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Abstract 

The outcomes for glioblastoma (GBM) patients remain 

dismal despite significant increases in our understanding of 

treatment-naïve disease biology and increased focus on 

clinical trials. Almost all patients experience disease 

recurrence. If we hope to develop more durable responses in 

this aggressive disease cohort, a better understanding of 

resistance mechanisms and drivers of GBM tumour 

recurrence will be needed. Here we review the findings to-

date of current advances in therapeutic development and 

biology of recurrent GBM, highlighting recent research and 

clinical trials breakthroughs. 
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1. Introduction 

Glioblastoma (GBM) is the most common and aggressive 

form of adult brain cancer. Prognosis is very poor with the 

majority of patients experiencing tumour recurrence within 

two years of diagnosis. The current standards of care add 

minimal survival benefit and include surgery followed by 

adjuvant radiotherapy and temozolomide (TMZ) 

chemotherapy [1]. It is now established that GBMs are highly 

heterogeneous tumours comprising significant numbers of 

cancer cells that reside in dynamic molecular cell states [2-

4]. Among this cellular milieu, lie cancer cells with the 

ability to evade current therapies either through senescence, 

DNA repair mechanisms or inherent stem cell-like 

characteristics [5]. In addition, these brain cancer cells are 

typically highly invasive and migratory making complete 

resection practically impossible. Adding complexity, is the 

fact that radiation and chemotherapy add significant therapy-

induced genetic alterations, ultimately increasing the 

aggressiveness of brain cancer cells and altering tumour 

evolution at recurrence [6]. During the past 30 years the 

neuro-oncology research community has largely focused 

their research efforts on understanding treatment naïve 

disease. This has left a knowledge gap with respect to 

resistance mechanism and drivers of GBM tumour 

recurrence. Recent efforts have sought to close this gap and 

increase our understanding of the biology of recurrent 

disease [7-9], better define resistance mechanisms [10] and 

develop and test new therapeutic approaches to treat this 

aggressive disease [11-13]. 

 

Historically, one of the biggest obstacles which has 

prevented clinical progress in the neuro-oncology field has 

been the blood brain barrier (BBB). The BBB works via 

endothelial cells restricting the passage of both small and 

large molecules into the brain [14]. This normal neuro-

protective mechanism significantly reduces the ingress of 

almost all molecular and antibody-based therapeutics. 

Unfortunately, the majority of clinical trials to-date, both in 

upfront and recurrent disease, have relied largely on systemic 

routes of administration. This has meant, in most cases, that 

these trials were destined to fail. In rapidly growing solid 

tumours such as GBM, vascular hyper-proliferation is 

common and consequently blood vessel formation is not 

always tightly regulated [15]. Evidence also exists that 

tumour cells with stem cell-like properties can differentiate 

into tumour-derived pericytes and endothelial cells [16]. 

These abnormal processes lead to the formation of large 

irregular, often oedematous, blood vessels within recurrent 

tumours with compromised BBB dynamics. This so-named 

blood tumour barrier (BTB) may add benefit for therapeutic 

penetrance in the recurrent setting, although this is a topic of 

debate [17]. Alternate surgical approaches such as 

convection-enhanced delivery (CED) rely on intrathecal 

administration of drugs directly into the tumour site, 

circumventing the BTB [18]. CED has been used in recurrent 

GBM patients to administer a modified form of inactivated 

polio virus (PVS-RIPO) with encouraging results [12]. A 

trait common to aggressive solid tumours is the ability to 

evade the immune system, a mechanism now well 

established in brain cancer [19]. Adjuvant immuno-oncology 

(IO) has essentially failed in clinical testing in GBM. A 

recent breakthrough has shown that checkpoint inhibitors 

when given neo-adjuvantly (prior to tumour resection) 

greatly increases IO efficacy [13]. This seminal study paves 
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the way for future neo-adjuvant approaches and provides a 

therapeutic modality with general applicability without the 

need for specialist techniques such as CED. Here we review 

the research and clinical trial literature with respect to recent 

perspectives and developments in recurrent GBM. The scope 

of this review covers critical aspects of tumour evolution, 

heterogeneity, BBB penetrance, tumour immunology, and 

recent clinical trials efforts.  

 

 

 

 

 

Figure 1: Central obstacles in the development of new therapeutic interventions in recurrent GBM. 

 

2. Tumour Evolution 

Understanding the genetic, epigenetic and transcriptomic 

differences that distinguish primary from recurrent GBM is 

critical to guide the development of successful targeted 

therapies. However, while primary GBM has been 

extensively characterised at the molecular level [2-4, 20-25], 

similar in-depth analysis is lacking in recurrent disease. Only 

recently have longitudinal studies begun to shed light on the 

spatiotemporal evolution of primary and recurrent tumours 

and studies with larger cohorts are finally beginning to 

emerge [5, 26]. 

 

2.1 Initiating events leading to tumour evolution 

Despite significant intra- and inter-tumoural heterogeneity, a 

common initiating pathway to GBM tumourigenesis 

involving chromosome 7 (gain) and chromosome 10 (loss) 

has been established, with copy number variants remaining 

stable between disease initiation and recurrence [7, 26-31]. 

