which indicates that the 

number of active sites gradually occupied. The 

sorbent's defluoridation capacity was almost saturated 

at 25 minutes and reached a maximum of 96%. 

4.2.6.2 Effect of pH: pH is the most crucial factor in 

the liquid-solid adsorption procedure [162]. To get 

satisfactory results in removing pollutants, it is 

essential to know the ideal pH to be used. It's 

important to realize that the same or different 

materials may require different pH to remove various 

water contaminants. The study from reference [161] 

demonstrates the adsorption capacity of As(III) and 

As(V) over a pH range of 3 to 10 and reveals that the 

use of different pH can efficiently remove As(III) and 

As(V). For example, to remove the maximum of 

As(V) was necessarily verified an acid pH (pH=3), 

and the maximal removal of As(III) was with pH in 

the range of 8 to 10, which was explained by the 

possibility that more OH
−
 competed with arsenate 

anions for active sites at higher pH conditions. The 

effect of fluoride adsorption shown by Prabhu et al 

[174] indicates that the maximum fluoride uptake 

between the pH ranges 3–7 reached saturation. The 

pillar-like support of graphene oxide materials would 

make the benefit of the growth of hydroxyapatite 

materials using a large number of functional groups 

like -OH, -COOH through hydrogen bonding and van 

der Waals forces of attraction which would attract 

more fluoride ions in acidic condition by electrostatic 

attraction (96%). The adsorption capacity reported by 

Liu et al [175] towards fluoride showed a similar 

uptake rate when pH values ranged from 2.1 to 10.4, 

with the maximum adsorption rate around 80%. The 

adsorption of fluoride results in an apparent drop from 

pH 11.1 to 12.7, even dropping from 45.8% to17.6%. 

In the removal of Cu(II) and Cr(VI), Kumar et al 

[179] reported that the best results of adsorption 

capacity were ~200mg/g and ~340mg/g, with pH=5 

and pH=3, respectively. According to reference [184], 

the pH of the solution was among the most critical 

factors that affected the removal efficiency of Cu(II) 
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for the surface speciation of the adsorbent in contact 

with the solution and speciation of Cu(II) in solution. 

The removal efficiency of Cu(II) increased with the 

change in pH from 2 to 6. They also found that Cu(II) 

absorption depends mostly on pH, with higher 

sorption of cations at high pH and higher sorption of 

anions at low pH. The removal efficiency of Cu(II) 

was very low; only 3% to 10% of Cu(II) had been 

removed when the pH was 2. One of the main factors 

was that fewer surface active sites of adsorbents could 

be accessible to Cu(II) because at low pH was 

possible to see the competition between Cu(II) and 

(H
+
). In acidic environments, iron particles can be 

corroded by (H
+
), resulting in fewer iron particles 

reacting with Cu(II). When the pH value of the 

solution was 5, the removal efficiency of Cu(II) 

reached a relatively high result (86%), and the 

maximum adsorption was 93% at pH=6. 

 

 

 

 

 

 

Figure 4: (a) bonding between β-FeOOH@GO-COOH, As(III) and As(V), reprinted from reference [163] with the 

permission of Elsevier and Copyrights Clearance Center – license number 4918011449709; (b) Zr-La-CC/GO 

nanocomposites fabrication and adsorption schemes, reprinted from reference [176] with permission of Elsevier and 

Copyrights Clearance Center – license number 4917470394440; (c) (ZrO2-Al2O3)/GO fabrication and its 

performance, reprinted and modified from reference [177] with permission of Elsevier and Copyrights Clearance 

Center – license number 4917461236318. 

 

4.2.6.3 Effect of concentration: Henriques et al 

[167] showed a direct proportionality between 

increasing the sorbent concentration and the efficient 

removal of Hg(II). The results show that higher 

percentages of Hg(II) removal are obtained with 

increased sorbent concentration, from 33% to 96% for 
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doses 1 to 20 mg/l, respectively. It was evident that 

the increase of sorbent mass leads to a larger number 

of available coordination sites improving the removal 

efficiency of the sorbent. Whereas, the study reported 

by Shao et al [184] presents an indirect 

proportionality with the sorbent and removal 

efficiency concentration. The removal efficiency of 

Cu(II) shows that the initial concentration of Cu(II) 

greatly influenced the removal efficiency. When the 

initial Cu (II) concentration was 75 mg/l, the removal 

efficiency was the best, which reached 93%, and the 

adsorbent decreased with the increase of the initial 

concentration; this was due to the limited adsorption 

sites of the iron particles, and before the high 

concentrations of Cu(II) was adsorbed completely, the 

iron particles had reached a state of adsorption 

saturation. 

 

4.3 Strategies for using graphene oxide to remove 

different organic contaminants from water 

Organic water contaminants (e.g., pharmaceuticals 

and personal care products) are constantly emerging 

with the rapid advances in various industry sectors. 