Single nucleotide variants (SNVs) occur later during tumour 

development, classified as either clonal mutations, occurring 

in all tumour cells, or sub-clonal, occurring in a subset of 

cells. A prominent example of sub-clonal mutation is the 

mosaicism of focal amplifications of receptor tyrosine 

kinases (RTKs) [8, 32-34]. Mutations in PIK3CA, TP53, 
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ATRX and the TERT promoter are mostly clonal, truncal 

events acquired early during tumour formation and are 

thought to be responsible for driving early cancer survival 

and growth [26, 28, 29, 35]. Alternatively, mutations in 

EGFR, PDGFRA, NF1 and PTEN have been found in both 

clonal and sub-clonal populations, suggesting these 

mutations are later events [5, 26, 28, 35]. The frequent sub-

clonal occurrence of many known driver gene mutations in 

pre-treatment and recurrent disease suggests that these 

accumulate due to convergent evolution caused by common 

selection pressures rather than being tumour-initiating 

events. On a global level, the majority of mutations in the 

primary tumour are retained at recurrence [26, 36]. However, 

mutations in known driver genes, including EGFR, 

PDGFRA, the ARF/TP53 pathway, PTEN, NF1 and the 

INK/RB1 pathway, are disproportionally affected by 

mutational switching [5, 9, 26, 28, 35, 36]. Driver gene 

mutations can be lost, acquired, mutated at a different site, or 

show different amplification/deletion breakpoints. 

Importantly, Draaisma et al. found that approximately 20% 

of tumours show mutational changes in genes involved in cell 

cycle, the PI3K/AKT/mTOR and RTK signalling pathways 

at recurrence [26]. Mathematical modelling demonstrated 

that this has important implications for clinical trial design, 

particularly for therapies that target genes with lower 

mutation retention frequencies, such as EGFR [26]. 

Divergence of driver gene alterations was more pronounced 

in distant compared to local recurrences, suggesting that 

distant recurrences in particular should be reassessed to 

ascertain therapeutic vulnerabilities to targeted therapies 

[36]. Relapse-specific or -enriched alterations are rare [26, 

29]. Examples include mutations in MSH6, a component of 

the DNA mismatch repair (MMR) pathway, LTBP4, a 

regulator of the TGF-beta pathway, the insulin-like growth 

factor 1 receptor (IGF1R) and TET2, DNMT3A and 

PRDM2, which are involved in DNA methylation [5, 26]. 

 

Whole genome and exome sequencing of pair-matched 

primary and recurrent tumours showed that genetic evolution 

occurs mostly in an idiosyncratic manner [28]. This suggests 

that large population-based studies are required to 

characterise patient cohorts with shared evolutionary patterns 

of recurrence. Nonetheless, two overarching patterns were 

identified, supporting a model whereby recurrent tumours 

arises either from an early ancestral clone that branched off 

during tumour formation (divergent evolution) or from 

residual disease clones that persist through therapy (linear 

evolution) [36]. Branched evolution resulted in substantial 

genomic divergence with a low mutation retention frequency 

of approximately 25% between the primary and recurrent 

tumour. Linear evolution, on the other hand, gave rise to 

tumours with a high mutation retention frequency (~75%) 

[36]. Comparison of evolution patterns with clinical 

parameters found that local recurrences typically developed 

via linear evolution, whereas distant tumours via divergent 

evolution, accompanied with a small percentage of mutations 

from the primary tumour [36]. In support of this finding, Lee 

and colleagues also found greater genetic diversity between 

distant compared to local recurrences [35]. Together, these 

studies imply that spatially and/or temporally distant 

recurrent tumours arise from clones that diverged during 

early tumour development and underwent extensive clonal 

selection. However, even in the case of ‘linear’ evolution, 

Wang et al. reported that dominant clone(s) in recurrent 

disease are typically not linear descendants of the dominant 

clone(s) from the primary tumour, but rather are descendants 

of minor clones that persisted following therapy [5].  
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Several studies suggest that the clones responsible for tumour 

recurrence arise early during tumour development [5, 29, 31, 

38]. Dominant clones at diagnosis and relapse had evolved 

separately from a common ancestor many years prior [5]. 

Early ancestral clones have been described to reside in the 

subventricular zone (SVZ) and within infiltrating margins 

[38-40]. Piccirillo et al. demonstrated the presence of 

ancestral cells with tumour-initiating capacity in the SVZ, a 

known stem cell niche [39]. The same group later extended 

this study, demonstrating that residual disease clones in the 

infiltrating tumour margins had diverged early during 

tumourigenesis [40]. Phylogenetic analysis of pair-matched 

samples suggested that these infiltrative sub-clones are/might 

be the ‘missing link’ between the primary and recurrent 

tumour [40].  

 

2.2 The effect of temozolomide on tumour evolution and 

recurrence 

Numerous studies have suggested that tumour heterogeneity 

contributes to treatment failure [31, 33, 34, 40, 41]. Muscat 

et al. provided evidence for chemoradiation-induced 

selection of resistant clones by comparing pair-matched 

primary and recurrent GBM. Therapy reduced the number of 

sub-clonal variants while expanding resistant sub-

populations [6]. An example of this mechanism has been 

shown for EGFR-targeted therapies, where 82% of patients 

showed loss of EGFRvIII expression at relapse after 

receiving treatment that targeted the variant of this receptor 

[42]. TMZ is an oral alkylating agent that is the first-line 

chemotherapeutic agent for the treatment of GBM [1]. In the 

absence of a hypermutation phenotype, Muscat and 

colleagues found no enrichment of a TMZ-induced 

mutational signature (C→T transitions at CpC and CpT 

dinucleotides) following TMZ treatment [6]. Similarly, 

Koerber et al. reported no enrichment of the TMZ signature 

in recurrent tumours following TMZ therapy [29]. Together 

these findings show that TMZ has little influence on the 

generation of new mutations in recurrent disease in the 

absence of a hypermutation phenotype. In contrast, 

hypermutated tumours harbour defects in genes encoding 

proteins of the DNA mismatch repair (MMR) pathway and 

showed strong enrichment of the TMZ mutational signature 

[5, 26, 29]. Hypermutation was found to predominantly 

affect highly expressed genes, suggesting that TMZ and/or 

MMR preferentially target areas with open chromatin [5]. 

Also TMZ-associated hypermutation phenotype was found 

to be rare in IDH-WT disease suggesting that standard 

treatment poses little risk of developing hypermutation for 

patients with primary GBM [6, 27, 37]. This is in stark 

contrast to the observations made in the less common form 

of recurrent IDH1-mutant glioma [10]. Two possible 

explanations for this disparity between IDH1 wild-type and 

mutant gliomas has been proposed [36, 43]. The cumulative 

dose of TMZ given to patients with primary GBM is lower 

than IDH-mutant or low-grade glioma, raising the possibility 

that long-term exposure to TMZ increases the risk of 

hypermutation [5, 36]. Secondly, IDH1-mutation may 

predispose tumours to TMZ-induced hypermutation. IDH1 

gain-of-function mutations predispose tumours to MGMT 

promoter methylation, thereby reducing the chance to repair 

TMZ-induced mutagenesis and as a result increasing the 

chance to acquire mutations in MMR pathway genes 

associated with hypermutation [5, 36]. Overall, longitudinal 

studies of GBM evolution have revealed a significant amount 

of evolutionary divergence in recurrent disease. As a 

corollary, several studies advocate for resampling of the 

recurrent tumour before selecting targeted therapies for 

treatment [7, 26, 36].  
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3. Tumour Heterogeneity 

Intratumoural heterogeneity describes a phenomenon where 

individual cells or compartments within a single tumour mass 

are associated with different subgroups or molecular 

characteristics, (reviewed in [44]). Surgical multisampling of 

spatially separated GBM tumours has identified both unique 

and common genetic, epigenetic, and transcriptional 

alterations [31, 45]. On a transcriptional level GBM 

heterogeneity is characterised by three transcriptional 

subtypes, namely classical, proneural and mesenchymal [3, 

4]. Each subtype is enriched for specific genetic alterations, 

classical GBM shows a high frequency in EGFR alterations 

and 95% of classical GBM exhibit a homozygous deletion of 

CDKN2A (INK4a/ARF) [4]. The proneural subtype is 

associated with IDH1 mutation, and TP53, PDGFRA 

amplification or mutations. IDH1 mutations are relatively 

rare in primary de novo GBM and even more so in recurrent 

GBM [46, 47]. Mesenchymal GBM shows a high level of 

heterogeneity and alterations in tumour suppressor genes 

such as Neurofibromatosis 1 (NF1), TP53 and loss of 

phosphatase and tensin homolog (PTEN); 30-49% of GBM 

tissues can be classified as mesenchymal [4, 24]. This is of 

importance, since patients with this subtype, both at the 

primary and recurrent state of the disease, tend to have a 

worse survival rate compared to classical and proneural 

subtypes [48]. Several studies have elegantly stratified GBM 

into molecular subtypes [3, 4, 24]. This concept has recently 

been extended by Suva and colleagues using single cell 

RNASeq. In this study they defined four dynamic cell states 

with the ability to recapitulate the tumour mass post-therapy 

[2]. Among these classifications, the mesenchymal subtype 

has been associated with a more stem cell-like phenotype and 

has been linked to radioresistance and GBM recurrence [48]. 

Moreover, two-thirds of primary GBMs classified as a 

proneural or classical switch towards the mesenchymal 

subtypes at tumour recurrence [5]. Several well-known 

markers have been associated with a mesenchymal 

phenotype in GBM such as vimentin and CD44. More 

recently other receptors such as EphA3 and dystroglycan 

have been shown to be enriched in mesenchymal GBM tissue 

and linked to tumour recurrence [49-52]. Phase I EphA3-

targeting trials have shown promise with significant levels of 

EphA3-positive tumour tissue detected in recurrent GBM 

patients [53]. 