Many of these emerging contaminants are commonly 

considered micropollutants and have potential adverse 

health effects [185], thereby raising severe public 

concerns about water safety [186]. Geng et al [187] 

studied humic acid removal using Fe3O4/TiO2-N-GO 

sonocatalyst with ultrasound assistance. The removal 

efficiency was 80% for sono-adsorption, and 93% for 

sono-photocatalysis. The increasing removal 

efficiency was contributed by cavitation effect caused 

by ultrasonic waves, and resulted in the formation of 

more OH and other radical species, allowing more 

humic acid to be removed. Tan et al [188] 

demonstrated a highly sensitive and selective 

fluorescent biosensor based on GO-hydrogel for 

antibiotic detection. GO hydrogels were prepared by 

physically mixing GO solution with adenosine. The 

fast gelation of the graphene oxide dispersion in the 

presence of adenosine may contribute to the 

electrostatic interactions and strong hydrogen bonding 

between the adenosine and the GO nanosheets. They 

related that adenosine contains more than one 

nitrogen (N)-containing functionality and can accept 

protons from the carboxylic acid groups (– COOH) of 

the GO sheets to participate in acid-base-type 

electrostatic attraction. Adenosine and aptamer were 

served together as cross-linkers between the GO 

sheets, as illustrated in Figure 5a. The aptamer can 

recognize and bind to their cognate targets with high 

specificity and affinity; these functional hydrogels 

were prepared primarily to target detection and 

adsorbed the aptamer probe on the GO sheets via the 

strong π–π stacking interactions. Thoroughly 

immersed in the GO-based functional hydrogel in 

antibiotic solutions, the aptamer would prefer to 

capture the antibiotic molecule to form a target-

aptamer complex (see Figure. 5b). The recoveries 

were acceptable and calculated to be in the range of 

96–117%. 
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Figure 5: Schematic of the fabrication of (a) GO hydrogel; (b) the mechanism of selective detection of antibiotics, 

reprinted and modified from reference [188] with the permission of Elsevier and Copyrights Clearance Center – 

license number 4917621275241. 

 

4.4 Effect of support membrane to enhance 

graphene oxide properties in pollutants removal 

from water 

Support membranes always have a place in the field 

of adsorption [165]; polymer macromolecules, such as 

polyvinylidene fluoride (PVDF), polyacrylonitrile 

(PAN), polyethersulfone (PES), polysulfone (PSF) 

and other materials have been used, owing to their 

respective advantages [8] such as flux, fouling 

resistance and life span [35]. The existence of 

graphene oxide in the membranes induce remarkable 

properties due to its intrinsic hydrophilicity, 

compatibility with the polymeric matrices, 

considerable negative zeta potential, and mechanical 

and thermal stabilities [10]. Zhao et al [31] reported 

that the PVDF support membrane by itself could 

remove dissolved organic carbon (DOC); at 120 

minutes, the maximum removal was ~30%. When 

modified, the PVDF with GO's presence, the DOC 

maximum removal, was ~70%. They also reported the 

removal improvement to UV254, and the results were 

~58% and ~70% for PVDF and PVDF-GO, 

respectively. The adsorption amount of membranes 

increased with the increasing number of GO layers, 

which might indicate the deposition of GO layers 

adsorption in the filtration process, which further 

improved the DOC rejection. It implied that the 

fouling layers on the modified membranes could 

improve the DOC rejection through size exclusion 

and also with increasing filtration time. 

 

Hu and Mi [21] reported a study of graphene oxide 

membranes' assembly via electrostatic interaction. 

The hydrolyzed polyacrylonitrile (hPAN) support was 

first immersed in the poly(allylamine hydrochloride) 

(PAH) solution to attach positively charged PAH and 

then in GO solution to deposit negatively charged GO 

on top of PAH (see Figure 6a), thus completing the 

assembly of the first GO–PAH bilayer on each side of 

the hPAN support (see Figure 6b). They used the 

Characterization techniques to confirm the successful 

assembly of multiple GO-PAH bilayers, 

understanding the structure of the GO membrane and 

quantify their composition and thickness. In low ionic 

strength solutions, the graphene oxide membrane 

retained a tight structure and exhibited a high 

rejection of sucrose (~99%). Wu et al [25] developed 

a SiO2–GO nanohybrid/ polysulfone membrane for 

egg albumin rejections and pure water fluxes. They 

compared the performance of different inorganic 

nanoparticles (Psf, SiO2/Psf, GO/Psf, SiO2-GO/Psf). 

They reported that all of the hybrid membranes have a 

higher water flux than pure PSF membrane, and SiO2–

GO/Psf hybrid membrane exhibited the excellent 
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enhancement. The SiO2–GO nanohybrid possesses 

extremely high hydrophilicity due to the synergistic 

effect of nano-sized SiO2 and GO. SiO2–GO 

nanohybrid demonstrated good dispersion and 

improved compatibility with the PSF matrix, 

contributing to the highly maintained egg albumin 

rejection. They also found that the egg albumin 

rejection rates of membranes decreased slightly with 

increasing amounts of SiO2–GO particles, staying at a 

relatively high level ( ˃98%). 

 

 
 

Figure 6: Schematic diagram of (a) LbL assembly of a GO membrane by alternately soaking an hPAN support 

substrate; (b) deposit of a prescribed number of graphene oxide–PAH bilayers on both sides of hPAN, reprinted 

from reference [21] with permission of Elsevier and Copyrights Clearance Center – license number 

4917481264067.  