 

Glioma stem cells (GSCs) comprise a small population of 

cancer cells that are present in tumour tissue and are 

characterised by high tumorigenicity and self-renewal 

capacity [54]. It is now well-described that GSCs, harbour 

the capacity to differentiate into other tumour cell types 

giving rise to the diverse and dynamic heterogeneity 

observed within GBM [2, 5, 23, 31, 55]. In addition, GSCs 

have been associated with resistance to therapy and tumour 

recurrence [56]. Seminal studies conducted by Rich and 

colleagues showed that CD133+ GSCs could effectively 

promote radioresistance [56, 57]. More recently, GSCs have 

been shown to promote chemoresistance at nearly every 

pharmacologic level [58]. Secretion of exosomes, activation 

of autophagy [59], cell metabolism [60], ROS production 

[61] drug efflux [62], and microRNA expression [63, 64] are 

also altered in GSCs and can further enhance therapeutic 

resistance. Significant effort has been leveraged to tackle 

GBM heterogeneity by defining therapeutic strategies to 

target the GSC pool in effect targeting the tumour at its roots. 

An alternate strategy, could be approaches which induce 

differentiation of the entire tumour cell population delaying 

growth [65]. Hence, constraining GSCs to a limited 

transcriptional program as cells differentiate and reduce 

available escape routes from therapy [66]. Differentiation 
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therapy has shown clinical promise in acute promyelocytic 

leukemia (APL) with the use of all trans retinoic acid 

(ATRA) [67]. Bone morphogenetic protein (BMP) signalling 

triggers cell-cycle exit and astrocyte differentiation of GSCs 

and might therefore be useful as a differentiation therapy 

[68]. A BMP-mimicking peptide GBMP1a, induces 

astroglial differentiation of GSCs in vitro [69]. However, 

these cells show limited differentiation commitment and 

remain vulnerable to cell-cycle re-entry, retaining stem cell-

like DNA methylation patterns [70]. Moreover, Blocking 

WNT and SHH signalling in combination with BMP 

treatment has been shown to supress GSC self-renewal 

capacity and extended survival of tumour-bearing mice [71]. 

Clinical translation of differentiation therapies in brain 

cancer still appears difficult and further investigation into the 

mechanisms by which tumour cells evade differentiation 

commitment is needed. 

 

4. Blood Brain Barrier (BBB) 

The BBB is a brain-specific complex architecture comprising 

endothelial cells, pericytes, astrocytes, neurons, and 

extracellular matrix components. Tight junctions between 

endothelial cells and pericytes form the BBB to restrict the 

diffusion of larger molecules (>180 Daltons) from entering 

the brain [14]. This naturally occurring protective 

mechanism prevents or significantly reduces the ingress of 

many therapeutic agents. In addition, the BBB expresses high 

levels of drug efflux pumps posing a further problem. BBB 

integrity is partially compromised in brain tumours, 

commonly referred to as the blood–tumour barrier (BTB) 

[72]. The BTB can be detected during magnetic resonance 

imaging (MRI) by measuring the diffusion of gadolinium. 

Despite being leakier than the BBB, the BTB is 

heterogeneously permeable to most chemotherapeutic agents 

and is the rate-limiting factor in clinically effective therapy. 

The BTB is often more disrupted in recurrent disease and is 

likely the main reason why novel therapies that fail in the 

upfront setting show promise in a recurrent cohort [73, 74]. 

A recent example is Depatux-M (ABT-414) monotherapy 

that showed improved progression-free survival in the 

recurrent setting but then failed in newly diagnosed patients 

and the trial was subsequently ceased [11].  

 

Numerous efforts have been made to bypass the BBB to 

improve drug uptake. Targeting low-density lipoprotein 

receptor-related protein 1 (LRP1) on the cell surface of BTB 

cells has shown some efficacy in recurrent GBM studies [75]. 

An interesting report in the recurrent disease showed that 

Bevacizumab globally reduced permeability, but had a 

positive effect in leaky regions allowing better delivery of 

TMZ [76]. Success of studies combining chemotherapeutic 

agents with drugs that inhibit efflux pumps suggest that more 

potent inhibitors could increase drug penetration across the 

BTB [77]. Physical approaches to breach the BTB are 

garnering recent renewed interest. Magnetic resonance-

guided focused ultrasound (MRgFUS) is at the forefront of 

these technologies and has demonstrated great success in 

clinical studies. MRgFUS employs short ultrasound pulses 

with circulating microbubbles to transiently disrupt the BTB 

thus increasing permeability for 6-8 hours, allowing a 

window for increased drug uptake [15, 78]. Phase II clinical 

studies have not only confirmed preclinical findings but also 

demonstrated the safety and efficacy of this novel technology 

in recurrent disease [79, 80]. Nanotechnology has also shown 

promise as an emerging technology. A recent study showed 

the successful transport of TMZ and an anticancer drug JQ1 

packaged in a liposomal nanoparticle using mouse orthotopic 

glioma models [81]. The study reported stable drug 

circulation in the bloodstream when encapsulated by 

nanoparticles with higher drug accumulation in xenografted 
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tumours and improved animal survival. Nanoparticles have 

also been successfully delivered directly to the brain via the 

intranasal route, bypassing systemic circulation [82]. 

 

A recent phase II clinical trial showed very promising results 

in a small cohort of recurrent GBM patients [12]. The trial 

was based on the expression of the poliovirus receptor 

CD115 in GBM that was recognised by a recombinant 

poliovirus. The polio vaccine PVS-RIPO was infused 

directly into the patient’s tumour via convection- enhanced 

delivery (CED). CED employs a syringe pump connected to 

a catheter implanted at the tumour site to exert a constant 

pressure differential to drive drug-laden fluid throughout the 

tumour [18]. The success of this trial has driven renewed 

interest in CED and similar approaches as it enables a 

platform to test novel approaches and to re-test numerous 

intravenously administered drugs that have failed in clinical 

trial. A recent study used MR imaging to monitor CED in 

real time using iron oxide nanoparticles, showing broader 

distribution of a glioma-specific targeting therapy [83]. 

Many other CED and FUS based trials are currently in 

progress in recurrent disease and will reveal if these 

approaches will bring more durable responses in the future. 

 

5. Immune Therapy 

The immune system in the brain follows different principles 

from the immune system elsewhere. Most apparent reasons 

are the limited access to the tumour facilitated by the BBB, 

and the substantial endogenous and treatment-induced 

immunosuppression of the host. The CNS was once 

considered an immune-privileged site on the basis that non-

syngeneic tissues are not rejected when implanted into the 

brains of mice; a perception that has only recently been 

disproved [84-87]. It is now clear that the brain is accessible 

to the afferent and efferent arms of the immune system, and 

thus to immune therapy, reviewed in [88]. 

 

5.1 Tumour microenvironment 

Relative to other solid tumours, CNS tumours display low 

numbers of tumour-infiltrating lymphocytes (TILs) and other 

immune effector cells [89]. This ‘cold tumour’ phenotype is 

associated with inadequate responses to immune checkpoint 

inhibitors (ICIs) [90]. Also, TILs that are present frequently 

display an exhausted phenotype [91]. Unlike in peripheral 

organs, unrestrained inflammation and increased intracranial 

pressure pose a threat to the brain. For this reason, both 

inflammatory and adaptive immune responses are tightly 

regulated in the CNS. This regulation involves a variety of 

immunosuppressive mechanisms at both the molecular and 

cellular levels [92]. In response to inflammation, brain 

stromal cells produce high levels of immunosuppressive 

cytokines, transforming growth factor β (TGFβ) and 

interleukin-10 (IL-10), thereby counteracting inflammatory 

cytokines to maintain homeostasis [93, 94]. Glioma cells 

regulate tryptophan levels in the microenvironment by the 

expression of indolamine 2,3-dioxygenase (IDO). Which in 

turns leads to the accumulation of regulatory T (Treg) cells 

and the suppression of T cell activity [95, 96]. Both microglia 

and tumour-infiltrating macrophages produce high levels of 

arginase, thereby depleting arginine in the tumour tissue. 

Low arginine levels have an inhibitory effect on T cell 

proliferation and function [97]. Specific inhibition of 

immunosuppressive factors in combination with other 

therapies are currently under investigation in patients with 

brain tumours. Targeting TGFβ with antisense 

oligonucleotides [98] or blocking antibodies [99], as well as 

kinase inhibitors targeting the TGFβ receptor 1 (TGFβR1) 

[85] have failed. Several ongoing studies are examining the 

use of IDO inhibitors in brain tumours. Clinical trials of 
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arginase inhibitors in solid tumours are also underway, but 

none is specific for brain tumours. Targeting the 

immunosuppressive cells within the tumour 

microenvironment represents an alternative strategy. Up to 

30% of a GBM tumour is composed of tumour-associated 

macrophages (TAMs) [87]. Data from mouse models and 

human samples show that the vast majority of TAMs in GBM 

arise from circulating monocytes (85%), with a minor portion 

being of microglial (<15%) origin [100-102]. The anti-

inflammatory M2 macrophage phenotype and the number of 

infiltrating TAMs positively correlate with GBM grade and 

negatively with tumour prognosis [103, 104]. Both TAMs 

and GSCs are enriched in perivascular regions and hypoxic 

niches in GBM [37, 105, 106], suggesting a close interaction 

between these cell types [107]. Moreover, GSCs facilitate a 

pro-tumour microenvironment by promoting the survival of 

TAMs [108]. Interestingly, both GSC and TAM populations 

are elevated in recurrent tumours after irradiation [56, 109]. 

The close association between TAMs and GSCs strongly 

suggests a reciprocal molecular crosstalk that is crucial for 

GBM malignant progression. Although macrophages are 

important in modulating the immune system, targeting 

TAMs alone is not sufficient to elicit an effective immune 

response. Additionally, many existing treatment modalities 

affect and are affected by the myeloid compartment, 

therefore, emphasising the need for combination with 

myeloid targeting to prevent myeloid-mediated therapy 

resistance. 

 

5.2 Checkpoint inhibitors 

Checkpoint inhibitors work by releasing a natural brake on 

the immune system allowing anticancer CD8+ T cells to 

recognise and eliminate tumours. Targeting PD1 

(programmed death 1), its ligand PD1L1 (PD1 ligand 1) or 

cytotoxic T lymphocyte-associated antigen 4 (CTLA4) have 

demonstrated activity in a variety of solid tumours [110, 

111]. Although numerous preclinical studies reported 

positive results [89, 112, 113], a phase III clinical trial 

(CheckMate-143) comparing anti-PD1 therapy nivolumab 

with bevacizumab (anti-vascular endothelial growth factor A 

(VEGFA)) in the treatment of recurrent GBM did not show 

a benefit over bevacizumab? [114]. CheckMate-489 a phase 

III study in newly diagnosed patients with O6-

methylguanine-DNA-methytransferase (MGMT) promoter-

unmethylated GBM showed similarly disappointing results 

(NCT02617589). In this study, nivolumab in combination 

with radiation was compared to standard-of-care. A third 

study (CheckMate-548) evaluating nivolumab in 

combination with TMZ in patients with MGMT-methylated 

GBM, is still pending (NCT02667587). 