 

Material/ Technology Contaminants to be removed Removal capacity: (mg/g) or (%) Ref. 

EDTA-magnetic GO 

 

 

Pb2+ 

Hg2+ 

Cu2+ 

96.6% 

96.1% 

94.3% 

[189] 

PVK-GO Pb2+ 888mg/g [190] 

GO-Magnetic Chitosan Zn (II) 71.4 mg/g [191] 

GO-AgNPs-MS 

 

E. Coli 

S. Aureus 

99.8% 

99.3% 
[192] 

SMGO Uranium - U(VI) 95.2% [193] 

Cu-GOS E. Coli ˃99.9% [194] 

CuO-GO Nitroaromatics 85% [195] 

GO-Ag E. Coli 85.6% [196] 

GO-γ-Fe2O3 

 

 

 

1-naphthol 

Bisphenol A 

Atrazine 

Dibutylphthalate 

680mg/g 

360mg/g 

200mg/g 

200mg/g 

[197] 

TiO2-GOFe3O4 Microcystin-LR 65-100% [198] 

MGO-Sr 

 

Phosphate ions 

Nitrate ions 

238.09mg/g 

357.14mg/g 
[199] 

Ox-GO-Zr Fluoride 9.70mg/g [200] 

PPY-GONC Cr (VI) 625mg/g [201] 

GO TC 323mg/g [202] 

Sp-GO/PLL 

 

E. Coli 

B. Subtilis 

61% 

59% 
[203] 

Fe3O4@DTSA-GO Hg (II) 283.5mg/g [204] 

GO-TiO2 

 

Carbamazepine 

Caffeine 
99% [29] 

Table 2: Technologies and performance in the removal of pollutants using graphene oxide. 
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5. Critical Observation 

Water is an essential and essential good for living 

beings. To obtain the potable water (safe for human 

consumption) still a real challenge for the whole 

world, especially for the less developed countries. 

With the discovery of new water treatment 

technologies using nanomaterials such as graphene 

oxide, are given different solutions to safely remove 

contaminants from the water with minimal possible 

water recontamination. The underdeveloped countries 

less use advanced technologies to remove pollutants 

from the water because the solutions proposed by 

many researchers to purify water are not economically 

viable. For example, the study showed by Song et al 

[149] even with fantastic results in removing bacteria, 

the nanomaterials used require more investment (are 

expensive); it shows that their study is useful only for 

developed countries. 

 

Using the same concentration and incubation 

conditions, LIU et al [140] reported that the graphene 

oxide showed to be the best nanomaterial to remove 

bacterias from water; but, the study reveals only the 

time and concentration-dependent and does there 

mention about the possible pH dependence, as 

reported by Ming et al [142]. Akhavan and Ghaderi 

[143] reported that higher bacterial toxicity shown 

was related more to sharpening the nanowalls edges. 

But, Rajapaksha et al [43] contradicting, said that the 

higher bacterial toxicity demonstrated in a similar 

study was not related to their sharp edges but related 

to the mechanism relied upon the contact between the 

graphene oxide and the bacterial cells. Another reason 

which eliminates the number of sharp edges present 

on the exposed GO surface was that the bacterial 

toxicity could be achieved using a Langmuir-

Blodgett-deposited GO film. According to the 

justifications presented by the two references, we 

agree with the connection shown by Rajapaksha et al 

[43] because many reasons could be related to the 

process to adsorb bacterias from water and, we should 

never limit ourselves to a single hypothesis, as 

happened with the literature Akhavan and Ghaderi 

[143]. 

 

The reference Shao et al [184] reports an indirect 

proportionality between copper ions removal and the 

concentration of the used material, which contrasts 

with what many kinds of literature such as Henriques 

et al [167] and Zeng et al [172] reported in their 

studies on mercury and fluoride removal, 

respectively. The indirect proportionality showed by 

Shao et al [184] can be related to the type of material 

and contaminants to be removed from the water. The 

same study did not report copper removal behavior in 

concentrations below 75mg/l, which could better 

understand the relationship between the material 

concentration and copper removal from water. 

 

6. Conclusion 

Using graphene oxide as adsorbent, biological, 

organic, inorganic, and radiological contaminants can 

be removed from water until safe for human 

consumption concentrations. Different methods used 

to prepare graphene oxide may have a positive or 

negative impact on the environment and adsorption 

capacity. Graphene oxide itself absorbs pollutants 

from water, but the adsorption capacity is improved 

when the GO is combined with one or more 

nanomaterials, forming nanohybrids. It was noted that 

the support membrane's presence also increases the 

adsorption capacity of contaminants that GO has. 

Factors such as pH, adsorption time, and 

concentration of adsorbent material play a significant 
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role in removing different pollutants. Different 

combinations of GO with other nanomaterials showed 

a higher capacity of adsorption of contaminants at 

different pH, time, and concentrations. In 

implementing water treatment projects using GO, it is 

essential to understand all factors that can allow us to 

achieve maximum adsorption of pollutants. 
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