 

More promising are the results of an early phase clinical trial 

evaluating immune response and survival following 

neoadjuvant and/or adjuvant therapy with pembrolizumab in 

35 patients with recurrent, surgically resectable GBM. 

Patients receiving neoadjuvant pembrolizumab, with 

continued adjuvant therapy showed a significant increase in 

overall survival compared to adjuvant PD-1 blockade alone. 

This result was associated with the T cell-mediated interferon 

response, which resulted in a downregulation of cell-cycle-

related genes within the tumour cells. The study also showed 

that pre-surgical checkpoint inhibition resulted in a systemic 

expansion of tumour-specific T lymphocytes resulting in a 

greater initial T cell diversity, which in turn potentiated 

responsiveness to PD-1 blockade [13]. Although no obvious 

clinical benefit was observed in a single-arm phase II clinical 

trial using neoadjuvant nivolumab treatment, enhanced 

expression of chemokine transcripts, higher immune cell 

infiltration and increased clonal T cell receptor diversity 

among tumour-infiltrating T cells indicate a local 
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immunomodulating effect of treatment [92]. Neoadjuvant 

administration/treatment promises significant improvements 

in patient’s outcome with minimal changes to treatment 

modality. 

 

5.3 Vaccines 

Cancer vaccine therapy aims to activate the patient’s immune 

system to recognise tumour-associated antigens and destroy 

the tumour. Vaccines encompass a range of treatments, 

including systemic exposure to autologous or allogeneic 

antigens as well as the induction of a tumour-specific 

immune response by dendritic cell (DC) vaccination. The 

advantage of this approach is the potential for eliciting a 

widespread and durable response. GBM-specific antigens are 

rare, and some of these antigens are restricted by HLA types, 

limiting the patient population in which these vaccines may 

be considered. Peptide vaccines targeting a single tumour 

antigen, such as EGFRvIII, IDHR132H and Wilms tumour 1 

(WT1) led to substantial increase in survival in an 

uncontrolled phase II trial, but no benefit was observed in a 

randomised phase III trial [115]. Single-peptide vaccinations 

harbour the potential for tumour immune escape. An 

EGFRvIII vaccine study revealed that the majority of 

patients with recurrence lost EGFRvIII expression [42]. 

Multi-peptide vaccines are considered to resolve the problem 

of antigen loss, but none of these clinical trials investigating 

multi-peptide vaccines have given a clear indication of 

efficacy [116, 117]. SL701 a vaccine consisting of short 

synthetic peptides targeting IL-13Rα2, EphA2, and Survivin, 

showed a median overall survival of 12 month in a phase II 

study in recurrent GBM. The study reported that 8/28 

patients mounted a target-specific CD8 response, which was 

associated with longer survival [118]. Given that GBM-

specific antigens are rare a number of tumour-associated 

antigens are being studied in GBM. Although being not 

specific to tumour cells, limited expression elsewhere makes 

these safe targets to exploit [119]. Immunisation with whole 

GBM tissue lysate was lethal when studied in animal models 

[120]; however, vaccines formulated from heat shock 

proteins (HSP) and DC vaccines, have been well-tolerated 

with promising early results. A detailed review of completed 

vaccine trials in GBM was recently published [119]. 

 

5.4 Oncolytic viral therapy 

Oncolytic viruses (OVs) are viruses that are naturally cancer-

selective or can be genetically modified to reduce 

pathogenicity, increase lytic potential, as well as induce 

innate and adaptive anti-tumour immune response. Initially 

designed as a mechanism of gene delivery to provide tumour 

cells with susceptibility to chemotherapy, is now recognised 

as a form of immunotherapy. Viruses are recognised by the 

immune system through pathogen-associated molecular 

patterns and pattern recognition receptors. Furthermore, 

viruses often activate macrophages through receptors, such 

as TLRs [121]. As a secondary effect, activated myeloid cells 

can improve the infiltration of T cells into tumours to 

promote an inflamed microenvironment. As a result, viral 

therapies are a very interesting approach to overcoming the 

immunosuppression of GBM. The excitement about this 

therapy is largely driven by the population of long-term 

survivors which was recently reviewed [122]. To-date, two 

therapeutic viruses have entered testing in phase III clinical 

trial, ASPECT and Toca5. Initial results on ASPECT, a 

replication-deficient adenovirus, showed prolonged time to 

death or to reintervention. However, no difference in median 

overall survival was observed [123]. Toca5 a non-lytic 

retrovirus expressing cytosine deaminase was compared to 

standard therapies in recurrent high-grade 

gliomas(NCT01470794). 5 patients out of 23 who received 

Toca 511 showed durable responses and as of August 2017, 
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all of those patients were still alive, one over 4 years [124]. 

Several other viral therapies that include replication 

competent HSV1 (G207), parvovirus (ParvOryx01), 

adenovirus (DNX-2401), and poliovirus (PVS-RIPO) [12], 

have reported durable responses in patients with GBM [122]. 

The future direction of oncolytic viral therapies seems to be 

focused on combinations with immunotherapy strategies, to 

potentially induce a durable anti-cancer immune response 

initiated by the viral infection and to elicit prolonged clinical 

responses. 

 

5.5 CAR T-Cell therapy 

Chimeric antigen receptor (CAR) T-cell therapy has 

achieved tremendous successes in treatment of 

haematological malignancies [125]. CAR T-cell therapy has 

the advantage of bypassing the need for MHC antigen 

presentation, the development of an adaptive immune 

response and hence, the need for co-stimulatory signals. 

Despite the success in haematological malignancies the 

response to CAR T-cell therapy in solid tumours including 

GBM have been disappointing. This has been attributed to 

the complexity of solid tumours. This therapy faces multiple 

obstacles in solid tumours such as the hostile tumour 

microenvironment, on-tumour/off-tumour toxicities, and 

undesired antigen specificity, reviewed in [126]. The tumour 

antigens that have been most investigated for CAR T therapy 

in GBM to-date are EGFRvIII, HER2 and IL-13Rα2. 

Encouragingly, none of the clinical trials in GBM using CAR 

T-cell therapy reported unmanageable CNS side effects, a 

concern that arose in CAR T-cell therapy in B cell lymphoma 

which led to elevated intracranial pressure and associated 

encephalopathy [127]. Various CAR T-cell constructs and 

routes of administration are currently under investigation. 

We summarise here the results of three recent reports. As 

mentioned/noted above, EGFRvIII has also been targeted 

using CAR T-cell therapy. Infiltration of CAR T-cells 

showed elevated levels of intratumoural EGFRvIII CAR T-

cell DNA and a decrease in EGFRvIII expression, suggesting 

effective infiltration of the tumour [128]. Although CAR T-

cells efficiently infiltrated and eliminated EGFRvIII+ tumour 

cells, no partial or complete responses were observed [128]. 

CAR T-cells targeting HER2, a receptor tyrosine kinase with 

high expression in a proportion of GBM, has been explored 

[129]. A phase I clinical trial, enrolling 10 adult and 7 

paediatric patients, with heavily pre-treated recurrent HER2+ 

GBM were treated with HER2-specific CAR T-cells [130]. 

The study demonstrated relative safety and persistence of 

HER2 virus-specific CAR T-cells in peripheral blood for up 

to one year. One patient had a partial response for more than 

9 months and seven patients had stable disease for between 8 

weeks to 29 months. The median overall survival was 11.1 

months from the first T-cell infusion and 24.5 months after 

diagnosis [130]. A safety and efficacy trial of CAR T-cells 

targeting IL-13Rα2 in GBM was performed on a group of 

three patients. IL-13Rα2 modulates activation of the 

rapamycin pathway and is typically associated with a worse 

overall prognosis in GBM [131, 132]. Patients received an 

intracranial infusion post-resection, followed by an 

intertumoural infusion and an intraventricular infusion. Two 

out of three GBM patients showed a radiological response 

and a significant decrease in IL13Rα2 expression after 

therapy [133]. One patient with recurrent multifocal IDH1 

wild-type, MGMT non-methylated GBM showed a dramatic 

response that lasted for 7.5 months. However, disease 

ultimately recurred in this patient [134]. An important 

observation in this study was that the route of delivery 

appeared decisive with complete regression of multi-focal 

tumours following intraventricular administration. This CAR 

T target is continuing to be studied in combination with 

check point inhibitors (NCT04003649).   
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Category Therapy Target Phase Clinical trials 

Immune 

checkpoint 

inhibition 

Nivolumab PD-1 

III 

III 

III 

NCT02017717 

NCT02617589 

NCT02667587‡ 

Pembrolizumab PD-1 II NCT02337491 

Durvalumab PD-L1 I NTC02866747 

Ipilimumab CTLA-4 I NCT03233152 

Anti-LAG3 LAG3 I NCT02658981 

Vaccines 

Rindopepimut EGFRvIII 
II 

III 

NCT01498328 

NCT03068650 

DC-Vax tumour lysate antigen vaccine II NCT03014804 

DSP-7888 in combination with 

bevacizumab  

Wilms tumour gene 1 (WT1) protein + anti-

VEGFA 
II NCT03149003 

IDH1 peptide vaccine IDH1 I NCT02193347 

CMV pp65 DC pp65 I NCT03299309 

CMV pp65 DC in combination with 

bevacizumab nivolumab 
pp65 + PD-1 I NCT02529072 

TVI-Brain-1 cancer cell vaccine II NCT01290692 

HSPPC-96 
tumor-derived heat shock protein peptide-

complex 
II NCT00905060‡ 

ICT-107 tumor associated antigens III NCT02546102‡ 

SL701/poly-ICLC IL-13Ra2, ephrin A2, survivin I NCT02078648 

PVS-RIPO Poliovirus I NCT01491893‡ 

ASPECT [123] Adenovirus-mediated III 2004-000464-28 

Toca511 Retroviral replicating vector I NCT01470794 

CAR T-Cells 

EGFR-806 EGFRvIII I NCT03638167 

HER2-specific CAR T-cells HER2 I NCT03500991 

IL-13Ra2-specific CAR T-cells IL-13Ra2 I 
NCT04003649 

NCT02208362 

CMV-specific CAR T-cells CMV specific antigens I 
ACTRN1260900

0338268 

 

Table 1: Representative immune therapy clinical trials in recurrent glioblastoma (‡ studies on newly-diagnosed glioblastoma). 

Interventions are categorised based on their mode of action. 

 



 

J Cancer Sci Clin Ther 2021; 5 (2): 286-308  DOI: 10.26502/jcsct.5079118 

 

 

Journal of Cancer Science and Clinical Therapeutics   298 

 

Multiple studies indicate the human cytomegalovirus (CMV) 

is a contributing factor to glioma progression [135]. This 

finding is further emphasised by the presence of CMV 

sequences in malignant T-cells [136, 137] and that 

vaccination with autologous GBM lysate elicited a CMV-

specific immune response. A clinical phase I trial for 

adoptive immunotherapy using CMV-specific T-cells in 

patients with recurrent GBM proved the safety of adoptive 

immunotherapy and was coincident with disease stabilisation 

[138]. Studies of recurrent GBM have revealed resistance 

mechanisms at all phases of the immune response. Intrinsic 

resistance prevents the initiation of a response, adaptive 

resistance deactivates tumour-infiltrating immune cells and 

acquired resistance protects a tumour from specific targeting. 

Future trials utilising immune therapy will target multiple 

antigens in each patient in an attempt to address tumour 

antigen heterogeneity in the recurrent setting. 

 

6. Future Directions  

Multiple small-cohort clinical trials using specialist 

techniques have shown promising results in recurrent 

disease, often with responses only observed in a subset of 

enrolled patients. The challenge moving forward will be to 

select the best candidate approaches, define tests to 

determine which patients will respond and broaden patient 

access. Technical approaches that improve BBB therapy 

penetrance such as CED and MgFUS hold significant 

promise and revive previously failed systemic therapy-based 

clinical trials. In theory, all previously targeted agents and 

antibodies that have failed in the vein could be reassessed 

using CED or MgFUS. These approaches are not without 

limitation, requiring specialist CED surgical techniques or 

equipment and expertise in the case of MgFUS. A significant 

cost is also attached to these procedures and scalability is an 

issue. Interestingly, the BTB appears to be less stringent in 

the recurrent setting compared to upfront disease. This is 

hopeful for therapeutic interventions at recurrence. Depatux-

M (ABT-414), developed by Abbvie, showed significant 

promise during initial testing in a recurrent cohort but was 

subsequently ceased during phase III clinical trial in the 

upfront setting. Pharmaceutical companies could be 

encouraged through federal incentive schemes to continue 

therapies that show positive signals in recurrent GBM, as the 

need is so great and almost all patients invariably experience 

relapse. 

 

The success of immunotherapy in GBM faces several 

obstacles including the highly immunosuppressive nature of 

GBM and the limitations of the immune response in the 

central nervous system. Learning from phase III clinical trial 

failures, the future of immunotherapy for GBM appears most 

hopeful for combination therapies driven by biomarkers for 

appropriate patient selection. Given the extreme need for 

improved survival in GBM, current clinical trials are 

evaluating checkpoint inhibition in combination with novel 

therapies including vaccines, CAR-T cell therapy, and viral 

therapy. The biggest breakthrough in recent times in 

recurrent GBM has been the use of neoadjuvant IO. This 

relies on the existing recurrent tumour acting as sink of both 

immune cells and tumour cells to raise an appropriate 

response prior to surgical resection. The benefits of 

neoadjuvant IO include accessibility, scalability, well-

established toxicity profiles with minimal changes to 

standard practices. A number of clinical trials are either 

underway or in preparation and the effectiveness of these 

approaches will be further refined in the coming years. 

Deciphering the biology driving recurrent GBM might 

harbour the promise of targeted therapy at the stage of the 

primary disease. Hence, preventing recurrence by managing 
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the initial disease. Here we summarise exciting biological 

discoveries and recent progress in the treatment of patients 

with recurrent GBM. GBM remains a particularly 

challenging disease as little progress has been made towards 

improving patient outcomes and survival. A better 

understanding of the origins of this cancer and the molecular 

biology driving glioma genesis at recurrence is still needed 

to develop therapies addressing the main obstacles discussed 

in this review. 

 

7. Conclusions 

Now is time for hope for brain cancer sufferers. A significant 

build up in our knowledge of the disease has occurred in the 

past decade. This, in essence, has “primed the pump” and will 

lead future discoveries and clinical trial design into the 

future. Substantial financial support through federal 

programs such as the Cancer Moon-Shot in the United States 

and Australian Brain Cancer Mission (ABCM) have been 

leveraged to bring discoveries from bench to bedside. These 

programs have also strengthened awareness and community 

philanthropic support. Based on the advances discussed in 

this review the next decade should see significant 

breakthroughs for patients suffering from this aggressive 

disease. 
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